package Slic3r::Print; use Moo; use Math::Clipper ':all'; use XXX; use constant PI => 4 * atan2(1, 1); use constant X => 0; use constant Y => 1; has 'x_length' => ( is => 'ro', required => 1, coerce => sub { sprintf '%.0f', $_[0] }, ); has 'y_length' => ( is => 'ro', required => 1, coerce => sub { sprintf '%.0f', $_[0] }, ); has 'layers' => ( traits => ['Array'], is => 'rw', #isa => 'ArrayRef[Slic3r::Layer]', default => sub { [] }, ); sub layer_count { my $self = shift; return scalar @{ $self->layers }; } sub max_length { my $self = shift; return ($self->x_length > $self->y_length) ? $self->x_length : $self->y_length; } sub layer { my $self = shift; my ($layer_id) = @_; # extend our print by creating all necessary layers if ($self->layer_count < $layer_id + 1) { for (my $i = $self->layer_count; $i <= $layer_id; $i++) { push @{ $self->layers }, Slic3r::Layer->new(id => $i); } } return $self->layers->[$layer_id]; } sub discover_horizontal_shells { my $self = shift; Slic3r::debugf "==> DISCOVERING HORIZONTAL SHELLS\n"; my $clipper = Math::Clipper->new; for (my $i = 0; $i < $self->layer_count; $i++) { my $layer = $self->layers->[$i]; foreach my $type (qw(top bottom)) { # find surfaces of current type for current layer my @surfaces = grep $_->surface_type eq $type, @{$layer->surfaces} or next; Slic3r::debugf "Layer %d has %d surfaces of type '%s'\n", $i, scalar(@surfaces), $type; for (my $n = $type eq 'top' ? $i-1 : $i+1; abs($n - $i) <= $Slic3r::solid_layers-1; $type eq 'top' ? $n-- : $n++) { next if $n < 0 || $n >= $self->layer_count; Slic3r::debugf " looking for neighbors on layer %d...\n", $n; my $neighbor_polygons = [ map $_->p, grep $_->surface_type eq 'internal', @{$self->layers->[$n]->surfaces} ]; # find intersection between @surfaces and current layer's surfaces $clipper->add_subject_polygons([ map $_->p, @surfaces ]); $clipper->add_clip_polygons($neighbor_polygons); # intersections have contours and holes my $intersections = $clipper->ex_execute(CT_INTERSECTION, PFT_NONZERO, PFT_NONZERO); $clipper->clear; next if @$intersections == 0; Slic3r::debugf " %d intersections found\n", scalar @$intersections; # subtract intersections from layer surfaces to get resulting inner surfaces $clipper->add_subject_polygons($neighbor_polygons); $clipper->add_clip_polygons([ map { $_->{outer}, @{$_->{holes}} } @$intersections ]); my $internal_polygons = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO); $clipper->clear; # Note: due to floating point math we're going to get some very small # polygons as $internal_polygons; they should be discarded, but a reliable # way to detect them is needed, and they seem to be harmless so we keep them for now # assign resulting inner surfaces to layer $self->layers->[$n]->surfaces([]); foreach my $p (@$internal_polygons) { push @{$self->layers->[$n]->surfaces}, Slic3r::Surface->new( surface_type => 'internal', contour => Slic3r::Polyline::Closed->cast($p->{outer}), holes => [ map Slic3r::Polyline::Closed->cast($_), @{$p->{holes}} ], ); } # assign new internal-solid surfaces to layer foreach my $p (@$intersections) { push @{$self->layers->[$n]->surfaces}, Slic3r::Surface->new( surface_type => 'internal-solid', contour => Slic3r::Polyline::Closed->cast($p->{outer}), holes => [ map Slic3r::Polyline::Closed->cast($_), @{$p->{holes}} ], ); } } } } } sub extrude_perimeters { my $self = shift; my $perimeter_extruder = Slic3r::Perimeter->new; foreach my $layer (@{ $self->layers }) { $perimeter_extruder->make_perimeter($layer); Slic3r::debugf " generated paths: %s\n", join ' ', map $_->id, @{ $layer->perimeters } if $Slic3r::debug; } } sub extrude_fills { my $self = shift; my $fill_extruder = Slic3r::Fill::Rectilinear->new; foreach my $layer (@{ $self->layers }) { $fill_extruder->make_fill($self, $layer); Slic3r::debugf " generated %d paths: %s\n", scalar @{ $layer->fills }, join ' ', map $_->id, @{ $layer->fills } if $Slic3r::debug; } } sub export_gcode { my $self = shift; my ($file) = @_; # calculate speed for gcode commands my $travel_feed_rate = $Slic3r::travel_feed_rate * 60; # mm/min my $print_feed_rate = $Slic3r::print_feed_rate * 60; # mm/min my $retract_speed = $Slic3r::retract_speed * 60; # mm/min # calculate number of decimals my $dec = length((1 / $Slic3r::resolution) - 1) + 1; # calculate X,Y shift to center print around specified origin my @shift = ( $Slic3r::print_center->[X] - ($self->x_length * $Slic3r::resolution / 2), $Slic3r::print_center->[Y] - ($self->y_length * $Slic3r::resolution / 2), ); # open output gcode file open my $fh, ">", $file or die "Failed to open $file for writing\n"; # write start commands to file # TODO: this must be customizable by user print $fh "G28 ; home all axes\n"; printf $fh "M109 S%d ; wait for temperature to be reached\n", $Slic3r::temperature; print $fh "G90 ; use absolute coordinates\n"; print $fh "G21 ; set units to millimeters\n"; if ($Slic3r::use_relative_e_distances) { print $fh "M83 ; use relative distances for extrusion\n"; } else { print $fh "M82 ; use absolute distances for extrusion\n"; } # make up a subroutine to generate G1 commands my $extrusion_distance = 0; my $last_pos; # on XY plane my $G1 = sub { my ($point, $z, $e, $comment) = @_; printf $fh "G1"; if ($point) { printf $fh " X%.${dec}f Y%.${dec}f", ($point->x * $Slic3r::resolution) + $shift[X], ($point->y * $Slic3r::resolution) + $shift[Y]; #** $last_pos = $point->p; } if ($z) { printf $fh " Z%.${dec}f", $z; } # apply the speed reduction for print moves on bottom layer my $speed_multiplier = defined $z && $z == 0 && $point ? $Slic3r::bottom_layer_speed_ratio : 1; if ($e) { $extrusion_distance = 0 if $Slic3r::use_relative_e_distances; $extrusion_distance += $e; printf $fh " F%.${dec}f E%.5f", $e < 0 ? $retract_speed : ($print_feed_rate * $speed_multiplier), $extrusion_distance; } else { printf $fh " F%.${dec}f", ($travel_feed_rate * $speed_multiplier); } printf $fh " ; %s", $comment if $comment; print $fh "\n"; }; my $z; my $retracted = 0; my $Extrude = sub { my ($path, $description) = @_; # reset extrusion distance counter if (!$Slic3r::use_relative_e_distances) { $extrusion_distance = 0; print $fh "G92 E0 ; reset extrusion distance\n"; } # go to first point while compensating retraction $G1->($path->points->[0], $z, 0, "move to first $description point"); # compensate retraction if ($retracted) { $G1->(undef, undef, ($Slic3r::retract_length + $Slic3r::retract_restart_extra), "compensate retraction"); } # extrude while going to next points foreach my $line ($path->lines) { # calculate how much filament to drive into the extruder # to get the desired amount of extruded plastic my $e = $line->a->distance_to($line->b) * $Slic3r::resolution * $Slic3r::flow_width * $Slic3r::layer_height / (($Slic3r::filament_diameter ** 2) * PI) / $Slic3r::filament_packing_density; $G1->($line->b, $z, $e, $description); } # retract if ($Slic3r::retract_length > 0) { $G1->(undef, undef, -$Slic3r::retract_length, "retract"); $retracted = 1; } }; # write gcode commands layer by layer foreach my $layer (@{ $self->layers }) { $z = ($layer->z * $Slic3r::resolution); # go to layer # TODO: retraction printf $fh "G1 Z%.${dec}f F%.${dec}f ; move to next layer\n", $z, $travel_feed_rate; # extrude skirts $Extrude->($_, 'skirt') for @{ $layer->skirts }; # extrude perimeters for my $loop (@{ $layer->perimeters }) { # find the point of the loop that is closest to the current extruder position my $start_at = $last_pos ? $loop->nearest_point_to($last_pos) : $loop->points->[0]; # split the loop at the starting point and make a path my $extrusion_path = $loop->split_at($start_at); # clip the path to avoid the extruder to get exactly on the first point of the loop $extrusion_path->clip_end($Slic3r::flow_width / $Slic3r::resolution); # extrude along the path $Extrude->($extrusion_path, 'perimeter') } # extrude fills $Extrude->($_, 'fill') for @{ $layer->fills }; } # write end commands to file # TODO: this must be customizable by user print $fh "M104 S0 ; turn off temperature\n"; print $fh "G28 X0 ; home X axis\n"; print $fh "M84 ; disable motors\n"; # close our gcode file close $fh; } 1;