#ifndef WipeTowerPrusaMM_hpp_ #define WipeTowerPrusaMM_hpp_ #include #include #include #include #include #include "WipeTower.hpp" #include "PrintConfig.hpp" namespace Slic3r { namespace PrusaMultiMaterial { class Writer; }; class WipeTowerPrusaMM : public WipeTower { public: enum material_type { INVALID = -1, PLA = 0, // E:210C B:55C ABS = 1, // E:255C B:100C PET = 2, // E:240C B:90C HIPS = 3, // E:220C B:100C FLEX = 4, // E:245C B:80C SCAFF = 5, // E:215C B:55C EDGE = 6, // E:240C B:80C NGEN = 7, // E:230C B:80C PVA = 8, // E:210C B:80C PC = 9 }; // Parse material name into material_type. static material_type parse_material(const char *name); static std::string to_string(material_type material); // x -- x coordinates of wipe tower in mm ( left bottom corner ) // y -- y coordinates of wipe tower in mm ( left bottom corner ) // width -- width of wipe tower in mm ( default 60 mm - leave as it is ) // wipe_area -- space available for one toolchange in mm WipeTowerPrusaMM(float x, float y, float width, float rotation_angle, float cooling_tube_retraction, float cooling_tube_length, float parking_pos_retraction, float extra_loading_move, float bridging, bool set_extruder_trimpot, GCodeFlavor flavor, const std::vector>& wiping_matrix, unsigned int initial_tool) : m_wipe_tower_pos(x, y), m_wipe_tower_width(width), m_wipe_tower_rotation_angle(rotation_angle), m_y_shift(0.f), m_z_pos(0.f), m_is_first_layer(false), m_cooling_tube_retraction(cooling_tube_retraction), m_cooling_tube_length(cooling_tube_length), m_parking_pos_retraction(parking_pos_retraction), m_extra_loading_move(extra_loading_move), m_bridging(bridging), m_set_extruder_trimpot(set_extruder_trimpot), m_gcode_flavor(flavor), m_current_tool(initial_tool), wipe_volumes(wiping_matrix) {} virtual ~WipeTowerPrusaMM() {} // Set the extruder properties. void set_extruder(size_t idx, material_type material, int temp, int first_layer_temp, float loading_speed, float loading_speed_start, float unloading_speed, float unloading_speed_start, float delay, int cooling_moves, float cooling_initial_speed, float cooling_final_speed, std::string ramming_parameters, float max_volumetric_speed, float nozzle_diameter) { //while (m_filpar.size() < idx+1) // makes sure the required element is in the vector m_filpar.push_back(FilamentParameters()); m_filpar[idx].material = material; m_filpar[idx].temperature = temp; m_filpar[idx].first_layer_temperature = first_layer_temp; m_filpar[idx].loading_speed = loading_speed; m_filpar[idx].loading_speed_start = loading_speed_start; m_filpar[idx].unloading_speed = unloading_speed; m_filpar[idx].unloading_speed_start = unloading_speed_start; m_filpar[idx].delay = delay; m_filpar[idx].cooling_moves = cooling_moves; m_filpar[idx].cooling_initial_speed = cooling_initial_speed; m_filpar[idx].cooling_final_speed = cooling_final_speed; if (max_volumetric_speed != 0.f) m_filpar[idx].max_e_speed = (max_volumetric_speed / Filament_Area); m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter std::stringstream stream{ramming_parameters}; float speed = 0.f; stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator; m_filpar[idx].ramming_line_width_multiplicator /= 100; m_filpar[idx].ramming_step_multiplicator /= 100; while (stream >> speed) m_filpar[idx].ramming_speed.push_back(speed); m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later } // Appends into internal structure m_plan containing info about the future wipe tower // to be used before building begins. The entries must be added ordered in z. void plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, bool brim, float wipe_volume = 0.f); // Iterates through prepared m_plan, generates ToolChangeResults and appends them to "result" void generate(std::vector> &result); float get_depth() const { return m_wipe_tower_depth; } // Switch to a next layer. virtual void set_layer( // Print height of this layer. float print_z, // Layer height, used to calculate extrusion the rate. float layer_height, // Maximum number of tool changes on this layer or the layers below. size_t max_tool_changes, // Is this the first layer of the print? In that case print the brim first. bool is_first_layer, // Is this the last layer of the waste tower? bool is_last_layer) { m_z_pos = print_z; m_layer_height = layer_height; m_is_first_layer = is_first_layer; m_print_brim = is_first_layer; m_depth_traversed = 0.f; m_current_shape = (! is_first_layer && m_current_shape == SHAPE_NORMAL) ? SHAPE_REVERSED : SHAPE_NORMAL; if (is_first_layer) { this->m_num_layer_changes = 0; this->m_num_tool_changes = 0; } else ++ m_num_layer_changes; // Calculate extrusion flow from desired line width, nozzle diameter, filament diameter and layer_height: m_extrusion_flow = extrusion_flow(layer_height); // Advance m_layer_info iterator, making sure we got it right while (!m_plan.empty() && m_layer_info->z < print_z - WT_EPSILON && m_layer_info+1 != m_plan.end()) ++m_layer_info; } // Return the wipe tower position. virtual const xy& position() const { return m_wipe_tower_pos; } // Return the wipe tower width. virtual float width() const { return m_wipe_tower_width; } // The wipe tower is finished, there should be no more tool changes or wipe tower prints. virtual bool finished() const { return m_max_color_changes == 0; } // Returns gcode to prime the nozzles at the front edge of the print bed. virtual ToolChangeResult prime( // print_z of the first layer. float first_layer_height, // Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object. const std::vector &tools, // If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower. // If false, the last priming are will be large enough to wipe the last extruder sufficiently. bool last_wipe_inside_wipe_tower); // Returns gcode for a toolchange and a final print head position. // On the first layer, extrude a brim around the future wipe tower first. virtual ToolChangeResult tool_change(unsigned int new_tool, bool last_in_layer); // Fill the unfilled space with a sparse infill. // Call this method only if layer_finished() is false. virtual ToolChangeResult finish_layer(); // Is the current layer finished? virtual bool layer_finished() const { return ( (m_is_first_layer ? m_wipe_tower_depth - m_perimeter_width : m_layer_info->depth) - WT_EPSILON < m_depth_traversed); } virtual std::vector get_used_filament() const override { return m_used_filament_length; } virtual int get_number_of_toolchanges() const override { return m_num_tool_changes; } struct FilamentParameters { material_type material = PLA; int temperature = 0; int first_layer_temperature = 0; float loading_speed = 0.f; float loading_speed_start = 0.f; float unloading_speed = 0.f; float unloading_speed_start = 0.f; float delay = 0.f ; int cooling_moves = 0; float cooling_initial_speed = 0.f; float cooling_final_speed = 0.f; float ramming_line_width_multiplicator = 0.f; float ramming_step_multiplicator = 0.f; float max_e_speed = std::numeric_limits::max(); std::vector ramming_speed; float nozzle_diameter; }; private: WipeTowerPrusaMM(); enum wipe_shape // A fill-in direction { SHAPE_NORMAL = 1, SHAPE_REVERSED = -1 }; const bool m_peters_wipe_tower = false; // sparse wipe tower inspired by Peter's post processor - not finished yet const float Filament_Area = float(M_PI * 1.75f * 1.75f / 4.f); // filament area in mm^2 const float Width_To_Nozzle_Ratio = 1.25f; // desired line width (oval) in multiples of nozzle diameter - may not be actually neccessary to adjust const float WT_EPSILON = 1e-3f; xy m_wipe_tower_pos; // Left front corner of the wipe tower in mm. float m_wipe_tower_width; // Width of the wipe tower. float m_wipe_tower_depth = 0.f; // Depth of the wipe tower float m_wipe_tower_rotation_angle = 0.f; // Wipe tower rotation angle in degrees (with respect to x axis) float m_internal_rotation = 0.f; float m_y_shift = 0.f; // y shift passed to writer float m_z_pos = 0.f; // Current Z position. float m_layer_height = 0.f; // Current layer height. size_t m_max_color_changes = 0; // Maximum number of color changes per layer. bool m_is_first_layer = false;// Is this the 1st layer of the print? If so, print the brim around the waste tower. int m_old_temperature = -1; // To keep track of what was the last temp that we set (so we don't issue the command when not neccessary) // G-code generator parameters. float m_cooling_tube_retraction = 0.f; float m_cooling_tube_length = 0.f; float m_parking_pos_retraction = 0.f; float m_extra_loading_move = 0.f; float m_bridging = 0.f; bool m_set_extruder_trimpot = false; bool m_adhesion = true; GCodeFlavor m_gcode_flavor; float m_perimeter_width = 0.4f * Width_To_Nozzle_Ratio; // Width of an extrusion line, also a perimeter spacing for 100% infill. float m_extrusion_flow = 0.038f; //0.029f;// Extrusion flow is derived from m_perimeter_width, layer height and filament diameter. // Extruder specific parameters. std::vector m_filpar; // State of the wipe tower generator. unsigned int m_num_layer_changes = 0; // Layer change counter for the output statistics. unsigned int m_num_tool_changes = 0; // Tool change change counter for the output statistics. ///unsigned int m_idx_tool_change_in_layer = 0; // Layer change counter in this layer. Counting up to m_max_color_changes. bool m_print_brim = true; // A fill-in direction (positive Y, negative Y) alternates with each layer. wipe_shape m_current_shape = SHAPE_NORMAL; unsigned int m_current_tool = 0; const std::vector> wipe_volumes; float m_depth_traversed = 0.f; // Current y position at the wipe tower. bool m_left_to_right = true; float m_extra_spacing = 1.f; // Calculates extrusion flow needed to produce required line width for given layer height float extrusion_flow(float layer_height = -1.f) const // negative layer_height - return current m_extrusion_flow { if ( layer_height < 0 ) return m_extrusion_flow; return layer_height * ( m_perimeter_width - layer_height * (1.f-float(M_PI)/4.f)) / Filament_Area; } // Calculates length of extrusion line to extrude given volume float volume_to_length(float volume, float line_width, float layer_height) const { return std::max(0.f, volume / (layer_height * (line_width - layer_height * (1.f - float(M_PI) / 4.f)))); } // Calculates depth for all layers and propagates them downwards void plan_tower(); // Goes through m_plan and recalculates depths and width of the WT to make it exactly square - experimental void make_wipe_tower_square(); // Goes through m_plan, calculates border and finish_layer extrusions and subtracts them from last wipe void save_on_last_wipe(); struct box_coordinates { box_coordinates(float left, float bottom, float width, float height) : ld(left , bottom ), lu(left , bottom + height), rd(left + width, bottom ), ru(left + width, bottom + height) {} box_coordinates(const xy &pos, float width, float height) : box_coordinates(pos.x, pos.y, width, height) {} void translate(const xy &shift) { ld += shift; lu += shift; rd += shift; ru += shift; } void translate(const float dx, const float dy) { translate(xy(dx, dy)); } void expand(const float offset) { ld += xy(- offset, - offset); lu += xy(- offset, offset); rd += xy( offset, - offset); ru += xy( offset, offset); } void expand(const float offset_x, const float offset_y) { ld += xy(- offset_x, - offset_y); lu += xy(- offset_x, offset_y); rd += xy( offset_x, - offset_y); ru += xy( offset_x, offset_y); } xy ld; // left down xy lu; // left upper xy rd; // right lower xy ru; // right upper }; // to store information about tool changes for a given layer struct WipeTowerInfo{ struct ToolChange { unsigned int old_tool; unsigned int new_tool; float required_depth; float ramming_depth; float first_wipe_line; float wipe_volume; ToolChange(unsigned int old, unsigned int newtool, float depth=0.f, float ramming_depth=0.f, float fwl=0.f, float wv=0.f) : old_tool{old}, new_tool{newtool}, required_depth{depth}, ramming_depth{ramming_depth}, first_wipe_line{fwl}, wipe_volume{wv} {} }; float z; // z position of the layer float height; // layer height float depth; // depth of the layer based on all layers above float extra_spacing; float toolchanges_depth() const { float sum = 0.f; for (const auto &a : tool_changes) sum += a.required_depth; return sum; } std::vector tool_changes; WipeTowerInfo(float z_par, float layer_height_par) : z{z_par}, height{layer_height_par}, depth{0}, extra_spacing{1.f} {} }; std::vector m_plan; // Stores information about all layers and toolchanges for the future wipe tower (filled by plan_toolchange(...)) std::vector::iterator m_layer_info = m_plan.end(); // Stores information about used filament length per extruder: std::vector m_used_filament_length; // Returns gcode for wipe tower brim // sideOnly -- set to false -- experimental, draw brim on sides of wipe tower // offset -- set to 0 -- experimental, offset to replace brim in front / rear of wipe tower ToolChangeResult toolchange_Brim(bool sideOnly = false, float y_offset = 0.f); void toolchange_Unload( PrusaMultiMaterial::Writer &writer, const box_coordinates &cleaning_box, const material_type current_material, const int new_temperature); void toolchange_Change( PrusaMultiMaterial::Writer &writer, const unsigned int new_tool, material_type new_material); void toolchange_Load( PrusaMultiMaterial::Writer &writer, const box_coordinates &cleaning_box); void toolchange_Wipe( PrusaMultiMaterial::Writer &writer, const box_coordinates &cleaning_box, float wipe_volume); }; }; // namespace Slic3r #endif /* WipeTowerPrusaMM_hpp_ */