#include "MultiPoint.hpp" #include "BoundingBox.hpp" namespace Slic3r { void MultiPoint::scale(double factor) { for (Point &pt : points) pt *= factor; } void MultiPoint::scale(double factor_x, double factor_y) { for (Point &pt : points) { pt(0) = coord_t(pt(0) * factor_x); pt(1) = coord_t(pt(1) * factor_y); } } void MultiPoint::translate(double x, double y) { Vector v(x, y); for (Point &pt : points) pt += v; } void MultiPoint::translate(const Point &v) { for (Point &pt : points) pt += v; } void MultiPoint::rotate(double cos_angle, double sin_angle) { for (Point &pt : this->points) { double cur_x = double(pt(0)); double cur_y = double(pt(1)); pt(0) = coord_t(round(cos_angle * cur_x - sin_angle * cur_y)); pt(1) = coord_t(round(cos_angle * cur_y + sin_angle * cur_x)); } } void MultiPoint::rotate(double angle, const Point ¢er) { double s = sin(angle); double c = cos(angle); for (Point &pt : points) { Vec2crd v(pt - center); pt(0) = (coord_t)round(double(center(0)) + c * v[0] - s * v[1]); pt(1) = (coord_t)round(double(center(1)) + c * v[1] + s * v[0]); } } double MultiPoint::length() const { Lines lines = this->lines(); double len = 0; for (Lines::iterator it = lines.begin(); it != lines.end(); ++it) { len += it->length(); } return len; } int MultiPoint::find_point(const Point &point) const { for (const Point &pt : this->points) if (pt == point) return int(&pt - &this->points.front()); return -1; // not found } bool MultiPoint::has_boundary_point(const Point &point) const { double dist = (point.projection_onto(*this) - point).cast().norm(); return dist < SCALED_EPSILON; } BoundingBox MultiPoint::bounding_box() const { return BoundingBox(this->points); } bool MultiPoint::has_duplicate_points() const { for (size_t i = 1; i < points.size(); ++i) if (points[i-1] == points[i]) return true; return false; } bool MultiPoint::remove_duplicate_points() { size_t j = 0; for (size_t i = 1; i < points.size(); ++i) { if (points[j] == points[i]) { // Just increase index i. } else { ++ j; if (j < i) points[j] = points[i]; } } if (++ j < points.size()) { points.erase(points.begin() + j, points.end()); return true; } return false; } bool MultiPoint::intersection(const Line& line, Point* intersection) const { Lines lines = this->lines(); for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) { if (it->intersection(line, intersection)) return true; } return false; } bool MultiPoint::first_intersection(const Line& line, Point* intersection) const { bool found = false; double dmin = 0.; for (const Line &l : this->lines()) { Point ip; if (l.intersection(line, &ip)) { if (! found) { found = true; dmin = (line.a - ip).cast().norm(); *intersection = ip; } else { double d = (line.a - ip).cast().norm(); if (d < dmin) { dmin = d; *intersection = ip; } } } } return found; } bool MultiPoint::intersections(const Line &line, Points *intersections) const { size_t intersections_size = intersections->size(); for (const Line &polygon_line : this->lines()) { Point intersection; if (polygon_line.intersection(line, &intersection)) intersections->emplace_back(std::move(intersection)); } return intersections->size() > intersections_size; } std::vector MultiPoint::_douglas_peucker(const std::vector& pts, const double tolerance) { std::vector result_pts; double tolerance_sq = tolerance * tolerance; if (! pts.empty()) { const Point *anchor = &pts.front(); size_t anchor_idx = 0; const Point *floater = &pts.back(); size_t floater_idx = pts.size() - 1; result_pts.reserve(pts.size()); result_pts.emplace_back(*anchor); if (anchor_idx != floater_idx) { assert(pts.size() > 1); std::vector dpStack; dpStack.reserve(pts.size()); dpStack.emplace_back(floater_idx); for (;;) { double max_dist_sq = 0.0; size_t furthest_idx = anchor_idx; // find point furthest from line seg created by (anchor, floater) and note it for (size_t i = anchor_idx + 1; i < floater_idx; ++ i) { double dist_sq = Line::distance_to_squared(pts[i], *anchor, *floater); if (dist_sq > max_dist_sq) { max_dist_sq = dist_sq; furthest_idx = i; } } // remove point if less than tolerance if (max_dist_sq <= tolerance_sq) { result_pts.emplace_back(*floater); anchor_idx = floater_idx; anchor = floater; assert(dpStack.back() == floater_idx); dpStack.pop_back(); if (dpStack.empty()) break; floater_idx = dpStack.back(); } else { floater_idx = furthest_idx; dpStack.emplace_back(floater_idx); } floater = &pts[floater_idx]; } } assert(result_pts.front() == pts.front()); assert(result_pts.back() == pts.back()); #if 0 { static int iRun = 0; BoundingBox bbox(pts); BoundingBox bbox2(result_pts); bbox.merge(bbox2); SVG svg(debug_out_path("douglas_peucker_%d.svg", iRun ++).c_str(), bbox); if (pts.front() == pts.back()) svg.draw(Polygon(pts), "black"); else svg.draw(Polyline(pts), "black"); if (result_pts.front() == result_pts.back()) svg.draw(Polygon(result_pts), "green", scale_(0.1)); else svg.draw(Polyline(result_pts), "green", scale_(0.1)); } #endif } return result_pts; } // Visivalingam simplification algorithm https://github.com/slic3r/Slic3r/pull/3825 // thanks to @fuchstraumer /* struct - vis_node Used with the visivalignam simplification algorithm, which needs to be able to find a points successors and predecessors to operate succesfully. Since this struct is only used in one location, it could probably be dropped into a namespace to avoid polluting the slic3r namespace. Source: https://github.com/shortsleeves/visvalingam_simplify ^ Provided original algorithm implementation. I've only changed things a bit to "clean" them up (i.e be more like my personal style), and managed to do this without requiring a binheap implementation */ struct vis_node{ vis_node(const size_t& idx, const size_t& _prev_idx, const size_t& _next_idx, const double& _area) : pt_idx(idx), prev_idx(_prev_idx), next_idx(_next_idx), area(_area) {} // Indices into a Points container, from which this object was constructed size_t pt_idx, prev_idx, next_idx; // Effective area of this "node" double area; // Overloaded operator used to sort the binheap // Greater area = "more important" node. So, this node is less than the // other node if it's area is less than the other node's area bool operator<(const vis_node& other) { return (this->area < other.area); } }; Points MultiPoint::visivalingam(const Points& pts, const double& tolerance) { // Make sure there's enough points in "pts" to bother with simplification. assert(pts.size() >= 2); // Result object Points results; // Lambda to calculate effective area spanned by a point and its immediate // successor + predecessor. auto effective_area = [pts](const size_t& curr_pt_idx, const size_t& prev_pt_idx, const size_t& next_pt_idx)->coordf_t { const Point& curr = pts[curr_pt_idx]; const Point& prev = pts[prev_pt_idx]; const Point& next = pts[next_pt_idx]; // Use point objects as vector-distances const Vec2d curr_to_next = (next - curr).cast(); const Vec2d prev_to_next = (prev - curr).cast(); // Take cross product of these two vector distances return 0.50 * abs(cross2(curr_to_next, prev_to_next)); }; // We store the effective areas for each node std::vector areas; areas.reserve(pts.size()); // Construct the initial set of nodes. We will make a heap out of the "heap" vector using // std::make_heap. node_list is used later. std::vector node_list; node_list.resize(pts.size()); std::vector heap; heap.reserve(pts.size()); for (size_t i = 1; i < pts.size() - 1; ++ i) { // Get effective area of current node. coordf_t area = effective_area(i, i - 1, i + 1); // If area is greater than some arbitrarily small value, use it. node_list[i] = new vis_node(i, i - 1, i + 1, area); heap.push_back(node_list[i]); } // Call std::make_heap, which uses the < operator by default to make "heap" into // a binheap, sorted by the < operator we defind in the vis_node struct std::make_heap(heap.begin(), heap.end()); // Start comparing areas. Set min_area to an outrageous value initially. double min_area = -std::numeric_limits::max(); while (!heap.empty()) { // Get current node. vis_node* curr = heap.front(); // Pop node we just retrieved off the heap. pop_heap moves front element in vector // to the back, so we can call pop_back() std::pop_heap(heap.begin(), heap.end()); heap.pop_back(); // Sanity assert check assert(curr == node_list[curr->pt_idx]); // If the current pt'ss area is less than that of the previous pt's area // use the last pt's area instead. This ensures we don't elimate the current // point without eliminating the previous min_area = std::max(min_area, curr->area); // Update prev vis_node* prev = node_list[curr->prev_idx]; if(prev != nullptr){ prev->next_idx = curr->next_idx; prev->area = effective_area(prev->pt_idx, prev->prev_idx, prev->next_idx); // For some reason, std::make_heap() is the fastest way to resort the heap. Probably needs testing. std::make_heap(heap.begin(), heap.end()); } // Update next vis_node* next = node_list[curr->next_idx]; if(next != nullptr){ next->prev_idx = curr->prev_idx; next->area = effective_area(next->pt_idx, next->prev_idx, next->next_idx); std::make_heap(heap.begin(), heap.end()); } areas[curr->pt_idx] = min_area; node_list[curr->pt_idx] = nullptr; delete curr; } // Clear node list and shrink_to_fit() (to free actual memory). Not necessary. Could be removed. node_list.clear(); node_list.shrink_to_fit(); // This lambda is how we test whether or not to keep a point. auto use_point = [areas, tolerance](const size_t& idx)->bool { assert(idx < areas.size()); // Return true at front/back of path/areas if(idx == 0 || idx == areas.size() - 1){ return true; } // Return true if area at idx is greater than minimum area to consider "valid" else{ return areas[idx] > tolerance; } }; // Use previously defined lambda to build results. for (size_t i = 0; i < pts.size(); ++i) { if (use_point(i)){ results.push_back(pts[i]); } } // Check that results has at least two points assert(results.size() >= 2); // Return simplified vector of points return results; } void MultiPoint3::translate(double x, double y) { for (Vec3crd &p : points) { p(0) += coord_t(x); p(1) += coord_t(y); } } void MultiPoint3::translate(const Point& vector) { this->translate(vector(0), vector(1)); } double MultiPoint3::length() const { double len = 0.0; for (const Line3& line : this->lines()) len += line.length(); return len; } BoundingBox3 MultiPoint3::bounding_box() const { return BoundingBox3(points); } bool MultiPoint3::remove_duplicate_points() { size_t j = 0; for (size_t i = 1; i < points.size(); ++i) { if (points[j] == points[i]) { // Just increase index i. } else { ++ j; if (j < i) points[j] = points[i]; } } if (++j < points.size()) { points.erase(points.begin() + j, points.end()); return true; } return false; } BoundingBox get_extents(const MultiPoint &mp) { return BoundingBox(mp.points); } BoundingBox get_extents_rotated(const Points &points, double angle) { BoundingBox bbox; if (! points.empty()) { double s = sin(angle); double c = cos(angle); Points::const_iterator it = points.begin(); double cur_x = (double)(*it)(0); double cur_y = (double)(*it)(1); bbox.min(0) = bbox.max(0) = (coord_t)round(c * cur_x - s * cur_y); bbox.min(1) = bbox.max(1) = (coord_t)round(c * cur_y + s * cur_x); for (++it; it != points.end(); ++it) { double cur_x = (double)(*it)(0); double cur_y = (double)(*it)(1); coord_t x = (coord_t)round(c * cur_x - s * cur_y); coord_t y = (coord_t)round(c * cur_y + s * cur_x); bbox.min(0) = std::min(x, bbox.min(0)); bbox.min(1) = std::min(y, bbox.min(1)); bbox.max(0) = std::max(x, bbox.max(0)); bbox.max(1) = std::max(y, bbox.max(1)); } bbox.defined = true; } return bbox; } BoundingBox get_extents_rotated(const MultiPoint &mp, double angle) { return get_extents_rotated(mp.points, angle); } }