#include #include "SLA/SLASupportTree.hpp" #include "SLA/SLABoilerPlate.hpp" #include "SLA/SLASpatIndex.hpp" // HEAVY headers... takes eternity to compile // for concave hull merging decisions #include "SLABoostAdapter.hpp" #include "boost/geometry/index/rtree.hpp" #include #include #include #include "SLASpatIndex.hpp" #include "ClipperUtils.hpp" namespace Slic3r { namespace sla { class SpatIndex::Impl { public: using BoostIndex = boost::geometry::index::rtree< SpatElement, boost::geometry::index::rstar<16, 4> /* ? */ >; BoostIndex m_store; }; SpatIndex::SpatIndex(): m_impl(new Impl()) {} SpatIndex::~SpatIndex() {} SpatIndex::SpatIndex(const SpatIndex &cpy): m_impl(new Impl(*cpy.m_impl)) {} SpatIndex::SpatIndex(SpatIndex&& cpy): m_impl(std::move(cpy.m_impl)) {} SpatIndex& SpatIndex::operator=(const SpatIndex &cpy) { m_impl.reset(new Impl(*cpy.m_impl)); return *this; } SpatIndex& SpatIndex::operator=(SpatIndex &&cpy) { m_impl.swap(cpy.m_impl); return *this; } void SpatIndex::insert(const SpatElement &el) { m_impl->m_store.insert(el); } bool SpatIndex::remove(const SpatElement& el) { return m_impl->m_store.remove(el) == 1; } std::vector SpatIndex::query(std::function fn) { namespace bgi = boost::geometry::index; std::vector ret; m_impl->m_store.query(bgi::satisfies(fn), std::back_inserter(ret)); return ret; } std::vector SpatIndex::nearest(const Vec3d &el, unsigned k = 1) { namespace bgi = boost::geometry::index; std::vector ret; ret.reserve(k); m_impl->m_store.query(bgi::nearest(el, k), std::back_inserter(ret)); return ret; } size_t SpatIndex::size() const { return m_impl->m_store.size(); } bool point_on_edge(const Vec3d& p, const Vec3d& e1, const Vec3d& e2, double eps = 0.05) { using Line3D = Eigen::ParametrizedLine; auto line = Line3D::Through(e1, e2); double d = line.distance(p); return std::abs(d) < eps; } template double distance(const Vec& pp1, const Vec& pp2) { auto p = pp2 - pp1; return std::sqrt(p.transpose() * p); } PointSet normals(const PointSet& points, const EigenMesh3D& emesh, double eps, std::function throw_on_cancel) { if(points.rows() == 0 || emesh.V.rows() == 0 || emesh.F.rows() == 0) return {}; Eigen::VectorXd dists; Eigen::VectorXi I; PointSet C; // We need to remove duplicate vertices and have a true index triangle // structure EigenMesh3D mesh; Eigen::VectorXi SVI, SVJ; igl::remove_duplicate_vertices(emesh.V, emesh.F, 1e-6, mesh.V, SVI, SVJ, mesh.F); igl::point_mesh_squared_distance( points, mesh.V, mesh.F, dists, I, C); PointSet ret(I.rows(), 3); for(int i = 0; i < I.rows(); i++) { throw_on_cancel(); auto idx = I(i); auto trindex = mesh.F.row(idx); const Vec3d& p1 = mesh.V.row(trindex(0)); const Vec3d& p2 = mesh.V.row(trindex(1)); const Vec3d& p3 = mesh.V.row(trindex(2)); // We should check if the point lies on an edge of the hosting triangle. // If it does than all the other triangles using the same two points // have to be searched and the final normal should be some kind of // aggregation of the participating triangle normals. We should also // consider the cases where the support point lies right on a vertex // of its triangle. The procedure is the same, get the neighbor // triangles and calculate an average normal. const Vec3d& p = C.row(i); // mark the vertex indices of the edge. ia and ib marks and edge ic // will mark a single vertex. int ia = -1, ib = -1, ic = -1; if(std::abs(distance(p, p1)) < eps) { ic = trindex(0); } else if(std::abs(distance(p, p2)) < eps) { ic = trindex(1); } else if(std::abs(distance(p, p3)) < eps) { ic = trindex(2); } else if(point_on_edge(p, p1, p2, eps)) { ia = trindex(0); ib = trindex(1); } else if(point_on_edge(p, p2, p3, eps)) { ia = trindex(1); ib = trindex(2); } else if(point_on_edge(p, p1, p3, eps)) { ia = trindex(0); ib = trindex(2); } std::vector neigh; if(ic >= 0) { // The point is right on a vertex of the triangle for(int n = 0; n < mesh.F.rows(); ++n) { throw_on_cancel(); Vec3i ni = mesh.F.row(n); if((ni(X) == ic || ni(Y) == ic || ni(Z) == ic)) neigh.emplace_back(ni); } } else if(ia >= 0 && ib >= 0) { // the point is on and edge // now get all the neigboring triangles for(int n = 0; n < mesh.F.rows(); ++n) { throw_on_cancel(); Vec3i ni = mesh.F.row(n); if((ni(X) == ia || ni(Y) == ia || ni(Z) == ia) && (ni(X) == ib || ni(Y) == ib || ni(Z) == ib)) neigh.emplace_back(ni); } } if(!neigh.empty()) { // there were neighbors to count with Vec3d sumnorm(0, 0, 0); for(const Vec3i& tri : neigh) { const Vec3d& pt1 = mesh.V.row(tri(0)); const Vec3d& pt2 = mesh.V.row(tri(1)); const Vec3d& pt3 = mesh.V.row(tri(2)); Eigen::Vector3d U = pt2 - pt1; Eigen::Vector3d V = pt3 - pt1; sumnorm += U.cross(V).normalized(); } sumnorm /= neigh.size(); ret.row(i) = sumnorm; } else { // point lies safely within its triangle Eigen::Vector3d U = p2 - p1; Eigen::Vector3d V = p3 - p1; ret.row(i) = U.cross(V).normalized(); } } return ret; } double ray_mesh_intersect(const Vec3d& s, const Vec3d& dir, const EigenMesh3D& m) { igl::Hit hit; hit.t = std::numeric_limits::infinity(); igl::ray_mesh_intersect(s, dir, m.V, m.F, hit); return double(hit.t); } // Clustering a set of points by the given criteria ClusteredPoints cluster( const sla::PointSet& points, std::function pred, unsigned max_points = 0) { namespace bgi = boost::geometry::index; using Index3D = bgi::rtree< SpatElement, bgi::rstar<16, 4> /* ? */ >; // A spatial index for querying the nearest points Index3D sindex; // Build the index for(unsigned idx = 0; idx < points.rows(); idx++) sindex.insert( std::make_pair(points.row(idx), idx)); using Elems = std::vector; // Recursive function for visiting all the points in a given distance to // each other std::function group = [&sindex, &group, pred, max_points](Elems& pts, Elems& cluster) { for(auto& p : pts) { std::vector tmp; sindex.query( bgi::satisfies([p, pred](const SpatElement& se) { return pred(p, se); }), std::back_inserter(tmp) ); auto cmp = [](const SpatElement& e1, const SpatElement& e2){ return e1.second < e2.second; }; std::sort(tmp.begin(), tmp.end(), cmp); Elems newpts; std::set_difference(tmp.begin(), tmp.end(), cluster.begin(), cluster.end(), std::back_inserter(newpts), cmp); int c = max_points && newpts.size() + cluster.size() > max_points? int(max_points - cluster.size()) : int(newpts.size()); cluster.insert(cluster.end(), newpts.begin(), newpts.begin() + c); std::sort(cluster.begin(), cluster.end(), cmp); if(!newpts.empty() && (!max_points || cluster.size() < max_points)) group(newpts, cluster); } }; std::vector clusters; for(auto it = sindex.begin(); it != sindex.end();) { Elems cluster = {}; Elems pts = {*it}; group(pts, cluster); for(auto& c : cluster) sindex.remove(c); it = sindex.begin(); clusters.emplace_back(cluster); } ClusteredPoints result; for(auto& cluster : clusters) { result.emplace_back(); for(auto c : cluster) result.back().emplace_back(c.second); } return result; } using Segments = std::vector>; Segments model_boundary(const EigenMesh3D& emesh, double offs) { Segments ret; Polygons pp; pp.reserve(size_t(emesh.F.rows())); for (int i = 0; i < emesh.F.rows(); i++) { auto trindex = emesh.F.row(i); auto& p1 = emesh.V.row(trindex(0)); auto& p2 = emesh.V.row(trindex(1)); auto& p3 = emesh.V.row(trindex(2)); Polygon p; p.points.resize(3); p.points[0] = Point::new_scale(p1(X), p1(Y)); p.points[1] = Point::new_scale(p2(X), p2(Y)); p.points[2] = Point::new_scale(p3(X), p3(Y)); p.make_counter_clockwise(); pp.emplace_back(p); } ExPolygons merged = union_ex(Slic3r::offset(pp, float(scale_(offs))), true); for(auto& expoly : merged) { auto lines = expoly.lines(); for(Line& l : lines) { Vec2d a(l.a(X) * SCALING_FACTOR, l.a(Y) * SCALING_FACTOR); Vec2d b(l.b(X) * SCALING_FACTOR, l.b(Y) * SCALING_FACTOR); ret.emplace_back(std::make_pair(a, b)); } } return ret; } //struct SegmentIndex { //}; //using SegmentIndexEl = std::pair; //SegmentIndexEl } }