#version 110 #define INTENSITY_CORRECTION 0.6 // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) #define LIGHT_TOP_SHININESS 20.0 // normalized values for (1./1.43, 0.2/1.43, 1./1.43) const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) #define INTENSITY_AMBIENT 0.3 const vec3 ZERO = vec3(0.0, 0.0, 0.0); const vec3 GREEN = vec3(0.0, 0.7, 0.0); const vec3 YELLOW = vec3(0.5, 0.7, 0.0); const vec3 RED = vec3(0.7, 0.0, 0.0); const vec3 WHITE = vec3(1.0, 1.0, 1.0); const float EPSILON = 0.0001; const float BANDS_WIDTH = 10.0; struct SlopeDetection { bool actived; float normal_z; mat3 volume_world_normal_matrix; }; uniform vec4 uniform_color; uniform SlopeDetection slope; uniform bool sinking; #ifdef ENABLE_ENVIRONMENT_MAP uniform sampler2D environment_tex; uniform bool use_environment_tex; #endif // ENABLE_ENVIRONMENT_MAP varying vec3 clipping_planes_dots; // x = diffuse, y = specular; varying vec2 intensity; varying vec3 delta_box_min; varying vec3 delta_box_max; varying vec4 model_pos; varying float world_pos_z; varying float world_normal_z; varying vec3 eye_normal; vec3 sinking_color(vec3 color) { return (mod(model_pos.x + model_pos.y + model_pos.z, BANDS_WIDTH) < (0.5 * BANDS_WIDTH)) ? mix(color, ZERO, 0.6666) : color; } uniform bool compute_triangle_normals_in_fs; void main() { if (any(lessThan(clipping_planes_dots, ZERO))) discard; vec3 color = uniform_color.rgb; float alpha = uniform_color.a; vec2 intensity_fs = intensity; vec3 eye_normal_fs = eye_normal; float world_normal_z_fs = world_normal_z; if (compute_triangle_normals_in_fs) { vec3 triangle_normal = normalize(cross(dFdx(model_pos.xyz), dFdy(model_pos.xyz))); // First transform the normal into camera space and normalize the result. eye_normal_fs = normalize(gl_NormalMatrix * triangle_normal); // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. float NdotL = max(dot(eye_normal_fs, LIGHT_TOP_DIR), 0.0); intensity_fs = vec2(0.0, 0.0); intensity_fs.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; vec3 position = (gl_ModelViewMatrix * model_pos).xyz; intensity_fs.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(position), reflect(-LIGHT_TOP_DIR, eye_normal_fs)), 0.0), LIGHT_TOP_SHININESS); // Perform the same lighting calculation for the 2nd light source (no specular applied). NdotL = max(dot(eye_normal_fs, LIGHT_FRONT_DIR), 0.0); intensity_fs.x += NdotL * LIGHT_FRONT_DIFFUSE; // z component of normal vector in world coordinate used for slope shading world_normal_z_fs = slope.actived ? (normalize(slope.volume_world_normal_matrix * triangle_normal)).z : 0.0; } if (slope.actived && world_normal_z_fs < slope.normal_z - EPSILON) { color = vec3(0.7, 0.7, 1.0); alpha = 1.0; } // if the fragment is outside the print volume -> use darker color color = (any(lessThan(delta_box_min, ZERO)) || any(greaterThan(delta_box_max, ZERO))) ? mix(color, ZERO, 0.3333) : color; // if the object is sinking, shade it with inclined bands or white around world z = 0 if (sinking) color = (abs(world_pos_z) < 0.05) ? WHITE : sinking_color(color); #ifdef ENABLE_ENVIRONMENT_MAP if (use_environment_tex) gl_FragColor = vec4(0.45 * texture2D(environment_tex, normalize(eye_normal_fs).xy * 0.5 + 0.5).xyz + 0.8 * color * intensity_fs.x, alpha); else #endif gl_FragColor = vec4(vec3(intensity_fs.y) + color * intensity_fs.x, alpha); }