#include #include #include #include #include "ItsNeighborIndex.hpp" #include "libslic3r/Execution/ExecutionTBB.hpp" #include "libslic3r/Execution/ExecutionSeq.hpp" #include "tbb/parallel_sort.h" namespace Slic3r { FaceNeighborIndex its_create_neighbors_index_1(const indexed_triangle_set &its) { // Just to be clear what type of object are we referencing using FaceID = size_t; using VertexID = uint64_t; using EdgeID = uint64_t; constexpr auto UNASSIGNED = std::numeric_limits::max(); struct Edge // Will contain IDs of the two facets touching this edge { FaceID first, second; Edge() : first{UNASSIGNED}, second{UNASSIGNED} {} void assign(FaceID fid) { first == UNASSIGNED ? first = fid : second = fid; } }; // All vertex IDs will fit into this number of bits. (Used for hashing) const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size())); assert(max_vertex_id_bits <= 32); std::unordered_map< EdgeID, Edge> edge_index; // Edge id is constructed by concatenating two vertex ids, starting with // the lowest in MSB auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) { if (a > b) std::swap(a, b); return (a << max_vertex_id_bits) + b; }; // Go through all edges of all facets and mark the facets touching each edge for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) { const Vec3i &face = its.indices[face_id]; EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)), e3 = hash(face(2), face(0)); edge_index[e1].assign(face_id); edge_index[e2].assign(face_id); edge_index[e3].assign(face_id); } FaceNeighborIndex index(its.indices.size()); // Now collect the neighbors for each facet into the final index for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) { const Vec3i &face = its.indices[face_id]; EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)), e3 = hash(face(2), face(0)); const Edge &neighs1 = edge_index[e1]; const Edge &neighs2 = edge_index[e2]; const Edge &neighs3 = edge_index[e3]; std::array &neighs = index[face_id]; neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first; neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first; neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first; } return index; } std::vector its_create_neighbors_index_2(const indexed_triangle_set &its) { std::vector out(its.indices.size(), Vec3i(-1, -1, -1)); // Create a mapping from triangle edge into face. struct EdgeToFace { // Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high. int vertex_low; // Index of the 2nd vertex of the triangle edge. int vertex_high; // Index of a triangular face. int face; // Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high). int face_edge; bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; } bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); } }; std::vector edges_map; edges_map.assign(its.indices.size() * 3, EdgeToFace()); for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx) for (int i = 0; i < 3; ++ i) { EdgeToFace &e2f = edges_map[facet_idx * 3 + i]; e2f.vertex_low = its.indices[facet_idx][i]; e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3]; e2f.face = facet_idx; // 1 based indexing, to be always strictly positive. e2f.face_edge = i + 1; if (e2f.vertex_low > e2f.vertex_high) { // Sort the vertices std::swap(e2f.vertex_low, e2f.vertex_high); // and make the face_edge negative to indicate a flipped edge. e2f.face_edge = - e2f.face_edge; } } std::sort(edges_map.begin(), edges_map.end()); // Assign a unique common edge id to touching triangle edges. int num_edges = 0; for (size_t i = 0; i < edges_map.size(); ++ i) { EdgeToFace &edge_i = edges_map[i]; if (edge_i.face == -1) // This edge has been connected to some neighbor already. continue; // Unconnected edge. Find its neighbor with the correct orientation. size_t j; bool found = false; for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j) if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) { // Faces touching with opposite oriented edges and none of the edges is connected yet. found = true; break; } if (! found) { //FIXME Vojtech: Trying to find an edge with equal orientation. This smells. // admesh can assign the same edge ID to more than two facets (which is // still topologically correct), so we have to search for a duplicate of // this edge too in case it was already seen in this orientation for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j) if (edges_map[j].face != -1) { // Faces touching with equally oriented edges and none of the edges is connected yet. found = true; break; } } // Assign an edge index to the 1st face. // out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges; if (found) { EdgeToFace &edge_j = edges_map[j]; out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face; out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face; // Mark the edge as connected. edge_j.face = -1; } ++ num_edges; } return out; } std::vector its_create_neighbors_index_3(const indexed_triangle_set &its) { std::vector out(its.indices.size(), Vec3i(-1, -1, -1)); // Create a mapping from triangle edge into face. struct EdgeToFace { // Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high. int vertex_low; // Index of the 2nd vertex of the triangle edge. int vertex_high; // Index of a triangular face. int face; // Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high). int face_edge; bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; } bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); } }; std::vector edges_map; edges_map.assign(its.indices.size() * 3, EdgeToFace()); for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx) for (int i = 0; i < 3; ++ i) { EdgeToFace &e2f = edges_map[facet_idx * 3 + i]; e2f.vertex_low = its.indices[facet_idx][i]; e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3]; e2f.face = facet_idx; // 1 based indexing, to be always strictly positive. e2f.face_edge = i + 1; if (e2f.vertex_low > e2f.vertex_high) { // Sort the vertices std::swap(e2f.vertex_low, e2f.vertex_high); // and make the face_edge negative to indicate a flipped edge. e2f.face_edge = - e2f.face_edge; } } tbb::parallel_sort(edges_map.begin(), edges_map.end()); // Assign a unique common edge id to touching triangle edges. int num_edges = 0; for (size_t i = 0; i < edges_map.size(); ++ i) { EdgeToFace &edge_i = edges_map[i]; if (edge_i.face == -1) // This edge has been connected to some neighbor already. continue; // Unconnected edge. Find its neighbor with the correct orientation. size_t j; bool found = false; for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j) if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) { // Faces touching with opposite oriented edges and none of the edges is connected yet. found = true; break; } if (! found) { //FIXME Vojtech: Trying to find an edge with equal orientation. This smells. // admesh can assign the same edge ID to more than two facets (which is // still topologically correct), so we have to search for a duplicate of // this edge too in case it was already seen in this orientation for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j) if (edges_map[j].face != -1) { // Faces touching with equally oriented edges and none of the edges is connected yet. found = true; break; } } // Assign an edge index to the 1st face. // out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges; if (found) { EdgeToFace &edge_j = edges_map[j]; out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face; out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face; // Mark the edge as connected. edge_j.face = -1; } ++ num_edges; } return out; } FaceNeighborIndex its_create_neighbors_index_4(const indexed_triangle_set &its) { // Just to be clear what type of object are we referencing using FaceID = size_t; using VertexID = uint64_t; using EdgeID = uint64_t; constexpr auto UNASSIGNED = std::numeric_limits::max(); struct Edge // Will contain IDs of the two facets touching this edge { FaceID first, second; Edge() : first{UNASSIGNED}, second{UNASSIGNED} {} void assign(FaceID fid) { first == UNASSIGNED ? first = fid : second = fid; } }; Benchmark bm; bm.start(); // All vertex IDs will fit into this number of bits. (Used for hashing) // const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size())); // assert(max_vertex_id_bits <= 32); const uint64_t Vn = its.vertices.size(); // const uint64_t Fn = 3 * its.indices.size(); // double MaxQ = double(Vn) * (Vn + 1) / Fn; // const uint64_t Nq = MaxQ < 0 ? 0 : std::ceil(std::log2(MaxQ)); // const uint64_t Nr = std::ceil(std::log2(std::min(Vn * (Vn + 1), Fn))); // const uint64_t Nfn = std::ceil(std::log2(Fn)); //// const uint64_t max_edge_ids = (uint64_t(1) << (Nq + Nr)); // const uint64_t max_edge_ids = MaxQ * Fn + (std::min(Vn * (Vn + 1), Fn)); //(uint64_t(1) << Nfn); const uint64_t Fn = 3 * its.indices.size(); std::vector< Edge > edge_index(3 * Fn); // Edge id is constructed by concatenating two vertex ids, starting with // the lowest in MSB auto hash = [Vn, Fn /*, Nr*/] (VertexID a, VertexID b) { if (a > b) std::swap(a, b); uint64_t C = Vn * a + b; uint64_t Q = C / Fn, R = C % Fn; return Q * Fn + R; }; // Go through all edges of all facets and mark the facets touching each edge for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) { const Vec3i &face = its.indices[face_id]; EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)), e3 = hash(face(2), face(0)); edge_index[e1].assign(face_id); edge_index[e2].assign(face_id); edge_index[e3].assign(face_id); } FaceNeighborIndex index(its.indices.size()); // Now collect the neighbors for each facet into the final index for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) { const Vec3i &face = its.indices[face_id]; EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)), e3 = hash(face(2), face(0)); const Edge &neighs1 = edge_index[e1]; const Edge &neighs2 = edge_index[e2]; const Edge &neighs3 = edge_index[e3]; std::array &neighs = index[face_id]; neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first; neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first; neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first; } bm.stop(); std::cout << "Creating neighbor index took: " << bm.getElapsedSec() << " seconds." << std::endl; return index; } // Create an index of faces belonging to each vertex. The returned vector can // be indexed with vertex indices and contains a list of face indices for each // vertex. std::vector> create_vertex_faces_index(const indexed_triangle_set &its) { std::vector> index; if (! its.vertices.empty()) { size_t res = its.indices.size() / its.vertices.size(); index.assign(its.vertices.size(), reserve_vector(res)); for (size_t fi = 0; fi < its.indices.size(); ++fi) { auto &face = its.indices[fi]; index[face(0)].emplace_back(fi); index[face(1)].emplace_back(fi); index[face(2)].emplace_back(fi); } } return index; } //static int get_vertex_index(size_t vertex_index, const stl_triangle_vertex_indices &triangle_indices) { // if (vertex_index == triangle_indices[0]) return 0; // if (vertex_index == triangle_indices[1]) return 1; // if (vertex_index == triangle_indices[2]) return 2; // return -1; //} //static Vec2crd get_edge_indices(int edge_index, const stl_triangle_vertex_indices &triangle_indices) //{ // int next_edge_index = (edge_index == 2) ? 0 : edge_index + 1; // coord_t vi0 = triangle_indices[edge_index]; // coord_t vi1 = triangle_indices[next_edge_index]; // return Vec2crd(vi0, vi1); //} static std::vector> create_vertex_faces_index( const std::vector& indices, size_t count_vertices) { if (count_vertices == 0) return {}; std::vector> index; size_t res = indices.size() / count_vertices; index.assign(count_vertices, reserve_vector(res)); for (size_t fi = 0; fi < indices.size(); ++fi) { auto &face = indices[fi]; index[face(0)].emplace_back(fi); index[face(1)].emplace_back(fi); index[face(2)].emplace_back(fi); } return index; } std::vector its_create_neighbors_index_5(const indexed_triangle_set &its) { const std::vector &indices = its.indices; size_t vertices_size = its.vertices.size(); if (indices.empty() || vertices_size == 0) return {}; std::vector> vertex_triangles = create_vertex_faces_index(indices, vertices_size); coord_t no_value = -1; std::vector neighbors(indices.size(), Vec3crd(no_value, no_value, no_value)); for (const stl_triangle_vertex_indices& triangle_indices : indices) { coord_t index = &triangle_indices - &indices.front(); Vec3crd& neighbor = neighbors[index]; for (int edge_index = 0; edge_index < 3; ++edge_index) { // check if done coord_t& neighbor_edge = neighbor[edge_index]; if (neighbor_edge != no_value) continue; Vec2crd edge_indices = get_edge_indices(edge_index, triangle_indices); // IMPROVE: use same vector for 2 sides of triangle const std::vector &faces = vertex_triangles[edge_indices[0]]; for (const size_t &face : faces) { if (face <= index) continue; const stl_triangle_vertex_indices &face_indices = indices[face]; int vertex_index = get_vertex_index(edge_indices[1], face_indices); // NOT Contain second vertex? if (vertex_index < 0) continue; // Has NOT oposit direction? if (edge_indices[0] != face_indices[(vertex_index + 1) % 3]) continue; neighbor_edge = face; neighbors[face][vertex_index] = index; break; } // must be paired assert(neighbor_edge != no_value); } } return neighbors; } std::vector> its_create_neighbors_index_6(const indexed_triangle_set &its) { constexpr auto UNASSIGNED_EDGE = std::numeric_limits::max(); constexpr auto UNASSIGNED_FACE = std::numeric_limits::max(); struct Edge { uint64_t id = UNASSIGNED_EDGE; size_t face_id = UNASSIGNED_FACE; bool operator < (const Edge &e) const { return id < e.id; } }; const size_t facenum = its.indices.size(); // All vertex IDs will fit into this number of bits. (Used for hashing) const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size())); assert(max_vertex_id_bits <= 32); // Edge id is constructed by concatenating two vertex ids, starting with // the lowest in MSB auto hash = [max_vertex_id_bits] (uint64_t a, uint64_t b) { if (a > b) std::swap(a, b); return (a << max_vertex_id_bits) + b; }; std::vector edge_map(3 * facenum); // Go through all edges of all facets and mark the facets touching each edge for (size_t face_id = 0; face_id < facenum; ++face_id) { const Vec3i &face = its.indices[face_id]; edge_map[face_id * 3] = {hash(face(0), face(1)), face_id}; edge_map[face_id * 3 + 1] = {hash(face(1), face(2)), face_id}; edge_map[face_id * 3 + 2] = {hash(face(2), face(0)), face_id}; } std::sort(edge_map.begin(), edge_map.end()); std::vector> out(facenum, {UNASSIGNED_FACE, UNASSIGNED_FACE, UNASSIGNED_FACE}); auto add_neighbor = [](std::array &slot, size_t face_id) { if (slot[0] == UNASSIGNED_FACE) { slot[0] = face_id; return; } if (slot[1] == UNASSIGNED_FACE) { slot[1] = face_id; return; } if (slot[2] == UNASSIGNED_FACE) { slot[2] = face_id; return; } }; for (auto it = edge_map.begin(); it != edge_map.end();) { size_t face_id = it->face_id; uint64_t edge_id = it->id; while (++it != edge_map.end() && (it->id == edge_id)) { size_t other_face_id = it->face_id; add_neighbor(out[other_face_id], face_id); add_neighbor(out[face_id], other_face_id); } } return out; } std::vector> its_create_neighbors_index_7(const indexed_triangle_set &its) { constexpr auto UNASSIGNED_EDGE = std::numeric_limits::max(); constexpr auto UNASSIGNED_FACE = std::numeric_limits::max(); struct Edge { uint64_t id = UNASSIGNED_EDGE; size_t face_id = UNASSIGNED_FACE; bool operator < (const Edge &e) const { return id < e.id; } }; const size_t facenum = its.indices.size(); // All vertex IDs will fit into this number of bits. (Used for hashing) const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size())); assert(max_vertex_id_bits <= 32); // Edge id is constructed by concatenating two vertex ids, starting with // the lowest in MSB auto hash = [max_vertex_id_bits] (uint64_t a, uint64_t b) { if (a > b) std::swap(a, b); return (a << max_vertex_id_bits) + b; }; std::vector edge_map(3 * facenum); // Go through all edges of all facets and mark the facets touching each edge for (size_t face_id = 0; face_id < facenum; ++face_id) { const Vec3i &face = its.indices[face_id]; edge_map[face_id * 3] = {hash(face(0), face(1)), face_id}; edge_map[face_id * 3 + 1] = {hash(face(1), face(2)), face_id}; edge_map[face_id * 3 + 2] = {hash(face(2), face(0)), face_id}; } tbb::parallel_sort(edge_map.begin(), edge_map.end()); std::vector> out(facenum, {UNASSIGNED_FACE, UNASSIGNED_FACE, UNASSIGNED_FACE}); auto add_neighbor = [](std::array &slot, size_t face_id) { if (slot[0] == UNASSIGNED_FACE) { slot[0] = face_id; return; } if (slot[1] == UNASSIGNED_FACE) { slot[1] = face_id; return; } if (slot[2] == UNASSIGNED_FACE) { slot[2] = face_id; return; } }; for (auto it = edge_map.begin(); it != edge_map.end();) { size_t face_id = it->face_id; uint64_t edge_id = it->id; while (++it != edge_map.end() && (it->id == edge_id)) { size_t other_face_id = it->face_id; add_neighbor(out[other_face_id], face_id); add_neighbor(out[face_id], other_face_id); } } return out; } FaceNeighborIndex its_create_neighbors_index_8(const indexed_triangle_set &its) { // Just to be clear what type of object are we referencing using FaceID = size_t; using VertexID = uint64_t; using EdgeID = uint64_t; constexpr auto UNASSIGNED = std::numeric_limits::max(); struct Edge // Will contain IDs of the two facets touching this edge { FaceID first, second; Edge() : first{UNASSIGNED}, second{UNASSIGNED} {} void assign(FaceID fid) { first == UNASSIGNED ? first = fid : second = fid; } }; // All vertex IDs will fit into this number of bits. (Used for hashing) const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size())); assert(max_vertex_id_bits <= 32); std::map< EdgeID, Edge > edge_index; // Edge id is constructed by concatenating two vertex ids, starting with // the lowest in MSB auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) { if (a > b) std::swap(a, b); return (a << max_vertex_id_bits) + b; }; // Go through all edges of all facets and mark the facets touching each edge for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) { const Vec3i &face = its.indices[face_id]; EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)), e3 = hash(face(2), face(0)); edge_index[e1].assign(face_id); edge_index[e2].assign(face_id); edge_index[e3].assign(face_id); } FaceNeighborIndex index(its.indices.size()); // Now collect the neighbors for each facet into the final index for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) { const Vec3i &face = its.indices[face_id]; EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)), e3 = hash(face(2), face(0)); const Edge &neighs1 = edge_index[e1]; const Edge &neighs2 = edge_index[e2]; const Edge &neighs3 = edge_index[e3]; std::array &neighs = index[face_id]; neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first; neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first; neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first; } return index; } std::vector its_create_neighbors_index_9(const indexed_triangle_set &its) { return create_neighbors_index(ex_seq, its); } std::vector its_create_neighbors_index_10(const indexed_triangle_set &its) { return create_neighbors_index(ex_tbb, its); } } // namespace Slic3r