#include "../ClipperUtils.hpp" #include "../ShortestPath.hpp" #include "../Arachne/WallToolPaths.hpp" #include "AABBTreeLines.hpp" #include "Algorithm/PathSorting.hpp" #include "BoundingBox.hpp" #include "ExPolygon.hpp" #include "FillEnsuring.hpp" #include "KDTreeIndirect.hpp" #include "Line.hpp" #include "Point.hpp" #include "Polygon.hpp" #include "Polyline.hpp" #include "SVG.hpp" #include "libslic3r.h" #include #include #include #include #include #include #include namespace Slic3r { ThickPolylines make_fill_polylines(const Fill *fill, const Surface *surface, const FillParams ¶ms, bool stop_vibrations, bool fill_gaps) { assert(fill->print_config != nullptr && fill->print_object_config != nullptr && fill->print_region_config != nullptr); auto rotate_thick_polylines = [](ThickPolylines &tpolylines, double cos_angle, double sin_angle) { for (ThickPolyline &tp : tpolylines) { for (auto &p : tp.points) { double px = double(p.x()); double py = double(p.y()); p.x() = coord_t(round(cos_angle * px - sin_angle * py)); p.y() = coord_t(round(cos_angle * py + sin_angle * px)); } } }; auto segments_overlap = [](coord_t alow, coord_t ahigh, coord_t blow, coord_t bhigh) { return (alow >= blow && alow <= bhigh) || (ahigh >= blow && ahigh <= bhigh) || (blow >= alow && blow <= ahigh) || (bhigh >= alow && bhigh <= ahigh); }; const coord_t scaled_spacing = scaled(fill->spacing); double distance_limit_reconnection = double(scaled_spacing); double squared_distance_limit_reconnection = distance_limit_reconnection * distance_limit_reconnection; Polygons filled_area = to_polygons(surface->expolygon); std::pair rotate_vector = fill->_infill_direction(surface); double aligning_angle = -rotate_vector.first + PI; polygons_rotate(filled_area, aligning_angle); BoundingBox bb = get_extents(filled_area); const size_t n_vlines = (bb.max.x() - bb.min.x() + scaled_spacing - 1) / scaled_spacing; std::vector vertical_lines(n_vlines); coord_t y_min = bb.min.y(); coord_t y_max = bb.max.y(); for (size_t i = 0; i < n_vlines; i++) { coord_t x = bb.min.x() + i * double(scaled_spacing); vertical_lines[i].a = Point{x, y_min}; vertical_lines[i].b = Point{x, y_max}; } vertical_lines.push_back(vertical_lines.back()); vertical_lines.back().a = Point{coord_t(bb.min.x() + n_vlines * double(scaled_spacing) + scaled_spacing * 0.5), y_min}; vertical_lines.back().b = Point{vertical_lines.back().a.x(), y_max}; AABBTreeLines::LinesDistancer area_walls; if (stop_vibrations) { area_walls = AABBTreeLines::LinesDistancer{ to_lines(intersection(filled_area, opening(filled_area, 2 * scaled_spacing, 3 * scaled_spacing)))}; } else { area_walls = AABBTreeLines::LinesDistancer{to_lines(filled_area)}; } std::vector> polygon_sections(n_vlines); for (size_t i = 0; i < n_vlines; i++) { const auto intersections = area_walls.intersections_with_line(vertical_lines[i]); for (int intersection_idx = 0; intersection_idx < int(intersections.size()) - 1; intersection_idx++) { const auto &a = intersections[intersection_idx]; const auto &b = intersections[intersection_idx + 1]; if (area_walls.outside((a.first + b.first) / 2) < 0) { if (std::abs(a.first.y() - b.first.y()) > scaled_spacing) { polygon_sections[i].emplace_back(a.first, b.first); } } } } if (stop_vibrations) { struct Node { int section_idx; int line_idx; int skips_taken = 0; bool neighbours_explored = false; std::vector> neighbours{}; }; coord_t length_filter = scale_(4); size_t skips_allowed = 2; size_t min_removal_conut = 5; for (int section_idx = 0; section_idx < polygon_sections.size(); section_idx++) { for (int line_idx = 0; line_idx < polygon_sections[section_idx].size(); line_idx++) { if (const Line &line = polygon_sections[section_idx][line_idx]; line.a != line.b && line.length() < length_filter) { std::set> to_remove{{section_idx, line_idx}}; std::vector to_visit{{section_idx, line_idx}}; bool initial_touches_long_lines = false; if (section_idx > 0) { for (int prev_line_idx = 0; prev_line_idx < polygon_sections[section_idx - 1].size(); prev_line_idx++) { if (const Line &nl = polygon_sections[section_idx - 1][prev_line_idx]; nl.a != nl.b && segments_overlap(line.a.y(), line.b.y(), nl.a.y(), nl.b.y())) { initial_touches_long_lines = true; } } } while (!to_visit.empty()) { Node curr = to_visit.back(); const Line &curr_l = polygon_sections[curr.section_idx][curr.line_idx]; if (curr.neighbours_explored) { bool is_valid_for_removal = (curr_l.length() < length_filter) && ((int(to_remove.size()) - curr.skips_taken > min_removal_conut) || (curr.neighbours.empty() && !initial_touches_long_lines)); if (!is_valid_for_removal) { for (const auto &n : curr.neighbours) { if (to_remove.find(n) != to_remove.end()) { is_valid_for_removal = true; break; } } } if (!is_valid_for_removal) { to_remove.erase({curr.section_idx, curr.line_idx}); } to_visit.pop_back(); } else { to_visit.back().neighbours_explored = true; int curr_index = to_visit.size() - 1; bool can_use_skip = curr_l.length() <= length_filter && curr.skips_taken < skips_allowed; if (curr.section_idx + 1 < polygon_sections.size()) { for (int lidx = 0; lidx < polygon_sections[curr.section_idx + 1].size(); lidx++) { if (const Line &nl = polygon_sections[curr.section_idx + 1][lidx]; nl.a != nl.b && segments_overlap(curr_l.a.y(), curr_l.b.y(), nl.a.y(), nl.b.y()) && (nl.length() < length_filter || can_use_skip)) { to_visit[curr_index].neighbours.push_back({curr.section_idx + 1, lidx}); to_remove.insert({curr.section_idx + 1, lidx}); Node next_node{curr.section_idx + 1, lidx, curr.skips_taken + (nl.length() >= length_filter)}; to_visit.push_back(next_node); } } } } } for (const auto &pair : to_remove) { Line &l = polygon_sections[pair.first][pair.second]; l.a = l.b; } } } } } for (size_t section_idx = 0; section_idx < polygon_sections.size(); section_idx++) { polygon_sections[section_idx].erase(std::remove_if(polygon_sections[section_idx].begin(), polygon_sections[section_idx].end(), [](const Line &s) { return s.a == s.b; }), polygon_sections[section_idx].end()); std::sort(polygon_sections[section_idx].begin(), polygon_sections[section_idx].end(), [](const Line &a, const Line &b) { return a.a.y() < b.b.y(); }); } Polygons reconstructed_area{}; // reconstruct polygon from polygon sections { struct TracedPoly { Points lows; Points highs; }; std::vector current_traced_polys; for (const auto &polygon_slice : polygon_sections) { std::unordered_set used_segments; for (TracedPoly &traced_poly : current_traced_polys) { auto candidates_begin = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.lows.back(), [](const Point &low, const Line &seg) { return seg.b.y() > low.y(); }); auto candidates_end = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.highs.back(), [](const Point &high, const Line &seg) { return seg.a.y() > high.y(); }); bool segment_added = false; for (auto candidate = candidates_begin; candidate != candidates_end && !segment_added; candidate++) { if (used_segments.find(&(*candidate)) != used_segments.end()) { continue; } if ((traced_poly.lows.back() - candidates_begin->a).cast().squaredNorm() < squared_distance_limit_reconnection) { traced_poly.lows.push_back(candidates_begin->a); } else { traced_poly.lows.push_back(traced_poly.lows.back() + Point{scaled_spacing / 2, 0}); traced_poly.lows.push_back(candidates_begin->a - Point{scaled_spacing / 2, 0}); traced_poly.lows.push_back(candidates_begin->a); } if ((traced_poly.highs.back() - candidates_begin->b).cast().squaredNorm() < squared_distance_limit_reconnection) { traced_poly.highs.push_back(candidates_begin->b); } else { traced_poly.highs.push_back(traced_poly.highs.back() + Point{scaled_spacing / 2, 0}); traced_poly.highs.push_back(candidates_begin->b - Point{scaled_spacing / 2, 0}); traced_poly.highs.push_back(candidates_begin->b); } segment_added = true; used_segments.insert(&(*candidates_begin)); } if (!segment_added) { // Zero or multiple overlapping segments. Resolving this is nontrivial, // so we just close this polygon and maybe open several new. This will hopefully happen much less often traced_poly.lows.push_back(traced_poly.lows.back() + Point{scaled_spacing / 2, 0}); traced_poly.highs.push_back(traced_poly.highs.back() + Point{scaled_spacing / 2, 0}); Polygon &new_poly = reconstructed_area.emplace_back(std::move(traced_poly.lows)); new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend()); traced_poly.lows.clear(); traced_poly.highs.clear(); } } current_traced_polys.erase(std::remove_if(current_traced_polys.begin(), current_traced_polys.end(), [](const TracedPoly &tp) { return tp.lows.empty(); }), current_traced_polys.end()); for (const auto &segment : polygon_slice) { if (used_segments.find(&segment) == used_segments.end()) { TracedPoly &new_tp = current_traced_polys.emplace_back(); new_tp.lows.push_back(segment.a - Point{scaled_spacing / 2, 0}); new_tp.lows.push_back(segment.a); new_tp.highs.push_back(segment.b - Point{scaled_spacing / 2, 0}); new_tp.highs.push_back(segment.b); } } } // add not closed polys for (TracedPoly &traced_poly : current_traced_polys) { Polygon &new_poly = reconstructed_area.emplace_back(std::move(traced_poly.lows)); new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend()); } } reconstructed_area = closing(reconstructed_area, float(SCALED_EPSILON), float(SCALED_EPSILON)); ExPolygons gaps_for_additional_filling = diff_ex(filled_area, reconstructed_area); if (fill->overlap != 0) { gaps_for_additional_filling = offset_ex(gaps_for_additional_filling, scaled(fill->overlap)); } // BoundingBox bbox = get_extents(filled_area); // bbox.offset(scale_(1.)); // ::Slic3r::SVG svg(debug_out_path(("surface" + std::to_string(surface->area())).c_str()).c_str(), bbox); // svg.draw(to_lines(filled_area), "red", scale_(0.4)); // svg.draw(to_lines(reconstructed_area), "blue", scale_(0.3)); // svg.draw(to_lines(gaps_for_additional_filling), "green", scale_(0.2)); // svg.draw(vertical_lines, "black", scale_(0.1)); // svg.Close(); ThickPolylines thick_polylines; { for (const auto &polygon_slice : polygon_sections) { for (const Line &segment : polygon_slice) { ThickPolyline &new_path = thick_polylines.emplace_back(); new_path.points.push_back(segment.a); new_path.width.push_back(scaled_spacing); new_path.points.push_back(segment.b); new_path.width.push_back(scaled_spacing); new_path.endpoints = {true, true}; } } } if (fill_gaps) { for (ExPolygon &ex_poly : gaps_for_additional_filling) { BoundingBox ex_bb = ex_poly.contour.bounding_box(); coord_t loops_count = (std::max(ex_bb.size().x(), ex_bb.size().y()) + scaled_spacing - 1) / scaled_spacing; Polygons polygons = to_polygons(ex_poly); Arachne::WallToolPaths wall_tool_paths(polygons, scaled_spacing, scaled_spacing, loops_count, 0, params.layer_height, *fill->print_object_config, *fill->print_config); if (std::vector loops = wall_tool_paths.getToolPaths(); !loops.empty()) { std::vector all_extrusions; for (Arachne::VariableWidthLines &loop : loops) { if (loop.empty()) continue; for (const Arachne::ExtrusionLine &wall : loop) all_extrusions.emplace_back(&wall); } for (const Arachne::ExtrusionLine *extrusion : all_extrusions) { if (extrusion->junctions.size() < 2) { continue; } ThickPolyline thick_polyline = Arachne::to_thick_polyline(*extrusion); if (extrusion->is_closed) { thick_polyline.start_at_index(nearest_point_index(thick_polyline.points, ex_bb.min)); thick_polyline.clip_end(scaled_spacing * 0.5); } if (thick_polyline.is_valid() && thick_polyline.length() > 0 && thick_polyline.points.size() > 1) { thick_polylines.push_back(thick_polyline); } } } } std::sort(thick_polylines.begin(), thick_polylines.end(), [](const ThickPolyline &left, const ThickPolyline &right) { BoundingBox lbb(left.points); BoundingBox rbb(right.points); if (lbb.min.x() == rbb.min.x()) return lbb.min.y() < rbb.min.y(); else return lbb.min.x() < rbb.min.x(); }); // connect tiny gap fills to close colinear line struct EndPoint { Vec2d position; size_t polyline_idx; size_t other_end_point_idx; bool is_first; bool used = false; }; std::vector connection_endpoints; connection_endpoints.reserve(thick_polylines.size() * 2); for (size_t pl_idx = 0; pl_idx < thick_polylines.size(); pl_idx++) { size_t current_idx = connection_endpoints.size(); connection_endpoints.push_back({thick_polylines[pl_idx].first_point().cast(), pl_idx, current_idx + 1, true}); connection_endpoints.push_back({thick_polylines[pl_idx].last_point().cast(), pl_idx, current_idx, false}); } auto coord_fn = [&connection_endpoints](size_t idx, size_t dim) { return connection_endpoints[idx].position[dim]; }; KDTreeIndirect<2, double, decltype(coord_fn)> endpoints_tree{coord_fn, connection_endpoints.size()}; for (size_t ep_idx = 0; ep_idx < connection_endpoints.size(); ep_idx++) { EndPoint &ep1 = connection_endpoints[ep_idx]; if (!ep1.used) { std::vector close_endpoints = find_nearby_points(endpoints_tree, ep1.position, double(scaled_spacing)); for (size_t close_endpoint_idx : close_endpoints) { EndPoint &ep2 = connection_endpoints[close_endpoint_idx]; if (ep2.used || ep2.polyline_idx == ep1.polyline_idx) { continue; } ThickPolyline &tp1 = thick_polylines[ep1.polyline_idx]; ThickPolyline &tp2 = thick_polylines[ep2.polyline_idx]; Vec2d v1 = ep1.is_first ? (tp1.points[0] - tp1.points[1]).cast() : (tp1.points.back() - tp1.points[tp1.points.size() - 1]).cast(); Vec2d v2 = ep2.is_first ? (tp2.points[1] - tp2.points[0]).cast() : (tp2.points[tp2.points.size() - 1] - tp2.points.back()).cast(); if (std::abs(Slic3r::angle(v1, v2)) > PI / 6.0) { continue; } // connect ep and ep2; if (ep1.is_first) { tp1.reverse(); ep1.is_first = false; connection_endpoints[ep1.other_end_point_idx].is_first = true; } size_t new_start_idx = ep1.other_end_point_idx; if (!ep2.is_first) { tp2.reverse(); ep2.is_first = true; connection_endpoints[ep2.other_end_point_idx].is_first = false; } size_t new_end_idx = ep2.other_end_point_idx; tp1.points.insert(tp1.points.end(), tp2.points.begin(), tp2.points.end()); tp1.width.push_back(tp1.width.back()); tp1.width.push_back(tp2.width.front()); tp1.width.insert(tp1.width.end(), tp2.width.begin(), tp2.width.end()); ep1.used = true; ep2.used = true; connection_endpoints[new_start_idx].polyline_idx = ep1.polyline_idx; connection_endpoints[new_end_idx].polyline_idx = ep1.polyline_idx; connection_endpoints[new_start_idx].other_end_point_idx = new_end_idx; connection_endpoints[new_end_idx].other_end_point_idx = new_start_idx; tp2.clear(); break; } } } thick_polylines.erase(std::remove_if(thick_polylines.begin(), thick_polylines.end(), [scaled_spacing](const ThickPolyline &tp) { return tp.length() < scaled_spacing && std::all_of(tp.width.begin(), tp.width.end(), [scaled_spacing](double w) { return w < scaled_spacing; }); }), thick_polylines.end()); } Algorithm::sort_paths(thick_polylines.begin(), thick_polylines.end(), bb.min, double(scaled_spacing) * 1.2, [](const ThickPolyline &tp) { Lines ls; Point prev = tp.first_point(); for (size_t i = 1; i < tp.points.size(); i++) { ls.emplace_back(prev, tp.points[i]); prev = ls.back().b; } return ls; }); // ThickPolylines connected_thick_polylines; // if (!thick_polylines.empty()) { // connected_thick_polylines.push_back(thick_polylines.front()); // for (ThickPolyline &tp : thick_polylines) { // ThickPolyline &tail = connected_thick_polylines.back(); // Point last = tail.last_point(); // if ((last - tp.last_point()).cast().squaredNorm() < (last - tp.first_point()).cast().squaredNorm()) { // tp.reverse(); // } // if ((last - tp.first_point()).cast().squaredNorm() < squared_distance_limit_reconnection) { // tail.points.insert(tail.points.end(), tp.points.begin(), tp.points.end()); // tail.width.push_back(0); // tail.width.push_back(0); // tail.width.insert(tail.width.end(), tp.width.begin(), tp.width.end()); // } else { // connected_thick_polylines.push_back(tp); // } // } // } rotate_thick_polylines(thick_polylines, cos(-aligning_angle), sin(-aligning_angle)); return thick_polylines; } } // namespace Slic3r // const size_t n_vlines = (bb.max.x() - bb.min.x() + scaled_spacing - 1) / scaled_spacing; // std::vector vertical_lines(2 * n_vlines + 1); // coord_t y_min = bb.min.y(); // coord_t y_max = bb.max.y(); // for (size_t i = 0; i < n_vlines; i++) { // coord_t x0 = bb.min.x() + i * double(scaled_spacing) - scaled_spacing * 0.5; // coord_t x1 = bb.min.x() + i * double(scaled_spacing); // vertical_lines[i * 2].a = Point{x0, y_min}; // vertical_lines[i * 2].b = Point{x0, y_max}; // vertical_lines[i * 2 + 1].a = Point{x1, y_min}; // vertical_lines[i * 2 + 1].b = Point{x1, y_max}; // } // vertical_lines.back().a = Point{coord_t(bb.min.x() + n_vlines * double(scaled_spacing) + scaled_spacing * 0.5), y_min}; // vertical_lines.back().b = Point{vertical_lines.back().a.x(), y_max}; // auto area_walls = AABBTreeLines::LinesDistancer{to_lines(internal_area)}; // std::vector, size_t>>> vertical_lines_intersections(vertical_lines.size()); // for (int i = 0; i < vertical_lines.size(); i++) { // vertical_lines_intersections[i] = area_walls.intersections_with_line(vertical_lines[i]); // } // std::vector> polygon_sections(n_vlines); // for (size_t i = 0; i < n_vlines; i++) { // const auto ¢ral_intersections = vertical_lines_intersections[i * 2 + 1]; // const auto &left_intersections = vertical_lines_intersections[i * 2]; // const auto &right_intersections = vertical_lines_intersections[i * 2 + 2]; // for (int intersection_idx = 0; intersection_idx < int(central_intersections.size()) - 1; intersection_idx++) { // const auto &a = central_intersections[intersection_idx]; // const auto &b = central_intersections[intersection_idx + 1]; // if (area_walls.outside((a.first + b.first) / 2) < 0) { // // central part is inside. Now check for reasonable side distances // auto get_closest_intersection_squared_dist = // [](const std::pair, size_t> &point, // const std::vector, size_t>> &sorted_intersections) { // if (sorted_intersections.empty()) { // return 0.0; // } // auto closest_higher = std::upper_bound(sorted_intersections.begin(), sorted_intersections.end(), point, // [](const std::pair, size_t> &left, // const std::pair, size_t> &right) { // return left.first.y() < right.first.y(); // }); // if (closest_higher == sorted_intersections.end()) { // return (point.first - sorted_intersections.back().first).cast().squaredNorm(); // } // double candidate_dist = (point.first - closest_higher->first).cast().squaredNorm(); // if (closest_higher != sorted_intersections.begin()) { // double closest_lower_dist = (point.first - (--closest_higher)->first).cast().squaredNorm(); // candidate_dist = std::min(candidate_dist, closest_lower_dist); // } // return candidate_dist; // }; // Point section_a = a.first; // Point section_b = b.first; // double max_a_squared_dist = std::max(get_closest_intersection_squared_dist(a, left_intersections), // get_closest_intersection_squared_dist(a, right_intersections)); // double max_b_squared_dist = std::max(get_closest_intersection_squared_dist(b, left_intersections), // get_closest_intersection_squared_dist(b, right_intersections)); // if (max_a_squared_dist > 0.3 * squared_distance_limit_reconnection) { // section_a.y() += 4.0 * scaled_spacing; // } // if (max_b_squared_dist > 0.3 * squared_distance_limit_reconnection) { // section_b.y() -= 4.0 * scaled_spacing; // } // if (section_a.y() < section_b.y()) { // polygon_sections[i].emplace_back(section_a, section_b); // } // } // } // }