#include "PerimeterGenerator.hpp" namespace Slic3r { void PerimeterGenerator::process() { // other perimeters this->_mm3_per_mm = this->perimeter_flow.mm3_per_mm(); coord_t pwidth = this->perimeter_flow.scaled_width(); coord_t pspacing = this->perimeter_flow.scaled_spacing(); // external perimeters this->_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm(); coord_t = ext_pwidth = this->ext_perimeter_flow.scaled_width(); coord_t = ext_pspacing = scale_(this->ext_perimeter_flow.spacing_to(this->perimeter_flow)); // overhang perimeters this->_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm(); // solid infill coord_t ispacing = this->solid_infill_flow->scaled_spacing; coord_t gap_area_threshold = pwidth * pwidth; // Calculate the minimum required spacing between two adjacent traces. // This should be equal to the nominal flow spacing but we experiment // with some tolerance in order to avoid triggering medial axis when // some squishing might work. Loops are still spaced by the entire // flow spacing; this only applies to collapsing parts. coord_t min_spacing = pspacing * (1 - INSET_OVERLAP_TOLERANCE); coord_t ext_min_spacing = ext_pspacing * (1 - INSET_OVERLAP_TOLERANCE); // prepare grown lower layer slices for overhang detection if (this->lower_slices != NULL && this->config->overhangs) { // We consider overhang any part where the entire nozzle diameter is not supported by the // lower layer, so we take lower slices and offset them by half the nozzle diameter used // in the current layer double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1); this->_lower_slices_p = offset(this->lower_slices, scale_(+nozzle_diameter/2)); } // we need to process each island separately because we might have different // extra perimeters for each one for (Surfaces::const_iterator surface = this->slices->surfaces.begin(); surface != this->slices->surfaces.end(); ++surface) { // detect how many perimeters must be generated for this island unsigned short loop_number = this->config->perimeters + surface->extra_perimeters; loop_number--; // 0-indexed loops Polygons gaps; Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION); if (loop_number >= 0) { // no loops = -1 std::vector contours(loop_number); // depth => loops std::vector holes(loop_number); // depth => loops Polylines thin_walls; // we loop one time more than needed in order to find gaps after the last perimeter was applied for (unsigned short i = 0; i <= loop_number+1; ++i) { // outer loop is 0 Polygons offsets; if (i == 0) { // the minimum thickness of a single loop is: // ext_width/2 + ext_spacing/2 + spacing/2 + width/2 if (this->config->thin_walls) { offsets = offset2( \@last, -(0.5*ext_pwidth + 0.5*ext_min_spacing - 1), +(0.5*ext_min_spacing - 1) ); } else { offsets = offset(last, -0.5*ext_pwidth); } // look for thin walls if (this->config->thin_walls) { Polygons diff = diff( last, offset(offsets, +0.5*ext_pwidth), true // medial axis requires non-overlapping geometry ); // the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width // (actually, something larger than that still may exist due to mitering or other causes) coord_t min_width = ext_pwidth / 2; ExPolygons expp = offset2(diff, -min_width/2, +min_width/2)}; // the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop Polylines pp; for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) ex->medial_axis(ext_pwidth + ext_pspacing, min_width, &pp); double threshold = ext_pwidth * ext_pwidth; for (Polylines::const_iterator p = pp.begin(); p != pp.end(); ++p) { if (p->length() > threshold) { thin_walls.push_back(*p); } } #ifdef DEBUG printf(" %zu thin walls detected\n", thin_walls.size()); #endif /* if (false) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "medial_axis.svg", no_arrows => 1, #expolygons => \@expp, polylines => \@thin_walls, ); } */ } } else { coord_t distance = (i == 1) ? ext_pspacing : pspacing; if (this->config->thin_walls) { offsets = offset2( last, -(distance + 0.5*min_spacing - 1), +(0.5*min_spacing - 1), ); } else { offsets = offset( last, -distance, ); } // look for gaps if (this->config->gap_fill_speed > 0 && this->config->fill_density > 0) { // not using safety offset here would "detect" very narrow gaps // (but still long enough to escape the area threshold) that gap fill // won't be able to fill but we'd still remove from infill area ExPolygons diff = diff_ex( offset(last, -0.5*distance), offset(offsets, +0.5*distance + 10), // safety offset ); for (ExPolygons::const_iterator ex = diff.begin(); ex != diff.end(); ++ex) { if (fabs(ex->area()) >= gap_area_threshold) gaps.push_back(*ex); } } } if (offsets.empty()) break; if (i > loop_number) break; // we were only looking for gaps this time last = offsets; for (Polygons::const_iterator polygon = offsets.begin(); polygon != offsets.end(); ++polygon) { PerimeterGeneratorLoop loop(*polygon, i); loop.is_contour = polygon->is_counter_clockwise(); if (loop.is_contour) { contours[i].push_back(loop); } else { holes[i].push_back(loop); } } } // nest loops: holes first for (unsigned short d = 0; <= loop_number; ++d) { PerimeterGeneratorLoops &holes_d = holes[d]; // loop through all holes having depth == d for (unsigned short i = 0; i < holes_d.size(); ++i) { const PerimeterGeneratorLoop &loop = holes_d[i]; // find the hole loop that contains this one, if any for (unsigned short t = d+1; t <= loop_number; ++t) { for (unsigned short j = 0; j < holes_d.size(); ++j) { PerimeterGeneratorLoop &candidate_parent = holes[t][j]; if (candidate_parent.polygon.contains(loop.polygon.first_point())) { candidate_parent.add_child(loop); holes_d.erase(holes_d.begin() + i); --i; goto NEXT_HOLE; } } } // if no hole contains this hole, find the contour loop that contains it for (unsigned short t = loop_number; t >= 0; --t) { for (unsigned short j = 0; j < contours[t].size(); ++j) { PerimeterGeneratorLoop &candidate_parent = contours[t][j]; if (candidate_parent.polygon.contains(loop.polygon.first_point())) { candidate_parent.add_child(loop); holes_d.erase(holes_d.begin() + i); --i; goto NEXT_HOLE; } } } } NEXT_HOLE: } // nest contour loops for (unsigned short d = loop_number; d >= 1; --d) { PerimeterGeneratorLoops &contours_d = contours[d]; // loop through all contours having depth == d for (unsigned short i = 0; i < contours_d.size(); ++i) { const PerimeterGeneratorLoop &loop = contours_d[i]; // find the contour loop that contains it for (unsigned short t = d-1; t >= 0; --t) { for (unsigned short j = 0; j < contours_d[t].size(); ++j) { PerimeterGeneratorLoop &candidate_parent = contours[t][j]; if (candidate_parent.polygon.contains(loop.polygon.first_point())) { candidate_parent.add_child(loop); contours_d.erase(contours_d.begin() + i); --i; goto NEXT_CONTOUR; } } } NEXT_CONTOUR: } } // at this point, all loops should be in contours[0] ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls); // if brim will be printed, reverse the order of perimeters so that // we continue inwards after having finished the brim // TODO: add test for perimeter order if (this->config->external_perimeters_first || (this->layer_id == 0 && this->print_config->brim_width > 0)) entities.reverse(); // append perimeters for this slice as a collection if (!entities.empty()) this->loops->append(entities); } // fill gaps if (!gaps.empty()) { /* if (false) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "gaps.svg", expolygons => union_ex(\@gaps), ); } */ // where $pwidth < thickness < 2*$pspacing, infill with width = 2*$pwidth // where 0.1*$pwidth < thickness < $pwidth, infill with width = 1*$pwidth std::vector gap_sizes; gap_sizes.push_back(PerimeterGeneratorGapSize(pwidth, 2*pspacing, unscale(2*pwidth))); gap_sizes.push_back(PerimeterGeneratorGapSize(0.1*pwidth, pwidth, unscale(1*pwidth))); for (std::vector::const_iterator gap_size = gap_sizes.begin(); gap_size != gap_sizes.end(); ++gap_size) { ExtrusionEntityCollection gap_fill = this->_fill_gaps(gap_size.min, gap_size.max, gap_size.width); this->gap_fill->append(gap_fill); // Make sure we don't infill narrow parts that are already gap-filled // (we only consider this surface's gaps to reduce the diff() complexity). // Growing actual extrusions ensures that gaps not filled by medial axis // are not subtracted from fill surfaces (they might be too short gaps // that medial axis skips but infill might join with other infill regions // and use zigzag). double dist = scale_(gap_size->width/2); Polygons filled; for (ExtrusionEntitiesPtr::const_iterator it = gap_fill.entities.begin(); it != gap_fill.entities.end(); ++it) offset((*it)->as_polyline(), &filled, dist); last = diff(last, filled); gaps = diff(gaps, filled); // prevent more gap fill here } } // create one more offset to be used as boundary for fill // we offset by half the perimeter spacing (to get to the actual infill boundary) // and then we offset back and forth by half the infill spacing to only consider the // non-collapsing regions coord_t inset = 0; if (loop_number == 0) { // one loop inset += ext_pspacing/2; } else if (loop_number > 0) { // two or more loops inset += pspacing/2; } // only apply infill overlap if we actually have one perimeter if (inset > 0) inset -= this->config->get_abs_value("infill_overlap", inset + ispacing/2); { ExPolygons expp = union_(last); // simplify infill contours according to resolution Polygons pp; for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) ex->simplify_p(SCALED_RESOLUTION, &pp); // collapse too narrow infill areas coord_t min_perimeter_infill_spacing = ispacing * (1 - INSET_OVERLAP_TOLERANCE); expp = offset2( pp, -inset -min_perimeter_infill_spacing/2, +min_perimeter_infill_spacing/2, ); // append infill areas to fill_surfaces for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex) this->fill_surfaces->surfaces.push_back(Surface(stInternal, *ex)); // use a bogus surface type } } } ExtrusionEntityCollection PerimeterGenerator::_traverse_loops(const PerimeterGeneratorLoops &loops, const Polylines &thin_walls) const { // loops is an arrayref of ::Loop objects // turn each one into an ExtrusionLoop object ExtrusionEntityCollection coll; for (PerimeterGeneratorLoops::const_iterator loop = loops.begin(); loop != loops.end(); ++loop) { bool is_external = loop->is_external(); ExtrusionRole role; ExtrusionLoopRole loop_role; role = is_external ? erExternalPerimeter : erPerimeter; if (loop->is_internal_contour()) { // Note that we set loop role to ContourInternalPerimeter // also when loop is both internal and external (i.e. // there's only one contour loop). loop_role = elrContourInternalPerimeter; } else { loop_role = elrDefault; } // detect overhanging/bridging perimeters ExtrusionPaths paths; if (this->config->overhangs && this->layer_id > 0 && !(this->object_config->support_material && this->object_config->support_material_contact_distance == 0)) { // get non-overhang paths by intersecting this loop with the grown lower slices { Polylines polylines; intersection(loop->polygon(), this->_lower_slices_p, &polylines); for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline) { ExtrusionPath path(role); path.polyline = *polyline; path.mm3_per_mm = is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm; path.width = is_external ? this->ext_perimeter_flow->width : this->perimeter_flow.width; path.height = this->layer_height; paths.push_back(path); } } // get overhang paths by checking what parts of this loop fall // outside the grown lower slices (thus where the distance between // the loop centerline and original lower slices is >= half nozzle diameter { Polylines polylines; diff(loop->polygon(), this->_lower_slices_p, &polylines); for (Polylines::const_iterator polyline = polylines.begin(); polyline != polylines.end(); ++polyline) { ExtrusionPath path(erOverhangPerimeter); path.polyline = *polyline; path.mm3_per_mm = this->_mm3_per_mm_overhang; path.width = this->overhang_flow.width; path.height = this->overhang_flow.height; paths.push_back(path); } } // reapply the nearest point search for starting point // We allow polyline reversal because Clipper may have randomly // reversed polylines during clipping. paths = ExtrusionEntityCollection(paths).chained_path(); } else { ExtrusionPath path(role); path.polyline = loop.polygon().split_at_first_point(); path.mm3_per_mm = is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm; path.width = is_external ? this->ext_perimeter_flow->width : this->perimeter_flow.width; path.height = this->layer_height; } coll.append(ExtrusionLoop(paths, loop_role)); } // append thin walls to the nearest-neighbor search (only for first iteration) if (!thin_walls.empty()) { for (Polylines::const_iterator polyline = thin_walls.begin(); polyline != thin_walls.end(); ++polyline) { ExtrusionPath path(erExternalPerimeter); path.polyline = *polyline; path.mm3_per_mm = this->_mm3_per_mm; path.width = this->perimeter_flow.width; path.height = this->layer_height; coll.append(path); } thin_walls.clear(); } // sort entities ExtrusionPathCollection sorted_coll; coll.chained_path(&sorted_coll, false, &sorted_coll.orig_indices); // traverse children ExtrusionPathCollection entities; for (unsigned short i = 0; i < sorted_coll.orig_indices.size(); ++i) { size_t idx = sorted_coll.orig_indices[i]; if (idx >= loops.size()) { // this is a thin wall // let's get it from the sorted collection as it might have been reversed entities.append(*sorted_coll.entities[i]); } else { PerimeterGeneratorLoop &loop = loops[i]; ExtrusionLoop eloop = *coll.entities[idx]; ExtrusionEntityCollection children = this->_traverse_loops(loop->children, thin_walls); if (loop->is_contour()) { eloop.make_counter_clockwise(); entities.append(children); entities.append(elooop); } else { eloop.make_clockwise(); push @entities, $eloop, @children; entities.append(elooop); entities.append(children); } } } return entities; } ExtrusionEntityCollection PerimeterGenerator::_fill_gaps(double min, double max, double w, const Polygons &gaps) const { ExtrusionEntityCollection coll; min *= (1 - INSET_OVERLAP_TOLERANCE); ExPolygon curr = diff( offset2(gaps, -min/2, +min/2), offset2(gaps, -max/2, +max/2), true, ); Polylines polylines; for (ExPolygons::const_iterator ex = curr.begin(); ex != curr.end(); ++ex) ex->medial_axis(max, min/2, &polylines); if (polylines.empty()) return coll; #ifdef SLIC3R_DEBUG if (!curr.empty()) printf(" %d gaps filled with extrusion width = %zu\n", curr.size(), w); #endif //my $flow = $layerm->flow(FLOW_ROLE_SOLID_INFILL, 0, $w); Flow flow( w, this->layer_height, this->solid_infill_flow.nozzle_diameter ); double mm3_per_mm = flow.mm3_per_mm(); for (Polylines::const_iterator p = polylines.begin(); p != polylines.end(); ++p) { ExtrusionPath path(erGapFill); path.polyline = *p; path.mm3_per_mm = mm3_per_mm; path.width = flow.width; path.height = this->layer_height; if (p->is_valid() && p->first_point().coincides_with(p->last_point())) { // since medial_axis() now returns only Polyline objects, detect loops here ExtrusionLoop loop; loop.paths.push_back(path); coll.append(loop); } else { coll.append(path); } } return coll; } #ifdef SLIC3RXS REGISTER_CLASS(PerimeterGenerator, "Layer::PerimeterGenerator"); #endif bool PerimeterGeneratorLoop::is_external() const { return this->depth == 0; } bool PerimeterGeneratorLoop::is_internal_contour() const { if (this->is_contour) { // an internal contour is a contour containing no other contours for (std::vector::const_iterator loop = this->children.begin(); loop != this->children.end(); ++loop) { if (loop->is_contour) { return false; } } return true; } return false; } }