#ifndef WipeTower_ #define WipeTower_ #include #include #include #include #include #include "libslic3r/PrintConfig.hpp" namespace Slic3r { class WipeTowerWriter; class WipeTower { public: struct Extrusion { Extrusion(const Vec2f &pos, float width, unsigned int tool) : pos(pos), width(width), tool(tool) {} // End position of this extrusion. Vec2f pos; // Width of a squished extrusion, corrected for the roundings of the squished extrusions. // This is left zero if it is a travel move. float width; // Current extruder index. unsigned int tool; }; struct ToolChangeResult { // Print heigh of this tool change. float print_z; float layer_height; // G-code section to be directly included into the output G-code. std::string gcode; // For path preview. std::vector extrusions; // Initial position, at which the wipe tower starts its action. // At this position the extruder is loaded and there is no Z-hop applied. Vec2f start_pos; // Last point, at which the normal G-code generator of Slic3r shall continue. // At this position the extruder is loaded and there is no Z-hop applied. Vec2f end_pos; // Time elapsed over this tool change. // This is useful not only for the print time estimation, but also for the control of layer cooling. float elapsed_time; // Is this a priming extrusion? (If so, the wipe tower rotation & translation will not be applied later) bool priming; // Initial tool int initial_tool; // New tool int new_tool; // Sum the total length of the extrusion. float total_extrusion_length_in_plane() { float e_length = 0.f; for (size_t i = 1; i < this->extrusions.size(); ++ i) { const Extrusion &e = this->extrusions[i]; if (e.width > 0) { Vec2f v = e.pos - (&e - 1)->pos; e_length += v.norm(); } } return e_length; } }; // x -- x coordinates of wipe tower in mm ( left bottom corner ) // y -- y coordinates of wipe tower in mm ( left bottom corner ) // width -- width of wipe tower in mm ( default 60 mm - leave as it is ) // wipe_area -- space available for one toolchange in mm WipeTower(const PrintConfig& config, const std::vector>& wiping_matrix, size_t initial_tool); virtual ~WipeTower() {} // Set the extruder properties. void set_extruder(size_t idx, const PrintConfig& config); // Appends into internal structure m_plan containing info about the future wipe tower // to be used before building begins. The entries must be added ordered in z. void plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, bool brim, float wipe_volume = 0.f); // Iterates through prepared m_plan, generates ToolChangeResults and appends them to "result" void generate(std::vector> &result); float get_depth() const { return m_wipe_tower_depth; } // Switch to a next layer. void set_layer( // Print height of this layer. float print_z, // Layer height, used to calculate extrusion the rate. float layer_height, // Maximum number of tool changes on this layer or the layers below. size_t max_tool_changes, // Is this the first layer of the print? In that case print the brim first. bool is_first_layer, // Is this the last layer of the waste tower? bool is_last_layer) { m_z_pos = print_z; m_layer_height = layer_height; m_is_first_layer = is_first_layer; m_print_brim = is_first_layer; m_depth_traversed = 0.f; m_current_shape = (! is_first_layer && m_current_shape == SHAPE_NORMAL) ? SHAPE_REVERSED : SHAPE_NORMAL; if (is_first_layer) { this->m_num_layer_changes = 0; this->m_num_tool_changes = 0; } else ++ m_num_layer_changes; // Calculate extrusion flow from desired line width, nozzle diameter, filament diameter and layer_height: m_extrusion_flow = extrusion_flow(layer_height); // Advance m_layer_info iterator, making sure we got it right while (!m_plan.empty() && m_layer_info->z < print_z - WT_EPSILON && m_layer_info+1 != m_plan.end()) ++m_layer_info; } // Return the wipe tower position. const Vec2f& position() const { return m_wipe_tower_pos; } // Return the wipe tower width. float width() const { return m_wipe_tower_width; } // The wipe tower is finished, there should be no more tool changes or wipe tower prints. bool finished() const { return m_max_color_changes == 0; } // Returns gcode to prime the nozzles at the front edge of the print bed. std::vector prime( // print_z of the first layer. float first_layer_height, // Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object. const std::vector &tools, // If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower. // If false, the last priming are will be large enough to wipe the last extruder sufficiently. bool last_wipe_inside_wipe_tower); // Returns gcode for a toolchange and a final print head position. // On the first layer, extrude a brim around the future wipe tower first. ToolChangeResult tool_change(unsigned int new_tool, bool last_in_layer); // Fill the unfilled space with a sparse infill. // Call this method only if layer_finished() is false. ToolChangeResult finish_layer(); // Is the current layer finished? bool layer_finished() const { return ( (m_is_first_layer ? m_wipe_tower_depth - m_perimeter_width : m_layer_info->depth) - WT_EPSILON < m_depth_traversed); } std::vector get_used_filament() const { return m_used_filament_length; } int get_number_of_toolchanges() const { return m_num_tool_changes; } struct FilamentParameters { std::string material = "PLA"; int temperature = 0; int first_layer_temperature = 0; float loading_speed = 0.f; float loading_speed_start = 0.f; float unloading_speed = 0.f; float unloading_speed_start = 0.f; float delay = 0.f ; int cooling_moves = 0; float cooling_initial_speed = 0.f; float cooling_final_speed = 0.f; float ramming_line_width_multiplicator = 1.f; float ramming_step_multiplicator = 1.f; float max_e_speed = std::numeric_limits::max(); std::vector ramming_speed; float nozzle_diameter; float filament_area; }; private: WipeTower(); enum wipe_shape // A fill-in direction { SHAPE_NORMAL = 1, SHAPE_REVERSED = -1 }; const bool m_peters_wipe_tower = false; // sparse wipe tower inspired by Peter's post processor - not finished yet const float Width_To_Nozzle_Ratio = 1.25f; // desired line width (oval) in multiples of nozzle diameter - may not be actually neccessary to adjust const float WT_EPSILON = 1e-3f; const float filament_area() const { return m_filpar[0].filament_area; // all extruders are assumed to have the same filament diameter at this point } bool m_semm = true; // Are we using a single extruder multimaterial printer? Vec2f m_wipe_tower_pos; // Left front corner of the wipe tower in mm. float m_wipe_tower_width; // Width of the wipe tower. float m_wipe_tower_depth = 0.f; // Depth of the wipe tower float m_wipe_tower_rotation_angle = 0.f; // Wipe tower rotation angle in degrees (with respect to x axis) float m_internal_rotation = 0.f; float m_y_shift = 0.f; // y shift passed to writer float m_z_pos = 0.f; // Current Z position. float m_layer_height = 0.f; // Current layer height. size_t m_max_color_changes = 0; // Maximum number of color changes per layer. bool m_is_first_layer = false;// Is this the 1st layer of the print? If so, print the brim around the waste tower. int m_old_temperature = -1; // To keep track of what was the last temp that we set (so we don't issue the command when not neccessary) // G-code generator parameters. float m_cooling_tube_retraction = 0.f; float m_cooling_tube_length = 0.f; float m_parking_pos_retraction = 0.f; float m_extra_loading_move = 0.f; float m_bridging = 0.f; bool m_set_extruder_trimpot = false; bool m_adhesion = true; GCodeFlavor m_gcode_flavor; // Bed properties enum { RectangularBed, CircularBed } m_bed_shape; float m_bed_width; // width of the bed bounding box float m_perimeter_width = 0.4f * Width_To_Nozzle_Ratio; // Width of an extrusion line, also a perimeter spacing for 100% infill. float m_extrusion_flow = 0.038f; //0.029f;// Extrusion flow is derived from m_perimeter_width, layer height and filament diameter. // Extruder specific parameters. std::vector m_filpar; // State of the wipe tower generator. unsigned int m_num_layer_changes = 0; // Layer change counter for the output statistics. unsigned int m_num_tool_changes = 0; // Tool change change counter for the output statistics. ///unsigned int m_idx_tool_change_in_layer = 0; // Layer change counter in this layer. Counting up to m_max_color_changes. bool m_print_brim = true; // A fill-in direction (positive Y, negative Y) alternates with each layer. wipe_shape m_current_shape = SHAPE_NORMAL; unsigned int m_current_tool = 0; const std::vector> wipe_volumes; float m_depth_traversed = 0.f; // Current y position at the wipe tower. bool m_left_to_right = true; float m_extra_spacing = 1.f; // Calculates extrusion flow needed to produce required line width for given layer height float extrusion_flow(float layer_height = -1.f) const // negative layer_height - return current m_extrusion_flow { if ( layer_height < 0 ) return m_extrusion_flow; return layer_height * ( m_perimeter_width - layer_height * (1.f-float(M_PI)/4.f)) / filament_area(); } // Calculates length of extrusion line to extrude given volume float volume_to_length(float volume, float line_width, float layer_height) const { return std::max(0.f, volume / (layer_height * (line_width - layer_height * (1.f - float(M_PI) / 4.f)))); } // Calculates depth for all layers and propagates them downwards void plan_tower(); // Goes through m_plan and recalculates depths and width of the WT to make it exactly square - experimental void make_wipe_tower_square(); // Goes through m_plan, calculates border and finish_layer extrusions and subtracts them from last wipe void save_on_last_wipe(); struct box_coordinates { box_coordinates(float left, float bottom, float width, float height) : ld(left , bottom ), lu(left , bottom + height), rd(left + width, bottom ), ru(left + width, bottom + height) {} box_coordinates(const Vec2f &pos, float width, float height) : box_coordinates(pos(0), pos(1), width, height) {} void translate(const Vec2f &shift) { ld += shift; lu += shift; rd += shift; ru += shift; } void translate(const float dx, const float dy) { translate(Vec2f(dx, dy)); } void expand(const float offset) { ld += Vec2f(- offset, - offset); lu += Vec2f(- offset, offset); rd += Vec2f( offset, - offset); ru += Vec2f( offset, offset); } void expand(const float offset_x, const float offset_y) { ld += Vec2f(- offset_x, - offset_y); lu += Vec2f(- offset_x, offset_y); rd += Vec2f( offset_x, - offset_y); ru += Vec2f( offset_x, offset_y); } Vec2f ld; // left down Vec2f lu; // left upper Vec2f rd; // right lower Vec2f ru; // right upper }; // to store information about tool changes for a given layer struct WipeTowerInfo{ struct ToolChange { unsigned int old_tool; unsigned int new_tool; float required_depth; float ramming_depth; float first_wipe_line; float wipe_volume; ToolChange(unsigned int old, unsigned int newtool, float depth=0.f, float ramming_depth=0.f, float fwl=0.f, float wv=0.f) : old_tool{old}, new_tool{newtool}, required_depth{depth}, ramming_depth{ramming_depth}, first_wipe_line{fwl}, wipe_volume{wv} {} }; float z; // z position of the layer float height; // layer height float depth; // depth of the layer based on all layers above float extra_spacing; float toolchanges_depth() const { float sum = 0.f; for (const auto &a : tool_changes) sum += a.required_depth; return sum; } std::vector tool_changes; WipeTowerInfo(float z_par, float layer_height_par) : z{z_par}, height{layer_height_par}, depth{0}, extra_spacing{1.f} {} }; std::vector m_plan; // Stores information about all layers and toolchanges for the future wipe tower (filled by plan_toolchange(...)) std::vector::iterator m_layer_info = m_plan.end(); // Stores information about used filament length per extruder: std::vector m_used_filament_length; // Returns gcode for wipe tower brim // sideOnly -- set to false -- experimental, draw brim on sides of wipe tower // offset -- set to 0 -- experimental, offset to replace brim in front / rear of wipe tower ToolChangeResult toolchange_Brim(bool sideOnly = false, float y_offset = 0.f); void toolchange_Unload( WipeTowerWriter &writer, const box_coordinates &cleaning_box, const std::string& current_material, const int new_temperature); void toolchange_Change( WipeTowerWriter &writer, const unsigned int new_tool, const std::string& new_material); void toolchange_Load( WipeTowerWriter &writer, const box_coordinates &cleaning_box); void toolchange_Wipe( WipeTowerWriter &writer, const box_coordinates &cleaning_box, float wipe_volume); }; }; // namespace Slic3r #endif // WipeTowerPrusaMM_hpp_