#include "AABBTreeLines.hpp" #include "BridgeDetector.hpp" #include "ExPolygon.hpp" #include "Exception.hpp" #include "Flow.hpp" #include "KDTreeIndirect.hpp" #include "Point.hpp" #include "Polygon.hpp" #include "Polyline.hpp" #include "Print.hpp" #include "BoundingBox.hpp" #include "ClipperUtils.hpp" #include "ElephantFootCompensation.hpp" #include "Geometry.hpp" #include "I18N.hpp" #include "Layer.hpp" #include "MutablePolygon.hpp" #include "PrintBase.hpp" #include "PrintConfig.hpp" #include "SupportMaterial.hpp" #include "TreeSupport.hpp" #include "Surface.hpp" #include "Slicing.hpp" #include "Tesselate.hpp" #include "TriangleMeshSlicer.hpp" #include "Utils.hpp" #include "Fill/FillAdaptive.hpp" #include "Fill/FillLightning.hpp" #include "Format/STL.hpp" #include "SupportMaterial.hpp" #include "SupportSpotsGenerator.hpp" #include "TriangleSelectorWrapper.hpp" #include "format.hpp" #include "libslic3r.h" #include <algorithm> #include <cmath> #include <cstddef> #include <float.h> #include <limits> #include <map> #include <oneapi/tbb/blocked_range.h> #include <oneapi/tbb/concurrent_vector.h> #include <oneapi/tbb/parallel_for.h> #include <string> #include <string_view> #include <tuple> #include <unordered_map> #include <unordered_set> #include <utility> #include <boost/log/trivial.hpp> #include <tbb/parallel_for.h> #include <vector> using namespace std::literals; //! macro used to mark string used at localization, //! return same string #define L(s) Slic3r::I18N::translate(s) #ifdef SLIC3R_DEBUG_SLICE_PROCESSING #define SLIC3R_DEBUG #endif // #define SLIC3R_DEBUG // Make assert active if SLIC3R_DEBUG #ifdef SLIC3R_DEBUG #undef NDEBUG #define DEBUG #define _DEBUG #include "SVG.hpp" #undef assert #include <cassert> #endif #include "SVG.hpp" namespace Slic3r { // Constructor is called from the main thread, therefore all Model / ModelObject / ModelIntance data are valid. PrintObject::PrintObject(Print* print, ModelObject* model_object, const Transform3d& trafo, PrintInstances&& instances) : PrintObjectBaseWithState(print, model_object), m_trafo(trafo) { // Compute centering offet to be applied to our meshes so that we work with smaller coordinates // requiring less bits to represent Clipper coordinates. // Snug bounding box of a rotated and scaled object by the 1st instantion, without the instance translation applied. // All the instances share the transformation matrix with the exception of translation in XY and rotation by Z, // therefore a bounding box from 1st instance of a ModelObject is good enough for calculating the object center, // snug height and an approximate bounding box in XY. BoundingBoxf3 bbox = model_object->raw_bounding_box(); Vec3d bbox_center = bbox.center(); // We may need to rotate the bbox / bbox_center from the original instance to the current instance. double z_diff = Geometry::rotation_diff_z(model_object->instances.front()->get_matrix(), instances.front().model_instance->get_matrix()); if (std::abs(z_diff) > EPSILON) { auto z_rot = Eigen::AngleAxisd(z_diff, Vec3d::UnitZ()); bbox = bbox.transformed(Transform3d(z_rot)); bbox_center = (z_rot * bbox_center).eval(); } // Center of the transformed mesh (without translation). m_center_offset = Point::new_scale(bbox_center.x(), bbox_center.y()); // Size of the transformed mesh. This bounding may not be snug in XY plane, but it is snug in Z. m_size = (bbox.size() * (1. / SCALING_FACTOR)).cast<coord_t>(); m_size.z() = model_object->max_z(); this->set_instances(std::move(instances)); } PrintBase::ApplyStatus PrintObject::set_instances(PrintInstances &&instances) { for (PrintInstance &i : instances) // Add the center offset, which will be subtracted from the mesh when slicing. i.shift += m_center_offset; // Invalidate and set copies. PrintBase::ApplyStatus status = PrintBase::APPLY_STATUS_UNCHANGED; bool equal_length = instances.size() == m_instances.size(); bool equal = equal_length && std::equal(instances.begin(), instances.end(), m_instances.begin(), [](const PrintInstance& lhs, const PrintInstance& rhs) { return lhs.model_instance == rhs.model_instance && lhs.shift == rhs.shift; }); if (! equal) { status = PrintBase::APPLY_STATUS_CHANGED; if (m_print->invalidate_steps({ psSkirtBrim, psGCodeExport }) || (! equal_length && m_print->invalidate_step(psWipeTower))) status = PrintBase::APPLY_STATUS_INVALIDATED; m_instances = std::move(instances); for (PrintInstance &i : m_instances) i.print_object = this; } return status; } std::vector<std::reference_wrapper<const PrintRegion>> PrintObject::all_regions() const { std::vector<std::reference_wrapper<const PrintRegion>> out; out.reserve(m_shared_regions->all_regions.size()); for (const std::unique_ptr<Slic3r::PrintRegion> ®ion : m_shared_regions->all_regions) out.emplace_back(*region.get()); return out; } // 1) Merges typed region slices into stInternal type. // 2) Increases an "extra perimeters" counter at region slices where needed. // 3) Generates perimeters, gap fills and fill regions (fill regions of type stInternal). void PrintObject::make_perimeters() { // prerequisites this->slice(); if (! this->set_started(posPerimeters)) return; m_print->set_status(20, L("Generating perimeters")); BOOST_LOG_TRIVIAL(info) << "Generating perimeters..." << log_memory_info(); // Revert the typed slices into untyped slices. if (m_typed_slices) { for (Layer *layer : m_layers) { layer->clear_fills(); layer->restore_untyped_slices(); m_print->throw_if_canceled(); } m_typed_slices = false; } // compare each layer to the one below, and mark those slices needing // one additional inner perimeter, like the top of domed objects- // this algorithm makes sure that at least one perimeter is overlapping // but we don't generate any extra perimeter if fill density is zero, as they would be floating // inside the object - infill_only_where_needed should be the method of choice for printing // hollow objects for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { const PrintRegion ®ion = this->printing_region(region_id); if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2) continue; BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start"; tbb::parallel_for( tbb::blocked_range<size_t>(0, m_layers.size() - 1), [this, ®ion, region_id](const tbb::blocked_range<size_t>& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); LayerRegion &layerm = *m_layers[layer_idx]->get_region(region_id); const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->get_region(region_id); const Polygons upper_layerm_polygons = to_polygons(upper_layerm.slices().surfaces); // Filter upper layer polygons in intersection_ppl by their bounding boxes? // my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ]; const double total_loop_length = total_length(upper_layerm_polygons); const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing(); const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter); const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width(); const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing(); // slice is not const because slice.extra_perimeters is being incremented. for (Surface &slice : layerm.m_slices.surfaces) { for (;;) { // compute the total thickness of perimeters const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2 + (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing; // define a critical area where we don't want the upper slice to fall into // (it should either lay over our perimeters or outside this area) const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5); const Polygons critical_area = diff( offset(slice.expolygon, float(- perimeters_thickness)), offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth)) ); // check whether a portion of the upper slices falls inside the critical area const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area); // only add an additional loop if at least 30% of the slice loop would benefit from it if (total_length(intersection) <= total_loop_length*0.3) break; /* if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "extra.svg", no_arrows => 1, expolygons => union_ex($critical_area), polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ], ); } */ ++ slice.extra_perimeters; } #ifdef DEBUG if (slice.extra_perimeters > 0) printf(" adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx); #endif } } }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end"; } BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start"; tbb::parallel_for( tbb::blocked_range<size_t>(0, m_layers.size()), [this](const tbb::blocked_range<size_t>& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); m_layers[layer_idx]->make_perimeters(); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end"; this->set_done(posPerimeters); } void PrintObject::prepare_infill() { if (! this->set_started(posPrepareInfill)) return; m_print->set_status(30, L("Preparing infill")); if (m_typed_slices) { // To improve robustness of detect_surfaces_type() when reslicing (working with typed slices), see GH issue #7442. // The preceding step (perimeter generator) only modifies extra_perimeters and the extra perimeters are only used by discover_vertical_shells() // with more than a single region. If this step does not use Surface::extra_perimeters or Surface::extra_perimeters is always zero, it is safe // to reset to the untyped slices before re-runnning detect_surfaces_type(). for (Layer* layer : m_layers) { layer->restore_untyped_slices_no_extra_perimeters(); m_print->throw_if_canceled(); } } // This will assign a type (top/bottom/internal) to $layerm->slices. // Then the classifcation of $layerm->slices is transfered onto // the $layerm->fill_surfaces by clipping $layerm->fill_surfaces // by the cummulative area of the previous $layerm->fill_surfaces. this->detect_surfaces_type(); m_print->throw_if_canceled(); // Decide what surfaces are to be filled. // Here the stTop / stBottomBridge / stBottom infill is turned to just stInternal if zero top / bottom infill layers are configured. // Also tiny stInternal surfaces are turned to stInternalSolid. BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces..." << log_memory_info(); for (auto *layer : m_layers) for (auto *region : layer->m_regions) { region->prepare_fill_surfaces(); m_print->throw_if_canceled(); } // Add solid fills to ensure the shell vertical thickness. this->discover_vertical_shells(); m_print->throw_if_canceled(); // Debugging output. #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("3_discover_vertical_shells-final"); layerm->export_region_fill_surfaces_to_svg_debug("3_discover_vertical_shells-final"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // this will detect bridges and reverse bridges // and rearrange top/bottom/internal surfaces // It produces enlarged overlapping bridging areas. // // 1) stBottomBridge / stBottom infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap. // 2) stTop is grown by 3mm and clipped by the grown bottom areas. The areas may overlap. // 3) Clip the internal surfaces by the grown top/bottom surfaces. // 4) Merge surfaces with the same style. This will mostly get rid of the overlaps. //FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties. this->process_external_surfaces(); m_print->throw_if_canceled(); // Debugging output. #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("3_process_external_surfaces-final"); layerm->export_region_fill_surfaces_to_svg_debug("3_process_external_surfaces-final"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Detect, which fill surfaces are near external layers. // They will be split in internal and internal-solid surfaces. // The purpose is to add a configurable number of solid layers to support the TOP surfaces // and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces // to close these surfaces reliably. //FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters? this->discover_horizontal_shells(); m_print->throw_if_canceled(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final"); layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Only active if config->infill_only_where_needed. This step trims the sparse infill, // so it acts as an internal support. It maintains all other infill types intact. // Here the internal surfaces and perimeters have to be supported by the sparse infill. //FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support. // Likely the sparse infill will not be anchored correctly, so it will not work as intended. // Also one wishes the perimeters to be supported by a full infill. this->clip_fill_surfaces(); m_print->throw_if_canceled(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final"); layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // the following step needs to be done before combination because it may need // to remove only half of the combined infill this->bridge_over_infill(); m_print->throw_if_canceled(); // combine fill surfaces to honor the "infill every N layers" option this->combine_infill(); m_print->throw_if_canceled(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { for (const Layer *layer : m_layers) { LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("9_prepare_infill-final"); layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final"); } // for each layer } // for each region for (const Layer *layer : m_layers) { layer->export_region_slices_to_svg_debug("9_prepare_infill-final"); layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final"); } // for each layer #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ this->set_done(posPrepareInfill); } void PrintObject::clear_fills() { for (Layer *layer : m_layers) layer->clear_fills(); } void PrintObject::infill() { // prerequisites this->prepare_infill(); if (this->set_started(posInfill)) { m_print->set_status(45, L("making infill")); const auto& adaptive_fill_octree = this->m_adaptive_fill_octrees.first; const auto& support_fill_octree = this->m_adaptive_fill_octrees.second; BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start"; tbb::parallel_for( tbb::blocked_range<size_t>(0, m_layers.size()), [this, &adaptive_fill_octree = adaptive_fill_octree, &support_fill_octree = support_fill_octree](const tbb::blocked_range<size_t>& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); m_layers[layer_idx]->make_fills(adaptive_fill_octree.get(), support_fill_octree.get(), this->m_lightning_generator.get()); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - end"; /* we could free memory now, but this would make this step not idempotent ### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers}; */ this->set_done(posInfill); } } void PrintObject::ironing() { if (this->set_started(posIroning)) { BOOST_LOG_TRIVIAL(debug) << "Ironing in parallel - start"; tbb::parallel_for( // Ironing starting with layer 0 to support ironing all surfaces. tbb::blocked_range<size_t>(0, m_layers.size()), [this](const tbb::blocked_range<size_t>& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); m_layers[layer_idx]->make_ironing(); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Ironing in parallel - end"; this->set_done(posIroning); } } void PrintObject::generate_support_spots() { if (this->set_started(posSupportSpotsSearch)) { BOOST_LOG_TRIVIAL(debug) << "Searching support spots - start"; m_print->set_status(65, L("Searching support spots")); if (!this->shared_regions()->generated_support_points.has_value()) { PrintTryCancel cancel_func = m_print->make_try_cancel(); SupportSpotsGenerator::Params params{this->print()->m_config.filament_type.values, float(this->print()->m_config.perimeter_acceleration.getFloat()), this->config().raft_layers.getInt(), this->config().brim_type.value, float(this->config().brim_width.getFloat())}; auto [supp_points, partial_objects] = SupportSpotsGenerator::full_search(this, cancel_func, params); Transform3d po_transform = this->trafo_centered(); if (this->layer_count() > 0) { po_transform = Geometry::translation_transform(Vec3d{0, 0, this->layers().front()->bottom_z()}) * po_transform; } this->m_shared_regions->generated_support_points = {po_transform, supp_points, partial_objects}; m_print->throw_if_canceled(); } BOOST_LOG_TRIVIAL(debug) << "Searching support spots - end"; this->set_done(posSupportSpotsSearch); } } void PrintObject::generate_support_material() { if (this->set_started(posSupportMaterial)) { this->clear_support_layers(); if ((this->has_support() && m_layers.size() > 1) || (this->has_raft() && ! m_layers.empty())) { m_print->set_status(70, L("Generating support material")); this->_generate_support_material(); m_print->throw_if_canceled(); } else { #if 0 // Printing without supports. Empty layer means some objects or object parts are levitating, // therefore they cannot be printed without supports. for (const Layer *layer : m_layers) if (layer->empty()) throw Slic3r::SlicingError("Levitating objects cannot be printed without supports."); #endif } this->set_done(posSupportMaterial); } } void PrintObject::estimate_curled_extrusions() { if (this->set_started(posEstimateCurledExtrusions)) { if (this->print()->config().avoid_crossing_curled_overhangs) { BOOST_LOG_TRIVIAL(debug) << "Estimating areas with curled extrusions - start"; m_print->set_status(88, L("Estimating curled extrusions")); // Estimate curling of support material and add it to the malformaition lines of each layer float support_flow_width = support_material_flow(this, this->config().layer_height).width(); SupportSpotsGenerator::Params params{this->print()->m_config.filament_type.values, float(this->print()->m_config.perimeter_acceleration.getFloat()), this->config().raft_layers.getInt(), this->config().brim_type.value, float(this->config().brim_width.getFloat())}; SupportSpotsGenerator::estimate_supports_malformations(this->support_layers(), support_flow_width, params); SupportSpotsGenerator::estimate_malformations(this->layers(), params); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Estimating areas with curled extrusions - end"; } this->set_done(posEstimateCurledExtrusions); } } std::pair<FillAdaptive::OctreePtr, FillAdaptive::OctreePtr> PrintObject::prepare_adaptive_infill_data( const std::vector<std::pair<const Surface *, float>> &surfaces_w_bottom_z) const { using namespace FillAdaptive; auto [adaptive_line_spacing, support_line_spacing] = adaptive_fill_line_spacing(*this); if ((adaptive_line_spacing == 0. && support_line_spacing == 0.) || this->layers().empty()) return std::make_pair(OctreePtr(), OctreePtr()); indexed_triangle_set mesh = this->model_object()->raw_indexed_triangle_set(); // Rotate mesh and build octree on it with axis-aligned (standart base) cubes. auto to_octree = transform_to_octree().toRotationMatrix(); its_transform(mesh, to_octree * this->trafo_centered(), true); // Triangulate internal bridging surfaces. std::vector<std::vector<Vec3d>> overhangs(surfaces_w_bottom_z.size()); tbb::parallel_for(tbb::blocked_range<int>(0, surfaces_w_bottom_z.size()), [this, &to_octree, &overhangs, &surfaces_w_bottom_z](const tbb::blocked_range<int> &range) { for (int surface_idx = range.begin(); surface_idx < range.end(); ++surface_idx) { std::vector<Vec3d> &out = overhangs[surface_idx]; m_print->throw_if_canceled(); append(out, triangulate_expolygon_3d(surfaces_w_bottom_z[surface_idx].first->expolygon, surfaces_w_bottom_z[surface_idx].second)); for (Vec3d &p : out) p = (to_octree * p).eval(); } }); // and gather them. for (size_t i = 1; i < overhangs.size(); ++ i) append(overhangs.front(), std::move(overhangs[i])); return std::make_pair( adaptive_line_spacing ? build_octree(mesh, overhangs.front(), adaptive_line_spacing, false) : OctreePtr(), support_line_spacing ? build_octree(mesh, overhangs.front(), support_line_spacing, true) : OctreePtr()); } FillLightning::GeneratorPtr PrintObject::prepare_lightning_infill_data() { bool has_lightning_infill = false; coordf_t lightning_density = 0.; size_t lightning_cnt = 0; for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) if (const PrintRegionConfig &config = this->printing_region(region_id).config(); config.fill_density > 0 && config.fill_pattern == ipLightning) { has_lightning_infill = true; lightning_density += config.fill_density; ++lightning_cnt; } if (has_lightning_infill) lightning_density /= coordf_t(lightning_cnt); return has_lightning_infill ? FillLightning::build_generator(std::as_const(*this), lightning_density, [this]() -> void { this->throw_if_canceled(); }) : FillLightning::GeneratorPtr(); } void PrintObject::clear_layers() { for (Layer *l : m_layers) delete l; m_layers.clear(); } Layer* PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z) { m_layers.emplace_back(new Layer(id, this, height, print_z, slice_z)); return m_layers.back(); } void PrintObject::clear_support_layers() { for (Layer *l : m_support_layers) delete l; m_support_layers.clear(); } SupportLayer* PrintObject::add_support_layer(int id, int interface_id, coordf_t height, coordf_t print_z) { m_support_layers.emplace_back(new SupportLayer(id, interface_id, this, height, print_z, -1)); return m_support_layers.back(); } SupportLayerPtrs::iterator PrintObject::insert_support_layer(SupportLayerPtrs::iterator pos, size_t id, size_t interface_id, coordf_t height, coordf_t print_z, coordf_t slice_z) { return m_support_layers.insert(pos, new SupportLayer(id, interface_id, this, height, print_z, slice_z)); } // Called by Print::apply(). // This method only accepts PrintObjectConfig and PrintRegionConfig option keys. bool PrintObject::invalidate_state_by_config_options( const ConfigOptionResolver &old_config, const ConfigOptionResolver &new_config, const std::vector<t_config_option_key> &opt_keys) { if (opt_keys.empty()) return false; std::vector<PrintObjectStep> steps; bool invalidated = false; for (const t_config_option_key &opt_key : opt_keys) { if ( opt_key == "brim_width" || opt_key == "brim_separation" || opt_key == "brim_type") { steps.emplace_back(posSupportSpotsSearch); // Brim is printed below supports, support invalidates brim and skirt. steps.emplace_back(posSupportMaterial); } else if ( opt_key == "perimeters" || opt_key == "extra_perimeters" || opt_key == "extra_perimeters_on_overhangs" || opt_key == "first_layer_extrusion_width" || opt_key == "perimeter_extrusion_width" || opt_key == "infill_overlap" || opt_key == "external_perimeters_first") { steps.emplace_back(posPerimeters); } else if ( opt_key == "gap_fill_enabled" || opt_key == "gap_fill_speed") { // Return true if gap-fill speed has changed from zero value to non-zero or from non-zero value to zero. auto is_gap_fill_changed_state_due_to_speed = [&opt_key, &old_config, &new_config]() -> bool { if (opt_key == "gap_fill_speed") { const auto *old_gap_fill_speed = old_config.option<ConfigOptionFloat>(opt_key); const auto *new_gap_fill_speed = new_config.option<ConfigOptionFloat>(opt_key); assert(old_gap_fill_speed && new_gap_fill_speed); return (old_gap_fill_speed->value > 0.f && new_gap_fill_speed->value == 0.f) || (old_gap_fill_speed->value == 0.f && new_gap_fill_speed->value > 0.f); } return false; }; // Filtering of unprintable regions in multi-material segmentation depends on if gap-fill is enabled or not. // So step posSlice is invalidated when gap-fill was enabled/disabled by option "gap_fill_enabled" or by // changing "gap_fill_speed" to force recomputation of the multi-material segmentation. if (this->is_mm_painted() && (opt_key == "gap_fill_enabled" || (opt_key == "gap_fill_speed" && is_gap_fill_changed_state_due_to_speed()))) steps.emplace_back(posSlice); steps.emplace_back(posPerimeters); } else if ( opt_key == "layer_height" || opt_key == "mmu_segmented_region_max_width" || opt_key == "raft_layers" || opt_key == "raft_contact_distance" || opt_key == "slice_closing_radius" || opt_key == "slicing_mode") { steps.emplace_back(posSlice); } else if ( opt_key == "elefant_foot_compensation" || opt_key == "support_material_contact_distance" || opt_key == "xy_size_compensation") { steps.emplace_back(posSlice); } else if (opt_key == "support_material") { steps.emplace_back(posSupportMaterial); if (m_config.support_material_contact_distance == 0.) { // Enabling / disabling supports while soluble support interface is enabled. // This changes the bridging logic (bridging enabled without supports, disabled with supports). // Reset everything. // See GH #1482 for details. steps.emplace_back(posSlice); } } else if ( opt_key == "support_material_auto" || opt_key == "support_material_angle" || opt_key == "support_material_buildplate_only" || opt_key == "support_material_enforce_layers" || opt_key == "support_material_extruder" || opt_key == "support_material_extrusion_width" || opt_key == "support_material_bottom_contact_distance" || opt_key == "support_material_interface_layers" || opt_key == "support_material_bottom_interface_layers" || opt_key == "support_material_interface_pattern" || opt_key == "support_material_interface_contact_loops" || opt_key == "support_material_interface_extruder" || opt_key == "support_material_interface_spacing" || opt_key == "support_material_pattern" || opt_key == "support_material_style" || opt_key == "support_material_xy_spacing" || opt_key == "support_material_spacing" || opt_key == "support_material_closing_radius" || opt_key == "support_material_synchronize_layers" || opt_key == "support_material_threshold" || opt_key == "support_material_with_sheath" || opt_key == "support_tree_angle" || opt_key == "support_tree_angle_slow" || opt_key == "support_tree_branch_diameter" || opt_key == "support_tree_branch_diameter_angle" || opt_key == "support_tree_top_rate" || opt_key == "support_tree_branch_distance" || opt_key == "support_tree_tip_diameter" || opt_key == "raft_expansion" || opt_key == "raft_first_layer_density" || opt_key == "raft_first_layer_expansion" || opt_key == "dont_support_bridges" || opt_key == "first_layer_extrusion_width") { steps.emplace_back(posSupportMaterial); } else if (opt_key == "bottom_solid_layers") { steps.emplace_back(posPrepareInfill); if (m_print->config().spiral_vase) { // Changing the number of bottom layers when a spiral vase is enabled requires re-slicing the object again. // Otherwise, holes in the bottom layers could be filled, as is reported in GH #5528. steps.emplace_back(posSlice); } } else if ( opt_key == "interface_shells" || opt_key == "infill_only_where_needed" || opt_key == "infill_every_layers" || opt_key == "solid_infill_every_layers" || opt_key == "bottom_solid_min_thickness" || opt_key == "top_solid_layers" || opt_key == "top_solid_min_thickness" || opt_key == "solid_infill_below_area" || opt_key == "infill_extruder" || opt_key == "solid_infill_extruder" || opt_key == "infill_extrusion_width" || opt_key == "bridge_angle") { steps.emplace_back(posPrepareInfill); } else if ( opt_key == "top_fill_pattern" || opt_key == "bottom_fill_pattern" || opt_key == "external_fill_link_max_length" || opt_key == "fill_angle" || opt_key == "infill_anchor" || opt_key == "infill_anchor_max" || opt_key == "top_infill_extrusion_width" || opt_key == "first_layer_extrusion_width") { steps.emplace_back(posInfill); } else if (opt_key == "fill_pattern") { steps.emplace_back(posPrepareInfill); } else if (opt_key == "fill_density") { // One likely wants to reslice only when switching between zero infill to simulate boolean difference (subtracting volumes), // normal infill and 100% (solid) infill. const auto *old_density = old_config.option<ConfigOptionPercent>(opt_key); const auto *new_density = new_config.option<ConfigOptionPercent>(opt_key); assert(old_density && new_density); //FIXME Vojtech is not quite sure about the 100% here, maybe it is not needed. if (is_approx(old_density->value, 0.) || is_approx(old_density->value, 100.) || is_approx(new_density->value, 0.) || is_approx(new_density->value, 100.)) steps.emplace_back(posPerimeters); steps.emplace_back(posPrepareInfill); } else if (opt_key == "solid_infill_extrusion_width") { // This value is used for calculating perimeter - infill overlap, thus perimeters need to be recalculated. steps.emplace_back(posPerimeters); steps.emplace_back(posPrepareInfill); } else if ( opt_key == "external_perimeter_extrusion_width" || opt_key == "perimeter_extruder" || opt_key == "fuzzy_skin" || opt_key == "fuzzy_skin_thickness" || opt_key == "fuzzy_skin_point_dist" || opt_key == "overhangs" || opt_key == "thin_walls" || opt_key == "thick_bridges") { steps.emplace_back(posPerimeters); steps.emplace_back(posSupportMaterial); } else if (opt_key == "bridge_flow_ratio") { if (m_config.support_material_contact_distance > 0.) { // Only invalidate due to bridging if bridging is enabled. // If later "support_material_contact_distance" is modified, the complete PrintObject is invalidated anyway. steps.emplace_back(posPerimeters); steps.emplace_back(posInfill); steps.emplace_back(posSupportMaterial); } } else if ( opt_key == "perimeter_generator" || opt_key == "wall_transition_length" || opt_key == "wall_transition_filter_deviation" || opt_key == "wall_transition_angle" || opt_key == "wall_distribution_count" || opt_key == "min_feature_size" || opt_key == "min_bead_width") { steps.emplace_back(posSlice); } else if ( opt_key == "seam_position" || opt_key == "seam_preferred_direction" || opt_key == "seam_preferred_direction_jitter" || opt_key == "support_material_speed" || opt_key == "support_material_interface_speed" || opt_key == "bridge_speed" || opt_key == "enable_dynamic_overhang_speeds" || opt_key == "overhang_speed_0" || opt_key == "overhang_speed_1" || opt_key == "overhang_speed_2" || opt_key == "overhang_speed_3" || opt_key == "external_perimeter_speed" || opt_key == "infill_speed" || opt_key == "perimeter_speed" || opt_key == "small_perimeter_speed" || opt_key == "solid_infill_speed" || opt_key == "top_solid_infill_speed") { invalidated |= m_print->invalidate_step(psGCodeExport); } else if ( opt_key == "wipe_into_infill" || opt_key == "wipe_into_objects") { invalidated |= m_print->invalidate_step(psWipeTower); invalidated |= m_print->invalidate_step(psGCodeExport); } else { // for legacy, if we can't handle this option let's invalidate all steps this->invalidate_all_steps(); invalidated = true; } } sort_remove_duplicates(steps); for (PrintObjectStep step : steps) invalidated |= this->invalidate_step(step); return invalidated; } bool PrintObject::invalidate_step(PrintObjectStep step) { bool invalidated = Inherited::invalidate_step(step); // propagate to dependent steps if (step == posPerimeters) { invalidated |= this->invalidate_steps({ posPrepareInfill, posInfill, posIroning, posSupportSpotsSearch, posEstimateCurledExtrusions }); invalidated |= m_print->invalidate_steps({ psSkirtBrim }); } else if (step == posPrepareInfill) { invalidated |= this->invalidate_steps({ posInfill, posIroning, posSupportSpotsSearch}); } else if (step == posInfill) { invalidated |= this->invalidate_steps({ posIroning, posSupportSpotsSearch }); invalidated |= m_print->invalidate_steps({ psSkirtBrim }); } else if (step == posSlice) { invalidated |= this->invalidate_steps({posPerimeters, posPrepareInfill, posInfill, posIroning, posSupportSpotsSearch, posSupportMaterial, posEstimateCurledExtrusions}); invalidated |= m_print->invalidate_steps({ psSkirtBrim }); m_slicing_params.valid = false; } else if (step == posSupportMaterial) { invalidated |= m_print->invalidate_steps({ psSkirtBrim, }); invalidated |= this->invalidate_steps({ posEstimateCurledExtrusions }); m_slicing_params.valid = false; } // invalidate alerts step always, since it depends on everything (except supports, but with supports enabled it is skipped anyway.) invalidated |= m_print->invalidate_step(psAlertWhenSupportsNeeded); // Wipe tower depends on the ordering of extruders, which in turn depends on everything. // It also decides about what the wipe_into_infill / wipe_into_object features will do, // and that too depends on many of the settings. invalidated |= m_print->invalidate_step(psWipeTower); // Invalidate G-code export in any case. invalidated |= m_print->invalidate_step(psGCodeExport); return invalidated; } bool PrintObject::invalidate_all_steps() { // First call the "invalidate" functions, which may cancel background processing. bool result = Inherited::invalidate_all_steps() | m_print->invalidate_all_steps(); // Then reset some of the depending values. m_slicing_params.valid = false; return result; } // Called on main thread with stopped or paused background processing to let PrintObject release data for its milestones that were invalidated or canceled. void PrintObject::cleanup() { if (this->query_reset_dirty_step_unguarded(posInfill)) this->clear_fills(); if (this->query_reset_dirty_step_unguarded(posSupportMaterial)) this->clear_support_layers(); } // This function analyzes slices of a region (SurfaceCollection slices). // Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface. // Initially all slices are of type stInternal. // Slices are compared against the top / bottom slices and regions and classified to the following groups: // stTop - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill. // stBottomBridge - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft. // stBottom - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer. // stInternal - Part of a region, which is supported by the same region type. // If a part of a region is of stBottom and stTop, the stBottom wins. void PrintObject::detect_surfaces_type() { BOOST_LOG_TRIVIAL(info) << "Detecting solid surfaces..." << log_memory_info(); // Interface shells: the intersecting parts are treated as self standing objects supporting each other. // Each of the objects will have a full number of top / bottom layers, even if these top / bottom layers // are completely hidden inside a collective body of intersecting parts. // This is useful if one of the parts is to be dissolved, or if it is transparent and the internal shells // should be visible. bool spiral_vase = this->print()->config().spiral_vase.value; bool interface_shells = ! spiral_vase && m_config.interface_shells.value; size_t num_layers = spiral_vase ? std::min(size_t(this->printing_region(0).config().bottom_solid_layers), m_layers.size()) : m_layers.size(); for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << region_id << " in parallel - start"; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (Layer *layer : m_layers) layer->m_regions[region_id]->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // If interface shells are allowed, the region->surfaces cannot be overwritten as they may be used by other threads. // Cache the result of the following parallel_loop. std::vector<Surfaces> surfaces_new; if (interface_shells) surfaces_new.assign(num_layers, Surfaces()); tbb::parallel_for( tbb::blocked_range<size_t>(0, spiral_vase ? // In spiral vase mode, reserve the last layer for the top surface if more than 1 layer is planned for the vase bottom. ((num_layers > 1) ? num_layers - 1 : num_layers) : // In non-spiral vase mode, go over all layers. m_layers.size()), [this, region_id, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) { // If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating // the support from the print. SurfaceType surface_type_bottom_other = (this->has_support() && m_config.support_material_contact_distance.value == 0) ? stBottom : stBottomBridge; for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); // BOOST_LOG_TRIVIAL(trace) << "Detecting solid surfaces for region " << region_id << " and layer " << layer->print_z; Layer *layer = m_layers[idx_layer]; LayerRegion *layerm = layer->m_regions[region_id]; // comparison happens against the *full* slices (considering all regions) // unless internal shells are requested Layer *upper_layer = (idx_layer + 1 < this->layer_count()) ? m_layers[idx_layer + 1] : nullptr; Layer *lower_layer = (idx_layer > 0) ? m_layers[idx_layer - 1] : nullptr; // collapse very narrow parts (using the safety offset in the diff is not enough) float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f; // find top surfaces (difference between current surfaces // of current layer and upper one) Surfaces top; if (upper_layer) { ExPolygons upper_slices = interface_shells ? diff_ex(layerm->slices().surfaces, upper_layer->m_regions[region_id]->slices().surfaces, ApplySafetyOffset::Yes) : diff_ex(layerm->slices().surfaces, upper_layer->lslices, ApplySafetyOffset::Yes); surfaces_append(top, opening_ex(upper_slices, offset), stTop); } else { // if no upper layer, all surfaces of this one are solid // we clone surfaces because we're going to clear the slices collection top = layerm->slices().surfaces; for (Surface &surface : top) surface.surface_type = stTop; } // Find bottom surfaces (difference between current surfaces of current layer and lower one). Surfaces bottom; if (lower_layer) { #if 0 //FIXME Why is this branch failing t\multi.t ? Polygons lower_slices = interface_shells ? to_polygons(lower_layer->get_region(region_id)->slices.surfaces) : to_polygons(lower_layer->slices); surfaces_append(bottom, opening_ex(diff(layerm->slices.surfaces, lower_slices, true), offset), surface_type_bottom_other); #else // Any surface lying on the void is a true bottom bridge (an overhang) surfaces_append( bottom, opening_ex( diff_ex(layerm->slices().surfaces, lower_layer->lslices, ApplySafetyOffset::Yes), offset), surface_type_bottom_other); // if user requested internal shells, we need to identify surfaces // lying on other slices not belonging to this region if (interface_shells) { // non-bridging bottom surfaces: any part of this layer lying // on something else, excluding those lying on our own region surfaces_append( bottom, opening_ex( diff_ex( intersection(layerm->slices().surfaces, lower_layer->lslices), // supported lower_layer->m_regions[region_id]->slices().surfaces, ApplySafetyOffset::Yes), offset), stBottom); } #endif } else { // if no lower layer, all surfaces of this one are solid // we clone surfaces because we're going to clear the slices collection bottom = layerm->slices().surfaces; for (Surface &surface : bottom) surface.surface_type = stBottom; } // now, if the object contained a thin membrane, we could have overlapping bottom // and top surfaces; let's do an intersection to discover them and consider them // as bottom surfaces (to allow for bridge detection) if (! top.empty() && ! bottom.empty()) { // Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom)); // Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping) // if $Slic3r::debug; Polygons top_polygons = to_polygons(std::move(top)); top.clear(); surfaces_append(top, diff_ex(top_polygons, bottom), stTop); } #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { static int iRun = 0; std::vector<std::pair<Slic3r::ExPolygons, SVG::ExPolygonAttributes>> expolygons_with_attributes; expolygons_with_attributes.emplace_back(std::make_pair(union_ex(top), SVG::ExPolygonAttributes("green"))); expolygons_with_attributes.emplace_back(std::make_pair(union_ex(bottom), SVG::ExPolygonAttributes("brown"))); expolygons_with_attributes.emplace_back(std::make_pair(to_expolygons(layerm->slices().surfaces), SVG::ExPolygonAttributes("black"))); SVG::export_expolygons(debug_out_path("1_detect_surfaces_type_%d_region%d-layer_%f.svg", iRun ++, region_id, layer->print_z).c_str(), expolygons_with_attributes); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // save surfaces to layer Surfaces &surfaces_out = interface_shells ? surfaces_new[idx_layer] : layerm->m_slices.surfaces; Surfaces surfaces_backup; if (! interface_shells) { surfaces_backup = std::move(surfaces_out); surfaces_out.clear(); } const Surfaces &surfaces_prev = interface_shells ? layerm->slices().surfaces : surfaces_backup; // find internal surfaces (difference between top/bottom surfaces and others) { Polygons topbottom = to_polygons(top); polygons_append(topbottom, to_polygons(bottom)); surfaces_append(surfaces_out, diff_ex(surfaces_prev, topbottom), stInternal); } surfaces_append(surfaces_out, std::move(top)); surfaces_append(surfaces_out, std::move(bottom)); // Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n", // $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } } ); // for each layer of a region m_print->throw_if_canceled(); if (interface_shells) { // Move surfaces_new to layerm->slices.surfaces for (size_t idx_layer = 0; idx_layer < num_layers; ++ idx_layer) m_layers[idx_layer]->m_regions[region_id]->m_slices.set(std::move(surfaces_new[idx_layer])); } if (spiral_vase) { if (num_layers > 1) // Turn the last bottom layer infill to a top infill, so it will be extruded with a proper pattern. m_layers[num_layers - 1]->m_regions[region_id]->m_slices.set_type(stTop); for (size_t i = num_layers; i < m_layers.size(); ++ i) m_layers[i]->m_regions[region_id]->m_slices.set_type(stInternal); } BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << region_id << " - clipping in parallel - start"; // Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces. tbb::parallel_for( tbb::blocked_range<size_t>(0, m_layers.size()), [this, region_id](const tbb::blocked_range<size_t>& range) { for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); LayerRegion *layerm = m_layers[idx_layer]->m_regions[region_id]; layerm->slices_to_fill_surfaces_clipped(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } // for each layer of a region }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << region_id << " - clipping in parallel - end"; } // for each this->print->region_count // Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.) m_typed_slices = true; } void PrintObject::process_external_surfaces() { BOOST_LOG_TRIVIAL(info) << "Processing external surfaces..." << log_memory_info(); // Cached surfaces covered by some extrusion, defining regions, over which the from the surfaces one layer higher are allowed to expand. std::vector<Polygons> surfaces_covered; // Is there any printing region, that has zero infill? If so, then we don't want the expansion to be performed over the complete voids, but only // over voids, which are supported by the layer below. bool has_voids = false; for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) if (this->printing_region(region_id).config().fill_density == 0) { has_voids = true; break; } if (has_voids && m_layers.size() > 1) { // All but stInternal fill surfaces will get expanded and possibly trimmed. std::vector<unsigned char> layer_expansions_and_voids(m_layers.size(), false); for (size_t layer_idx = 1; layer_idx < m_layers.size(); ++ layer_idx) { const Layer *layer = m_layers[layer_idx]; bool expansions = false; bool voids = false; for (const LayerRegion *layerm : layer->regions()) { for (const Surface &surface : layerm->fill_surfaces()) { if (surface.surface_type == stInternal) voids = true; else expansions = true; if (voids && expansions) { layer_expansions_and_voids[layer_idx] = true; goto end; } } } end:; } BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - start"; surfaces_covered.resize(m_layers.size() - 1, Polygons()); auto unsupported_width = - float(scale_(0.3 * EXTERNAL_INFILL_MARGIN)); tbb::parallel_for( tbb::blocked_range<size_t>(0, m_layers.size() - 1), [this, &surfaces_covered, &layer_expansions_and_voids, unsupported_width](const tbb::blocked_range<size_t>& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) if (layer_expansions_and_voids[layer_idx + 1]) { // Layer above is partially filled with solid infill (top, bottom, bridging...), // while some sparse inill regions are empty (0% infill). m_print->throw_if_canceled(); Polygons voids; for (const LayerRegion *layerm : m_layers[layer_idx]->regions()) { if (layerm->region().config().fill_density.value == 0.) for (const Surface &surface : layerm->fill_surfaces()) // Shrink the holes, let the layer above expand slightly inside the unsupported areas. polygons_append(voids, offset(surface.expolygon, unsupported_width)); } surfaces_covered[layer_idx] = diff(m_layers[layer_idx]->lslices, voids); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - end"; } for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) { BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - start"; tbb::parallel_for( tbb::blocked_range<size_t>(0, m_layers.size()), [this, &surfaces_covered, region_id](const tbb::blocked_range<size_t>& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) { m_print->throw_if_canceled(); // BOOST_LOG_TRIVIAL(trace) << "Processing external surface, layer" << m_layers[layer_idx]->print_z; m_layers[layer_idx]->get_region(int(region_id))->process_external_surfaces( // lower layer (layer_idx == 0) ? nullptr : m_layers[layer_idx - 1], // lower layer polygons with density > 0% (layer_idx == 0 || surfaces_covered.empty() || surfaces_covered[layer_idx - 1].empty()) ? nullptr : &surfaces_covered[layer_idx - 1]); } } ); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - end"; } if (this->has_raft() && ! m_layers.empty()) { // Adjust bridge direction of 1st object layer over raft to be perpendicular to the raft contact layer direction. Layer &layer = *m_layers.front(); assert(layer.id() > 0); for (LayerRegion *layerm : layer.regions()) for (Surface &fill : layerm->m_fill_surfaces) fill.bridge_angle = -1; } } // void PrintObject::process_external_surfaces() void PrintObject::discover_vertical_shells() { BOOST_LOG_TRIVIAL(info) << "Discovering vertical shells..." << log_memory_info(); struct DiscoverVerticalShellsCacheEntry { // Collected polygons, offsetted Polygons top_surfaces; Polygons bottom_surfaces; Polygons holes; }; bool spiral_vase = this->print()->config().spiral_vase.value; size_t num_layers = spiral_vase ? std::min(size_t(this->printing_region(0).config().bottom_solid_layers), m_layers.size()) : m_layers.size(); coordf_t min_layer_height = this->slicing_parameters().min_layer_height; // Does this region possibly produce more than 1 top or bottom layer? auto has_extra_layers_fn = [min_layer_height](const PrintRegionConfig &config) { auto num_extra_layers = [min_layer_height](int num_solid_layers, coordf_t min_shell_thickness) { if (num_solid_layers == 0) return 0; int n = num_solid_layers - 1; int n2 = int(ceil(min_shell_thickness / min_layer_height)); return std::max(n, n2 - 1); }; return num_extra_layers(config.top_solid_layers, config.top_solid_min_thickness) + num_extra_layers(config.bottom_solid_layers, config.bottom_solid_min_thickness) > 0; }; std::vector<DiscoverVerticalShellsCacheEntry> cache_top_botom_regions(num_layers, DiscoverVerticalShellsCacheEntry()); bool top_bottom_surfaces_all_regions = this->num_printing_regions() > 1 && ! m_config.interface_shells.value; // static constexpr const float top_bottom_expansion_coeff = 1.05f; // Just a tiny fraction of an infill extrusion width to merge neighbor regions reliably. static constexpr const float top_bottom_expansion_coeff = 0.05f; if (top_bottom_surfaces_all_regions) { // This is a multi-material print and interface_shells are disabled, meaning that the vertical shell thickness // is calculated over all materials. // Is the "ensure vertical wall thickness" applicable to any region? bool has_extra_layers = false; for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) { const PrintRegionConfig &config = this->printing_region(region_id).config(); if (has_extra_layers_fn(config)) { has_extra_layers = true; break; } } if (! has_extra_layers) // The "ensure vertical wall thickness" feature is not applicable to any of the regions. Quit. return; BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - start : cache top / bottom"; //FIXME Improve the heuristics for a grain size. size_t grain_size = std::max(num_layers / 16, size_t(1)); tbb::parallel_for( tbb::blocked_range<size_t>(0, num_layers, grain_size), [this, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) { const std::initializer_list<SurfaceType> surfaces_bottom { stBottom, stBottomBridge }; const size_t num_regions = this->num_printing_regions(); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); const Layer &layer = *m_layers[idx_layer]; DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[idx_layer]; // Simulate single set of perimeters over all merged regions. float perimeter_offset = 0.f; float perimeter_min_spacing = FLT_MAX; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING static size_t debug_idx = 0; ++ debug_idx; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ for (size_t region_id = 0; region_id < num_regions; ++ region_id) { LayerRegion &layerm = *layer.m_regions[region_id]; float top_bottom_expansion = float(layerm.flow(frSolidInfill).scaled_spacing()) * top_bottom_expansion_coeff; // Top surfaces. append(cache.top_surfaces, offset(layerm.slices().filter_by_type(stTop), top_bottom_expansion)); // append(cache.top_surfaces, offset(layerm.fill_surfaces().filter_by_type(stTop), top_bottom_expansion)); // Bottom surfaces. append(cache.bottom_surfaces, offset(layerm.slices().filter_by_types(surfaces_bottom), top_bottom_expansion)); // append(cache.bottom_surfaces, offset(layerm.fill_surfaces().filter_by_types(surfaces_bottom), top_bottom_expansion)); // Calculate the maximum perimeter offset as if the slice was extruded with a single extruder only. // First find the maxium number of perimeters per region slice. unsigned int perimeters = 0; for (const Surface &s : layerm.slices()) perimeters = std::max<unsigned int>(perimeters, s.extra_perimeters); perimeters += layerm.region().config().perimeters.value; // Then calculate the infill offset. if (perimeters > 0) { Flow extflow = layerm.flow(frExternalPerimeter); Flow flow = layerm.flow(frPerimeter); perimeter_offset = std::max(perimeter_offset, 0.5f * float(extflow.scaled_width() + extflow.scaled_spacing()) + (float(perimeters) - 1.f) * flow.scaled_spacing()); perimeter_min_spacing = std::min(perimeter_min_spacing, float(std::min(extflow.scaled_spacing(), flow.scaled_spacing()))); } polygons_append(cache.holes, to_polygons(layerm.fill_expolygons())); } // Save some computing time by reducing the number of polygons. cache.top_surfaces = union_(cache.top_surfaces); cache.bottom_surfaces = union_(cache.bottom_surfaces); // For a multi-material print, simulate perimeter / infill split as if only a single extruder has been used for the whole print. if (perimeter_offset > 0.) { // The layer.lslices are forced to merge by expanding them first. polygons_append(cache.holes, offset2(layer.lslices, 0.3f * perimeter_min_spacing, - perimeter_offset - 0.3f * perimeter_min_spacing)); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-extra-holes-%d.svg", debug_idx), get_extents(layer.lslices)); svg.draw(layer.lslices, "blue"); svg.draw(union_ex(cache.holes), "red"); svg.draw_outline(union_ex(cache.holes), "black", "blue", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } cache.holes = union_(cache.holes); } }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - end : cache top / bottom"; } for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { const PrintRegion ®ion = this->printing_region(region_id); if (! has_extra_layers_fn(region.config())) // Zero or 1 layer, there is no additional vertical wall thickness enforced. continue; //FIXME Improve the heuristics for a grain size. size_t grain_size = std::max(num_layers / 16, size_t(1)); if (! top_bottom_surfaces_all_regions) { // This is either a single material print, or a multi-material print and interface_shells are enabled, meaning that the vertical shell thickness // is calculated over a single material. BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - start : cache top / bottom"; tbb::parallel_for( tbb::blocked_range<size_t>(0, num_layers, grain_size), [this, region_id, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) { const std::initializer_list<SurfaceType> surfaces_bottom { stBottom, stBottomBridge }; for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); Layer &layer = *m_layers[idx_layer]; LayerRegion &layerm = *layer.m_regions[region_id]; float top_bottom_expansion = float(layerm.flow(frSolidInfill).scaled_spacing()) * top_bottom_expansion_coeff; // Top surfaces. auto &cache = cache_top_botom_regions[idx_layer]; cache.top_surfaces = offset(layerm.slices().filter_by_type(stTop), top_bottom_expansion); // append(cache.top_surfaces, offset(layerm.fill_surfaces().filter_by_type(stTop), top_bottom_expansion)); // Bottom surfaces. cache.bottom_surfaces = offset(layerm.slices().filter_by_types(surfaces_bottom), top_bottom_expansion); // append(cache.bottom_surfaces, offset(layerm.fill_surfaces().filter_by_types(surfaces_bottom), top_bottom_expansion)); // Holes over all regions. Only collect them once, they are valid for all region_id iterations. if (cache.holes.empty()) { for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) polygons_append(cache.holes, to_polygons(layer.regions()[region_id]->fill_expolygons())); } } }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - end : cache top / bottom"; } BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - start : ensure vertical wall thickness"; tbb::parallel_for( tbb::blocked_range<size_t>(0, num_layers, grain_size), [this, region_id, &cache_top_botom_regions] (const tbb::blocked_range<size_t>& range) { // printf("discover_vertical_shells from %d to %d\n", range.begin(), range.end()); for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) { m_print->throw_if_canceled(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING static size_t debug_idx = 0; ++ debug_idx; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ Layer *layer = m_layers[idx_layer]; LayerRegion *layerm = layer->m_regions[region_id]; const PrintRegionConfig ®ion_config = layerm->region().config(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_slices_to_svg_debug("3_discover_vertical_shells-initial"); layerm->export_region_fill_surfaces_to_svg_debug("3_discover_vertical_shells-initial"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ Flow solid_infill_flow = layerm->flow(frSolidInfill); coord_t infill_line_spacing = solid_infill_flow.scaled_spacing(); // Find a union of perimeters below / above this surface to guarantee a minimum shell thickness. Polygons shell; Polygons holes; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING ExPolygons shell_ex; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f; #if 0 // #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", debug_idx), this->bounding_box()); for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) { if (n < 0 || n >= (int)m_layers.size()) continue; ExPolygons &expolys = m_layers[n]->perimeter_expolygons; for (size_t i = 0; i < expolys.size(); ++ i) { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", debug_idx, n, i), get_extents(expolys[i])); svg.draw(expolys[i]); svg.draw_outline(expolys[i].contour, "black", scale_(0.05)); svg.draw_outline(expolys[i].holes, "blue", scale_(0.05)); svg.Close(); svg_cummulative.draw(expolys[i]); svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05)); svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05)); } } } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ polygons_append(holes, cache_top_botom_regions[idx_layer].holes); if (int n_top_layers = region_config.top_solid_layers.value; n_top_layers > 0) { // Gather top regions projected to this layer. coordf_t print_z = layer->print_z; for (int i = int(idx_layer) + 1; i < int(cache_top_botom_regions.size()) && (i < int(idx_layer) + n_top_layers || m_layers[i]->print_z - print_z < region_config.top_solid_min_thickness - EPSILON); ++ i) { const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i]; if (! holes.empty()) holes = intersection(holes, cache.holes); if (! cache.top_surfaces.empty()) { polygons_append(shell, cache.top_surfaces); // Running the union_ using the Clipper library piece by piece is cheaper // than running the union_ all at once. shell = union_(shell); } } } if (int n_bottom_layers = region_config.bottom_solid_layers.value; n_bottom_layers > 0) { // Gather bottom regions projected to this layer. coordf_t bottom_z = layer->bottom_z(); for (int i = int(idx_layer) - 1; i >= 0 && (i > int(idx_layer) - n_bottom_layers || bottom_z - m_layers[i]->bottom_z() < region_config.bottom_solid_min_thickness - EPSILON); -- i) { const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i]; if (! holes.empty()) holes = intersection(holes, cache.holes); if (! cache.bottom_surfaces.empty()) { polygons_append(shell, cache.bottom_surfaces); // Running the union_ using the Clipper library piece by piece is cheaper // than running the union_ all at once. shell = union_(shell); } } } #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", debug_idx), get_extents(shell)); svg.draw(shell); svg.draw_outline(shell, "black", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ #if 0 // shell = union_(shell, true); shell = union_(shell, false); #endif #ifdef SLIC3R_DEBUG_SLICE_PROCESSING shell_ex = union_safety_offset_ex(shell); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ //if (shell.empty()) // continue; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", debug_idx), get_extents(shell)); svg.draw(shell_ex); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", debug_idx), get_extents(shell)); svg.draw(layerm->fill_surfaces().filter_by_type(stInternal), "yellow", 0.5); svg.draw_outline(layerm->fill_surfaces().filter_by_type(stInternal), "black", "blue", scale_(0.05)); svg.draw(shell_ex, "blue", 0.5); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell)); svg.draw(layerm->fill_surfaces().filter_by_type(stInternalVoid), "yellow", 0.5); svg.draw_outline(layerm->fill_surfaces().filter_by_type(stInternalVoid), "black", "blue", scale_(0.05)); svg.draw(shell_ex, "blue", 0.5); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalsolid-wshell-%d.svg", debug_idx), get_extents(shell)); svg.draw(layerm->fill_surfaces().filter_by_type(stInternalSolid), "yellow", 0.5); svg.draw_outline(layerm->fill_surfaces().filter_by_type(stInternalSolid), "black", "blue", scale_(0.05)); svg.draw(shell_ex, "blue", 0.5); svg.draw_outline(shell_ex, "black", "blue", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Trim the shells region by the internal & internal void surfaces. const Polygons polygonsInternal = to_polygons(layerm->fill_surfaces().filter_by_types({ stInternal, stInternalVoid, stInternalSolid })); shell = intersection(shell, polygonsInternal, ApplySafetyOffset::Yes); polygons_append(shell, diff(polygonsInternal, holes)); if (shell.empty()) continue; // Append the internal solids, so they will be merged with the new ones. polygons_append(shell, to_polygons(layerm->fill_surfaces().filter_by_type(stInternalSolid))); // These regions will be filled by a rectilinear full infill. Currently this type of infill // only fills regions, which fit at least a single line. To avoid gaps in the sparse infill, // make sure that this region does not contain parts narrower than the infill spacing width. #ifdef SLIC3R_DEBUG_SLICE_PROCESSING Polygons shell_before = shell; #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ ExPolygons regularized_shell; { // Open to remove (filter out) regions narrower than a bit less than an infill extrusion line width. // Such narrow regions are difficult to fill in with a gap fill algorithm (or Arachne), however they are most likely // not needed for print stability / quality. const float narrow_ensure_vertical_wall_thickness_region_radius = 0.5f * 0.65f * min_perimeter_infill_spacing; // Then close gaps narrower than 1.2 * line width, such gaps are difficult to fill in with sparse infill, // thus they will be merged into the solid infill. const float narrow_sparse_infill_region_radius = 0.5f * 1.2f * min_perimeter_infill_spacing; // Finally expand the infill a bit to remove tiny gaps between solid infill and the other regions. const float tiny_overlap_radius = 0.2f * min_perimeter_infill_spacing; regularized_shell = shrink_ex(offset2_ex(union_ex(shell), // Open to remove (filter out) regions narrower than an infill extrusion line width. -narrow_ensure_vertical_wall_thickness_region_radius, // Then close gaps narrower than 1.2 * line width, such gaps are difficult to fill in with sparse infill. narrow_ensure_vertical_wall_thickness_region_radius + narrow_sparse_infill_region_radius, ClipperLib::jtSquare), // Finally expand the infill a bit to remove tiny gaps between solid infill and the other regions. narrow_sparse_infill_region_radius - tiny_overlap_radius, ClipperLib::jtSquare); // The opening operation may cause scattered tiny drops on the smooth parts of the model, filter them out regularized_shell.erase(std::remove_if(regularized_shell.begin(), regularized_shell.end(), [&min_perimeter_infill_spacing](const ExPolygon &p) { return p.area() < min_perimeter_infill_spacing * scaled(8.0); }), regularized_shell.end()); } if (regularized_shell.empty()) continue; ExPolygons new_internal_solid = intersection_ex(polygonsInternal, regularized_shell); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { Slic3r::SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", debug_idx), get_extents(shell_before)); // Source shell. svg.draw(union_safety_offset_ex(shell_before)); // Shell trimmed to the internal surfaces. svg.draw_outline(union_safety_offset_ex(shell), "black", "blue", scale_(0.05)); // Regularized infill region. svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05)); svg.Close(); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Trim the internal & internalvoid by the shell. Slic3r::ExPolygons new_internal = diff_ex(layerm->fill_surfaces().filter_by_type(stInternal), regularized_shell); Slic3r::ExPolygons new_internal_void = diff_ex(layerm->fill_surfaces().filter_by_type(stInternalVoid), regularized_shell); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", debug_idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05)); SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", debug_idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05)); SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", debug_idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05)); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ // Assign resulting internal surfaces to layer. layerm->m_fill_surfaces.keep_types({ stTop, stBottom, stBottomBridge }); layerm->m_fill_surfaces.append(new_internal, stInternal); layerm->m_fill_surfaces.append(new_internal_void, stInternalVoid); layerm->m_fill_surfaces.append(new_internal_solid, stInternalSolid); } // for each layer }); m_print->throw_if_canceled(); BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << region_id << " in parallel - end"; #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++idx_layer) { LayerRegion *layerm = m_layers[idx_layer]->get_region(region_id); layerm->export_region_slices_to_svg_debug("3_discover_vertical_shells-final"); layerm->export_region_fill_surfaces_to_svg_debug("3_discover_vertical_shells-final"); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } // for each region } // void PrintObject::discover_vertical_shells() // #define DEBUG_BRIDGE_OVER_INFILL #ifdef DEBUG_BRIDGE_OVER_INFILL template<typename T> void debug_draw(std::string name, const T& a, const T& b, const T& c, const T& d) { std::vector<std::string> colors = {"red", "blue", "orange", "green"}; BoundingBox bbox = get_extents(a); bbox.merge(get_extents(b)); bbox.merge(get_extents(c)); bbox.merge(get_extents(d)); bbox.offset(scale_(1.)); ::Slic3r::SVG svg(debug_out_path(name.c_str()).c_str(), bbox); svg.draw(a, colors[0], scale_(0.3)); svg.draw(b, colors[1], scale_(0.23)); svg.draw(c, colors[2], scale_(0.16)); svg.draw(d, colors[3], scale_(0.10)); svg.Close(); } #endif // This method applies bridge flow to the first internal solid layer above sparse infill. void PrintObject::bridge_over_infill() { BOOST_LOG_TRIVIAL(info) << "Bridge over infill - Start" << log_memory_info(); struct CandidateSurface { CandidateSurface(const Surface *original_surface, Polygons new_polys, const LayerRegion *region, double bridge_angle, bool supported_by_lightning) : original_surface(original_surface) , new_polys(new_polys) , region(region) , bridge_angle(bridge_angle) , supported_by_lightning(supported_by_lightning) {} const Surface *original_surface; Polygons new_polys; const LayerRegion *region; double bridge_angle; bool supported_by_lightning; }; std::map<size_t, std::vector<CandidateSurface>> surfaces_by_layer; // SECTION to gather and filter surfaces for expanding, and then cluster them by layer { tbb::concurrent_vector<CandidateSurface> candidate_surfaces; tbb::parallel_for(tbb::blocked_range<size_t>(0, this->layers().size()), [po = static_cast<const PrintObject *>(this), &candidate_surfaces](tbb::blocked_range<size_t> r) { for (size_t lidx = r.begin(); lidx < r.end(); lidx++) { const Layer *layer = po->get_layer(lidx); if (layer->lower_layer == nullptr) { continue; } auto spacing = layer->regions().front()->flow(frSolidInfill).scaled_spacing(); Polygons unsupported_area; Polygons lower_layer_solids; bool contains_only_lightning = true; for (const LayerRegion *region : layer->lower_layer->regions()) { if (region->region().config().fill_pattern.value != ipLightning) { contains_only_lightning = false; } Polygons fill_polys = to_polygons(region->fill_expolygons()); unsupported_area = union_(unsupported_area, expand(fill_polys, spacing)); for (const Surface &surface : region->fill_surfaces()) { if (surface.surface_type != stInternal || region->region().config().fill_density.value == 100) { Polygons p = to_polygons(surface.expolygon); lower_layer_solids.insert(lower_layer_solids.end(), p.begin(), p.end()); } } } lower_layer_solids = expand(lower_layer_solids, 4 * spacing); unsupported_area = shrink(unsupported_area, 5 * spacing); unsupported_area = diff(unsupported_area, lower_layer_solids); for (const LayerRegion *region : layer->regions()) { SurfacesPtr region_internal_solids = region->fill_surfaces().filter_by_type(stInternalSolid); for (const Surface *s : region_internal_solids) { Polygons unsupported = intersection(to_polygons(s->expolygon), unsupported_area); bool partially_supported = area(unsupported) < area(to_polygons(s->expolygon)) - EPSILON; if (!unsupported.empty() && (!partially_supported || area(unsupported) > 5 * 5 * spacing * spacing)) { Polygons worth_bridging = intersection(to_polygons(s->expolygon), expand(unsupported, 5 * spacing)); candidate_surfaces.push_back(CandidateSurface(s, worth_bridging, region, 0, contains_only_lightning)); #ifdef DEBUG_BRIDGE_OVER_INFILL debug_draw(std::to_string(region->layer()->id()) + "_candidate_surface_" + std::to_string(area(s->expolygon)), to_lines(region->layer()->lslices), to_lines(s->expolygon), to_lines(worth_bridging), to_lines(unsupported_area)); #endif } } } } }); for (const CandidateSurface &c : candidate_surfaces) { surfaces_by_layer[c.region->layer()->id()].push_back(c); } } std::map<size_t, Polylines> infill_lines; // SECTION to generate infill polylines { std::vector<std::pair<const Surface *, float>> surfaces_w_bottom_z; for (const auto &pair : surfaces_by_layer) { for (const CandidateSurface &c : pair.second) { surfaces_w_bottom_z.emplace_back(c.original_surface, c.region->m_layer->bottom_z()); } } this->m_adaptive_fill_octrees = this->prepare_adaptive_infill_data(surfaces_w_bottom_z); this->m_lightning_generator = this->prepare_lightning_infill_data(); std::vector<size_t> layers_to_generate_infill; for (const auto &pair : surfaces_by_layer) { assert(pair.first > 0); infill_lines[pair.first - 1] = {}; layers_to_generate_infill.push_back(pair.first - 1); } tbb::parallel_for(tbb::blocked_range<size_t>(0, layers_to_generate_infill.size()), [po = static_cast<const PrintObject *>(this), &layers_to_generate_infill, &infill_lines](tbb::blocked_range<size_t> r) { for (size_t job_idx = r.begin(); job_idx < r.end(); job_idx++) { size_t lidx = layers_to_generate_infill[job_idx]; infill_lines.at( lidx) = po->get_layer(lidx)->generate_sparse_infill_polylines_for_anchoring(po->m_adaptive_fill_octrees.first.get(), po->m_adaptive_fill_octrees.second.get(), po->m_lightning_generator.get()); } }); #ifdef DEBUG_BRIDGE_OVER_INFILL for (const auto &il : infill_lines) { debug_draw(std::to_string(il.first) + "_infill_lines", to_lines(get_layer(il.first)->lslices), to_lines(il.second), {}, {}); } #endif } // cluster layers by depth needed for thick bridges. Each cluster is to be processed by single thread sequentially, so that bridges cannot appear one on another std::vector<std::vector<size_t>> clustered_layers_for_threads; { std::vector<size_t> layers_with_candidates; std::map<size_t, Polygons> layer_area_covered_by_candidates; for (const auto& pair : surfaces_by_layer) { layers_with_candidates.push_back(pair.first); layer_area_covered_by_candidates[pair.first] = {}; } tbb::parallel_for(tbb::blocked_range<size_t>(0, layers_with_candidates.size()), [&layers_with_candidates, &surfaces_by_layer, &layer_area_covered_by_candidates]( tbb::blocked_range<size_t> r) { for (size_t job_idx = r.begin(); job_idx < r.end(); job_idx++) { size_t lidx = layers_with_candidates[job_idx]; for (const auto &candidate : surfaces_by_layer.at(lidx)) { Polygon candiate_inflated_aabb = get_extents(candidate.new_polys) .inflated(candidate.region->flow(frSolidInfill, true).scaled_spacing() * 5) .polygon(); layer_area_covered_by_candidates.at(lidx) = union_(layer_area_covered_by_candidates.at(lidx), Polygons{candiate_inflated_aabb}); } } }); // note: surfaces_by_layer is ordered map for (auto pair : surfaces_by_layer) { if (clustered_layers_for_threads.empty() || this->get_layer(clustered_layers_for_threads.back().back())->print_z < this->get_layer(pair.first)->print_z - this->get_layer(pair.first)->regions()[0]->flow(frSolidInfill, true).height() - EPSILON || intersection(layer_area_covered_by_candidates[clustered_layers_for_threads.back().back()], layer_area_covered_by_candidates[pair.first]) .empty()) { clustered_layers_for_threads.push_back({pair.first}); } else { clustered_layers_for_threads.back().push_back(pair.first); } } #ifdef DEBUG_BRIDGE_OVER_INFILL std::cout << "BRIDGE OVER INFILL CLUSTERED LAYERS FOR SINGLE THREAD" << std::endl; for (auto cluster : clustered_layers_for_threads) { std::cout << "CLUSTER: "; for (auto l : cluster) { std::cout << l << " "; } std::cout << std::endl; } #endif } // LAMBDA to gather areas with sparse infill deep enough that we can fit thick bridges there. auto gather_areas_w_depth = [](const PrintObject *po, int lidx, float target_flow_height) { // Gather lower layers sparse infill areas, to depth defined by used bridge flow Polygons lower_layers_sparse_infill{}; Polygons not_sparse_infill{}; double bottom_z = po->get_layer(lidx)->print_z - target_flow_height - EPSILON; for (int i = int(lidx) - 1; i >= 0; --i) { // Stop iterating if layer is lower than bottom_z. const Layer *layer = po->get_layer(i); if (layer->print_z < bottom_z) break; for (const LayerRegion *region : layer->regions()) { bool has_low_density = region->region().config().fill_density.value < 100; for (const Surface &surface : region->fill_surfaces()) { if (surface.surface_type == stInternal && has_low_density) { Polygons p = to_polygons(surface.expolygon); lower_layers_sparse_infill.insert(lower_layers_sparse_infill.end(), p.begin(), p.end()); } else { Polygons p = to_polygons(surface.expolygon); not_sparse_infill.insert(not_sparse_infill.end(), p.begin(), p.end()); } } } lower_layers_sparse_infill = union_(lower_layers_sparse_infill); } return diff(lower_layers_sparse_infill, not_sparse_infill); }; // LAMBDA do determine optimal bridging angle auto determine_bridging_angle = [](const Polygons &bridged_area, const Lines &anchors, InfillPattern dominant_pattern) { AABBTreeLines::LinesDistancer<Line> lines_tree(anchors); std::map<double, int> counted_directions; for (const Polygon &p : bridged_area) { for (int point_idx = 0; point_idx < int(p.points.size()) - 1; ++point_idx) { Vec2d start = p.points[point_idx].cast<double>(); Vec2d next = p.points[point_idx + 1].cast<double>(); Vec2d v = next - start; // vector from next to current double dist_to_next = v.norm(); v.normalize(); int lines_count = int(std::ceil(dist_to_next / scaled(3.0))); float step_size = dist_to_next / lines_count; for (int i = 0; i < lines_count; ++i) { Point a = (start + v * (i * step_size)).cast<coord_t>(); auto [distance, index, p] = lines_tree.distance_from_lines_extra<false>(a); double angle = lines_tree.get_line(index).orientation(); if (angle > PI) { angle -= PI; } angle += PI * 0.5; counted_directions[angle]++; } } } std::pair<double, int> best_dir{0, 0}; // sliding window accumulation for (const auto &dir : counted_directions) { int score_acc = 0; double dir_acc = 0; double window_start_angle = dir.first - PI * 0.1; double window_end_angle = dir.first + PI * 0.1; for (auto dirs_window = counted_directions.lower_bound(window_start_angle); dirs_window != counted_directions.upper_bound(window_end_angle); dirs_window++) { dir_acc += dirs_window->first * dirs_window->second; score_acc += dirs_window->second; } // current span of directions is 0.5 PI to 1.5 PI (due to the aproach.). Edge values should also account for the // opposite direction. if (window_start_angle < 0.5 * PI) { for (auto dirs_window = counted_directions.lower_bound(1.5 * PI - (0.5 * PI - window_start_angle)); dirs_window != counted_directions.end(); dirs_window++) { dir_acc += dirs_window->first * dirs_window->second; score_acc += dirs_window->second; } } if (window_start_angle > 1.5 * PI) { for (auto dirs_window = counted_directions.begin(); dirs_window != counted_directions.upper_bound(window_start_angle - 1.5 * PI); dirs_window++) { dir_acc += dirs_window->first * dirs_window->second; score_acc += dirs_window->second; } } if (score_acc > best_dir.second) { best_dir = {dir_acc / score_acc, score_acc}; } } double bridging_angle = best_dir.first; if (bridging_angle == 0) { bridging_angle = 0.001; } switch (dominant_pattern) { case ipHilbertCurve: bridging_angle += 0.25 * PI; break; case ipOctagramSpiral: bridging_angle += (1.0 / 16.0) * PI; break; default: break; } return bridging_angle; }; // LAMBDA that will fill given polygons with lines, exapand the lines to the nearest anchor, and reconstruct polygons from the newly // generated lines auto construct_anchored_polygon = [](Polygons bridged_area, Lines anchors, const Flow &bridging_flow, double bridging_angle) { auto lines_rotate = [](Lines &lines, double cos_angle, double sin_angle) { for (Line &l : lines) { double ax = double(l.a.x()); double ay = double(l.a.y()); l.a.x() = coord_t(round(cos_angle * ax - sin_angle * ay)); l.a.y() = coord_t(round(cos_angle * ay + sin_angle * ax)); double bx = double(l.b.x()); double by = double(l.b.y()); l.b.x() = coord_t(round(cos_angle * bx - sin_angle * by)); l.b.y() = coord_t(round(cos_angle * by + sin_angle * bx)); } }; auto segments_overlap = [](coord_t alow, coord_t ahigh, coord_t blow, coord_t bhigh) { return (alow >= blow && alow <= bhigh) || (ahigh >= blow && ahigh <= bhigh) || (blow >= alow && blow <= ahigh) || (bhigh >= alow && bhigh <= ahigh); }; Polygons expanded_bridged_area{}; double aligning_angle = -bridging_angle + PI * 0.5; { polygons_rotate(bridged_area, aligning_angle); lines_rotate(anchors, cos(aligning_angle), sin(aligning_angle)); BoundingBox bb_x = get_extents(bridged_area); BoundingBox bb_y = get_extents(anchors); const size_t n_vlines = (bb_x.max.x() - bb_x.min.x() + bridging_flow.scaled_spacing() - 1) / bridging_flow.scaled_spacing(); std::vector<Line> vertical_lines(n_vlines); for (size_t i = 0; i < n_vlines; i++) { coord_t x = bb_x.min.x() + i * bridging_flow.scaled_spacing(); coord_t y_min = bb_y.min.y() - bridging_flow.scaled_spacing(); coord_t y_max = bb_y.max.y() + bridging_flow.scaled_spacing(); vertical_lines[i].a = Point{x, y_min}; vertical_lines[i].b = Point{x, y_max}; } auto anchors_and_walls_tree = AABBTreeLines::LinesDistancer<Line>{std::move(anchors)}; auto bridged_area_tree = AABBTreeLines::LinesDistancer<Line>{to_lines(bridged_area)}; std::vector<std::vector<Line>> polygon_sections(n_vlines); for (size_t i = 0; i < n_vlines; i++) { auto area_intersections = bridged_area_tree.intersections_with_line<true>(vertical_lines[i]); for (int intersection_idx = 0; intersection_idx < int(area_intersections.size()) - 1; intersection_idx++) { if (bridged_area_tree.outside( (area_intersections[intersection_idx].first + area_intersections[intersection_idx + 1].first) / 2) < 0) { polygon_sections[i].emplace_back(area_intersections[intersection_idx].first, area_intersections[intersection_idx + 1].first); } } auto anchors_intersections = anchors_and_walls_tree.intersections_with_line<true>(vertical_lines[i]); for (Line §ion : polygon_sections[i]) { auto maybe_below_anchor = std::upper_bound(anchors_intersections.rbegin(), anchors_intersections.rend(), section.a, [](const Point &a, const std::pair<Point, size_t> &b) { return a.y() > b.first.y(); }); if (maybe_below_anchor != anchors_intersections.rend()) { section.a = maybe_below_anchor->first; section.a.y() -= bridging_flow.scaled_width() * (0.5 + 1.0); } auto maybe_upper_anchor = std::upper_bound(anchors_intersections.begin(), anchors_intersections.end(), section.b, [](const Point &a, const std::pair<Point, size_t> &b) { return a.y() < b.first.y(); }); if (maybe_upper_anchor != anchors_intersections.end()) { section.b = maybe_upper_anchor->first; section.b.y() += bridging_flow.scaled_width() * (0.5 + 1.0); } } for (int section_idx = 0; section_idx < int(polygon_sections[i].size()) - 1; section_idx++) { Line §ion_a = polygon_sections[i][section_idx]; Line §ion_b = polygon_sections[i][section_idx + 1]; if (segments_overlap(section_a.a.y(), section_a.b.y(), section_b.a.y(), section_b.b.y())) { section_b.a = section_a.a.y() < section_b.a.y() ? section_a.a : section_b.a; section_b.b = section_a.b.y() < section_b.b.y() ? section_b.b : section_a.b; section_a.a = section_a.b; } } polygon_sections[i].erase(std::remove_if(polygon_sections[i].begin(), polygon_sections[i].end(), [](const Line &s) { return s.a == s.b; }), polygon_sections[i].end()); } // reconstruct polygon from polygon sections struct TracedPoly { std::vector<Point> lows; std::vector<Point> highs; }; std::vector<TracedPoly> current_traced_polys; for (const auto &polygon_slice : polygon_sections) { std::unordered_set<const Line *> used_segments; for (TracedPoly &traced_poly : current_traced_polys) { auto maybe_first_overlap = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.lows.back(), [](const Point &low, const Line &seg) { return seg.b.y() > low.y(); }); if (maybe_first_overlap != polygon_slice.end() && // segment exists segments_overlap(traced_poly.lows.back().y(), traced_poly.highs.back().y(), maybe_first_overlap->a.y(), maybe_first_overlap->b.y())) // segment is overlapping { // Overlapping segment. In that case, add it // to the traced polygon and add segment to used segments if ((traced_poly.lows.back() - maybe_first_overlap->a).cast<double>().squaredNorm() < 36.0 * double(bridging_flow.scaled_spacing()) * bridging_flow.scaled_spacing()) { traced_poly.lows.push_back(maybe_first_overlap->a); } else { traced_poly.lows.push_back(traced_poly.lows.back() + Point{bridging_flow.scaled_spacing() / 2, 0}); traced_poly.lows.push_back(maybe_first_overlap->a - Point{bridging_flow.scaled_spacing() / 2, 0}); traced_poly.lows.push_back(maybe_first_overlap->a); } if ((traced_poly.highs.back() - maybe_first_overlap->b).cast<double>().squaredNorm() < 36.0 * double(bridging_flow.scaled_spacing()) * bridging_flow.scaled_spacing()) { traced_poly.highs.push_back(maybe_first_overlap->b); } else { traced_poly.highs.push_back(traced_poly.highs.back() + Point{bridging_flow.scaled_spacing() / 2, 0}); traced_poly.highs.push_back(maybe_first_overlap->b - Point{bridging_flow.scaled_spacing() / 2, 0}); traced_poly.highs.push_back(maybe_first_overlap->b); } used_segments.insert(&(*maybe_first_overlap)); } else { // Zero or multiple overlapping segments. Resolving this is nontrivial, // so we just close this polygon and maybe open several new. This will hopefully happen much less often traced_poly.lows.push_back(traced_poly.lows.back() + Point{bridging_flow.scaled_spacing() / 2, 0}); traced_poly.highs.push_back(traced_poly.highs.back() + Point{bridging_flow.scaled_spacing() / 2, 0}); Polygon &new_poly = expanded_bridged_area.emplace_back(std::move(traced_poly.lows)); new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend()); traced_poly.lows.clear(); traced_poly.highs.clear(); } } current_traced_polys.erase(std::remove_if(current_traced_polys.begin(), current_traced_polys.end(), [](const TracedPoly &tp) { return tp.lows.empty(); }), current_traced_polys.end()); for (const auto &segment : polygon_slice) { if (used_segments.find(&segment) == used_segments.end()) { TracedPoly &new_tp = current_traced_polys.emplace_back(); new_tp.lows.push_back(segment.a - Point{bridging_flow.scaled_spacing() / 2, 0}); new_tp.lows.push_back(segment.a); new_tp.highs.push_back(segment.b - Point{bridging_flow.scaled_spacing() / 2, 0}); new_tp.highs.push_back(segment.b); } } } // add not closed polys for (TracedPoly &traced_poly : current_traced_polys) { Polygon &new_poly = expanded_bridged_area.emplace_back(std::move(traced_poly.lows)); new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend()); } } polygons_rotate(expanded_bridged_area, -aligning_angle); return expanded_bridged_area; }; tbb::parallel_for(tbb::blocked_range<size_t>(0, clustered_layers_for_threads.size()), [po = this, &surfaces_by_layer, &clustered_layers_for_threads, &gather_areas_w_depth, &infill_lines, &determine_bridging_angle, &construct_anchored_polygon]( tbb::blocked_range<size_t> r) { for (size_t cluster_idx = r.begin(); cluster_idx < r.end(); cluster_idx++) { for (size_t job_idx = 0; job_idx < clustered_layers_for_threads[cluster_idx].size(); job_idx++) { size_t lidx = clustered_layers_for_threads[cluster_idx][job_idx]; const Layer *layer = po->get_layer(lidx); // this thread has exclusive access to all surfaces in layers enumerated in // clustered_layers_for_threads[cluster_idx] // Presort the candidate polygons. This will help choose the same angle for neighbournig surfaces, that // would otherwise compete over anchoring sparse infill lines, leaving one area unachored std::sort(surfaces_by_layer[lidx].begin(), surfaces_by_layer[lidx].end(), [](const CandidateSurface &left, const CandidateSurface &right) { auto a = get_extents(left.new_polys); auto b = get_extents(right.new_polys); if (a.min.x() == b.min.x()) { return a.min.y() < b.min.y(); }; return a.min.x() < b.min.x(); }); // Gather deep infill areas, where thick bridges fit coordf_t thick_bridges_depth = surfaces_by_layer[lidx].front().region->flow(frSolidInfill, true).height(); Polygons deep_infill_area = gather_areas_w_depth(po, lidx, thick_bridges_depth); // Now also remove area that has been already filled on lower layers by bridging expansion - For this // reason we did the clustering of layers per thread. double bottom_z = po->get_layer(lidx)->print_z - thick_bridges_depth - EPSILON; if (job_idx > 0) { for (int lower_job_idx = job_idx - 1; lower_job_idx >= 0; lower_job_idx--) { size_t lower_layer_idx = clustered_layers_for_threads[cluster_idx][lower_job_idx]; const Layer *lower_layer = po->get_layer(lower_layer_idx); if (lower_layer->print_z >= bottom_z) { for (const auto &c : surfaces_by_layer[lower_layer_idx]) { deep_infill_area = diff(deep_infill_area, c.new_polys); } } else { break; } } } // Now gather expansion polygons - internal infill on current layer, from which we can cut off anchors Polygons expansion_area; for (const LayerRegion *region : layer->regions()) { auto polys = to_polygons(region->fill_surfaces().filter_by_type(stInternal)); expansion_area.insert(expansion_area.end(), polys.begin(), polys.end()); } expansion_area = closing(expansion_area, SCALED_EPSILON); expansion_area = intersection(expansion_area, deep_infill_area); Polylines anchors = intersection_pl(infill_lines[lidx - 1], expansion_area); std::vector<CandidateSurface> expanded_surfaces; expanded_surfaces.reserve(surfaces_by_layer[lidx].size()); for (const CandidateSurface &candidate : surfaces_by_layer[lidx]) { const Flow &flow = candidate.region->bridging_flow(frSolidInfill, true); Polygons area_to_be_bridge = intersection(candidate.new_polys, deep_infill_area); if (area_to_be_bridge.empty()) continue; Polygons boundary_area = union_(expansion_area, expand(area_to_be_bridge, flow.scaled_spacing())); Polylines boundary_plines = to_polylines(boundary_area); double bridging_angle = 0; Polygons tmp_expanded_area = expand(area_to_be_bridge, 3.0 * flow.scaled_spacing()); for (const CandidateSurface &s : expanded_surfaces) { if (!intersection(s.new_polys, tmp_expanded_area).empty()) { bridging_angle = s.bridge_angle; break; } } if (bridging_angle == 0) { if (!anchors.empty()) { bridging_angle = determine_bridging_angle(area_to_be_bridge, to_lines(anchors), candidate.region->region().config().fill_pattern.value); } else { // use expansion boundaries as anchors. // Also, use Infill pattern that is neutral for angle determination, since there are no infill lines. bridging_angle = determine_bridging_angle(area_to_be_bridge, to_lines(boundary_plines), InfillPattern::ipLine); } } boundary_plines.insert(boundary_plines.end(), anchors.begin(), anchors.end()); if (candidate.supported_by_lightning) { boundary_plines = intersection_pl(boundary_plines, expand(area_to_be_bridge, scale_(10))); } Polygons bridging_area = construct_anchored_polygon(area_to_be_bridge, to_lines(boundary_plines), flow, bridging_angle); bridging_area = intersection(bridging_area, boundary_area); bridging_area = opening(bridging_area, flow.scaled_spacing()); expansion_area = diff(expansion_area, bridging_area); #ifdef DEBUG_BRIDGE_OVER_INFILL debug_draw(std::to_string(lidx) + "_" + std::to_string(cluster_idx) + "_" + std::to_string(job_idx) + "_expanded_bridging", to_lines(layer->lslices), to_lines(candidate.original_surface->expolygon), to_lines(candidate.new_polys), to_lines(bridging_area)); #endif expanded_surfaces.push_back( CandidateSurface(candidate.original_surface, bridging_area, candidate.region, bridging_angle, candidate.supported_by_lightning)); } surfaces_by_layer[lidx].swap(expanded_surfaces); expanded_surfaces.clear(); } } }); BOOST_LOG_TRIVIAL(info) << "Bridge over infill - Directions and expanded surfaces computed" << log_memory_info(); tbb::parallel_for(tbb::blocked_range<size_t>(0, this->layers().size()), [po = this, &surfaces_by_layer](tbb::blocked_range<size_t> r) { for (size_t lidx = r.begin(); lidx < r.end(); lidx++) { if (surfaces_by_layer.find(lidx) == surfaces_by_layer.end()) continue; Layer *layer = po->get_layer(lidx); Polygons cut_from_infill{}; for (const auto &surface : surfaces_by_layer.at(lidx)) { cut_from_infill.insert(cut_from_infill.end(), surface.new_polys.begin(), surface.new_polys.end()); } for (LayerRegion *region : layer->regions()) { Surfaces new_surfaces; for (const CandidateSurface &cs : surfaces_by_layer.at(lidx)) { for (Surface &surface : region->m_fill_surfaces.surfaces) { if (cs.original_surface == &surface) { Surface tmp(surface, {}); for (const ExPolygon &expoly : diff_ex(surface.expolygon, cs.new_polys)) { if (expoly.area() > region->flow(frSolidInfill).scaled_width() * scale_(4.0)) { new_surfaces.emplace_back(tmp, expoly); } } tmp.surface_type = stInternalBridge; tmp.bridge_angle = cs.bridge_angle; for (const ExPolygon &expoly : union_ex(cs.new_polys)) { new_surfaces.emplace_back(tmp, expoly); } surface.clear(); } else if (surface.surface_type == stInternal) { Surface tmp(surface, {}); for (const ExPolygon &expoly : diff_ex(surface.expolygon, cut_from_infill)) { new_surfaces.emplace_back(tmp, expoly); } surface.clear(); } } } region->m_fill_surfaces.surfaces.insert(region->m_fill_surfaces.surfaces.end(), new_surfaces.begin(), new_surfaces.end()); region->m_fill_surfaces.surfaces.erase(std::remove_if(region->m_fill_surfaces.surfaces.begin(), region->m_fill_surfaces.surfaces.end(), [](const Surface &s) { return s.empty(); }), region->m_fill_surfaces.surfaces.end()); } } }); BOOST_LOG_TRIVIAL(info) << "Bridge over infill - End" << log_memory_info(); } // void PrintObject::bridge_over_infill() static void clamp_exturder_to_default(ConfigOptionInt &opt, size_t num_extruders) { if (opt.value > (int)num_extruders) // assign the default extruder opt.value = 1; } PrintObjectConfig PrintObject::object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders) { PrintObjectConfig config = default_object_config; { DynamicPrintConfig src_normalized(object.config.get()); src_normalized.normalize_fdm(); config.apply(src_normalized, true); } // Clamp invalid extruders to the default extruder (with index 1). clamp_exturder_to_default(config.support_material_extruder, num_extruders); clamp_exturder_to_default(config.support_material_interface_extruder, num_extruders); return config; } const std::string key_extruder { "extruder" }; static constexpr const std::initializer_list<const std::string_view> keys_extruders { "infill_extruder"sv, "solid_infill_extruder"sv, "perimeter_extruder"sv }; static void apply_to_print_region_config(PrintRegionConfig &out, const DynamicPrintConfig &in) { // 1) Copy the "extruder key to infill_extruder and perimeter_extruder. auto *opt_extruder = in.opt<ConfigOptionInt>(key_extruder); if (opt_extruder) if (int extruder = opt_extruder->value; extruder != 0) { // Not a default extruder. out.infill_extruder .value = extruder; out.solid_infill_extruder.value = extruder; out.perimeter_extruder .value = extruder; } // 2) Copy the rest of the values. for (auto it = in.cbegin(); it != in.cend(); ++ it) if (it->first != key_extruder) if (ConfigOption* my_opt = out.option(it->first, false); my_opt != nullptr) { if (one_of(it->first, keys_extruders)) { // Ignore "default" extruders. int extruder = static_cast<const ConfigOptionInt*>(it->second.get())->value; if (extruder > 0) my_opt->setInt(extruder); } else my_opt->set(it->second.get()); } } PrintRegionConfig region_config_from_model_volume(const PrintRegionConfig &default_or_parent_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders) { PrintRegionConfig config = default_or_parent_region_config; if (volume.is_model_part()) { // default_or_parent_region_config contains the Print's PrintRegionConfig. // Override with ModelObject's PrintRegionConfig values. apply_to_print_region_config(config, volume.get_object()->config.get()); } else { // default_or_parent_region_config contains parent PrintRegion config, which already contains ModelVolume's config. } if (layer_range_config != nullptr) { // Not applicable to modifiers. assert(volume.is_model_part()); apply_to_print_region_config(config, *layer_range_config); } apply_to_print_region_config(config, volume.config.get()); if (! volume.material_id().empty()) apply_to_print_region_config(config, volume.material()->config.get()); // Clamp invalid extruders to the default extruder (with index 1). clamp_exturder_to_default(config.infill_extruder, num_extruders); clamp_exturder_to_default(config.perimeter_extruder, num_extruders); clamp_exturder_to_default(config.solid_infill_extruder, num_extruders); if (config.fill_density.value < 0.00011f) // Switch of infill for very low infill rates, also avoid division by zero in infill generator for these very low rates. // See GH issue #5910. config.fill_density.value = 0; else config.fill_density.value = std::min(config.fill_density.value, 100.); if (config.fuzzy_skin.value != FuzzySkinType::None && (config.fuzzy_skin_point_dist.value < 0.01 || config.fuzzy_skin_thickness.value < 0.001)) config.fuzzy_skin.value = FuzzySkinType::None; return config; } void PrintObject::update_slicing_parameters() { if (!m_slicing_params.valid) m_slicing_params = SlicingParameters::create_from_config( this->print()->config(), m_config, this->model_object()->max_z(), this->object_extruders()); } SlicingParameters PrintObject::slicing_parameters(const DynamicPrintConfig& full_config, const ModelObject& model_object, float object_max_z) { PrintConfig print_config; PrintObjectConfig object_config; PrintRegionConfig default_region_config; print_config.apply(full_config, true); object_config.apply(full_config, true); default_region_config.apply(full_config, true); size_t num_extruders = print_config.nozzle_diameter.size(); object_config = object_config_from_model_object(object_config, model_object, num_extruders); std::vector<unsigned int> object_extruders; for (const ModelVolume* model_volume : model_object.volumes) if (model_volume->is_model_part()) { PrintRegion::collect_object_printing_extruders( print_config, region_config_from_model_volume(default_region_config, nullptr, *model_volume, num_extruders), object_config.brim_type != btNoBrim && object_config.brim_width > 0., object_extruders); for (const std::pair<const t_layer_height_range, ModelConfig> &range_and_config : model_object.layer_config_ranges) if (range_and_config.second.has("perimeter_extruder") || range_and_config.second.has("infill_extruder") || range_and_config.second.has("solid_infill_extruder")) PrintRegion::collect_object_printing_extruders( print_config, region_config_from_model_volume(default_region_config, &range_and_config.second.get(), *model_volume, num_extruders), object_config.brim_type != btNoBrim && object_config.brim_width > 0., object_extruders); } sort_remove_duplicates(object_extruders); //FIXME add painting extruders if (object_max_z <= 0.f) object_max_z = (float)model_object.raw_bounding_box().size().z(); return SlicingParameters::create_from_config(print_config, object_config, object_max_z, object_extruders); } // returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions) std::vector<unsigned int> PrintObject::object_extruders() const { std::vector<unsigned int> extruders; extruders.reserve(this->all_regions().size() * 3); for (const PrintRegion ®ion : this->all_regions()) region.collect_object_printing_extruders(*this->print(), extruders); sort_remove_duplicates(extruders); return extruders; } bool PrintObject::update_layer_height_profile(const ModelObject &model_object, const SlicingParameters &slicing_parameters, std::vector<coordf_t> &layer_height_profile) { bool updated = false; if (layer_height_profile.empty()) { // use the constructor because the assignement is crashing on ASAN OsX layer_height_profile = std::vector<coordf_t>(model_object.layer_height_profile.get()); // layer_height_profile = model_object.layer_height_profile; // The layer height returned is sampled with high density for the UI layer height painting // and smoothing tool to work. updated = true; } // Verify the layer_height_profile. if (!layer_height_profile.empty() && // Must not be of even length. ((layer_height_profile.size() & 1) != 0 || // Last entry must be at the top of the object. std::abs(layer_height_profile[layer_height_profile.size() - 2] - slicing_parameters.object_print_z_max + slicing_parameters.object_print_z_min) > 1e-3)) layer_height_profile.clear(); if (layer_height_profile.empty()) { //layer_height_profile = layer_height_profile_adaptive(slicing_parameters, model_object.layer_config_ranges, model_object.volumes); layer_height_profile = layer_height_profile_from_ranges(slicing_parameters, model_object.layer_config_ranges); // The layer height profile is already compressed. updated = true; } return updated; } // Only active if config->infill_only_where_needed. This step trims the sparse infill, // so it acts as an internal support. It maintains all other infill types intact. // Here the internal surfaces and perimeters have to be supported by the sparse infill. //FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support. // Likely the sparse infill will not be anchored correctly, so it will not work as intended. // Also one wishes the perimeters to be supported by a full infill. // Idempotence of this method is guaranteed by the fact that we don't remove things from // fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries. void PrintObject::clip_fill_surfaces() { bool has_lightning_infill = false; for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) if (const PrintRegionConfig &config = this->printing_region(region_id).config(); config.fill_density > 0 && config.fill_pattern == ipLightning) has_lightning_infill = true; // For Lightning infill, infill_only_where_needed is ignored because both // do a similar thing, and their combination doesn't make much sense. if (! m_config.infill_only_where_needed.value || has_lightning_infill) return; bool has_infill = false; for (size_t i = 0; i < this->num_printing_regions(); ++ i) if (this->printing_region(i).config().fill_density > 0) { has_infill = true; break; } if (! has_infill) return; // We only want infill under ceilings; this is almost like an // internal support material. // Proceed top-down, skipping the bottom layer. Polygons upper_internal; for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) { Layer *layer = m_layers[layer_id]; Layer *lower_layer = m_layers[layer_id - 1]; // Detect things that we need to support. // Cummulative fill surfaces. Polygons fill_surfaces; // Solid surfaces to be supported. Polygons overhangs; for (const LayerRegion *layerm : layer->m_regions) for (const Surface &surface : layerm->fill_surfaces()) { Polygons polygons = to_polygons(surface.expolygon); if (surface.is_solid()) polygons_append(overhangs, polygons); polygons_append(fill_surfaces, std::move(polygons)); } Polygons lower_layer_fill_surfaces; Polygons lower_layer_internal_surfaces; for (const LayerRegion *layerm : lower_layer->m_regions) for (const Surface &surface : layerm->fill_surfaces()) { Polygons polygons = to_polygons(surface.expolygon); if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid) polygons_append(lower_layer_internal_surfaces, polygons); polygons_append(lower_layer_fill_surfaces, std::move(polygons)); } // We also need to support perimeters when there's at least one full unsupported loop { // Get perimeters area as the difference between slices and fill_surfaces // Only consider the area that is not supported by lower perimeters Polygons perimeters = intersection(diff(layer->lslices, fill_surfaces), lower_layer_fill_surfaces); // Only consider perimeter areas that are at least one extrusion width thick. //FIXME Offset2 eats out from both sides, while the perimeters are create outside in. //Should the pw not be half of the current value? float pw = FLT_MAX; for (const LayerRegion *layerm : layer->m_regions) pw = std::min(pw, (float)layerm->flow(frPerimeter).scaled_width()); // Append such thick perimeters to the areas that need support polygons_append(overhangs, opening(perimeters, pw)); } // Merge the new overhangs, find new internal infill. polygons_append(upper_internal, std::move(overhangs)); static constexpr const auto closing_radius = scaled<float>(2.f); upper_internal = intersection( // Regularize the overhang regions, so that the infill areas will not become excessively jagged. smooth_outward( closing(upper_internal, closing_radius, ClipperLib::jtSquare, 0.), scaled<coord_t>(0.1)), lower_layer_internal_surfaces); // Apply new internal infill to regions. for (LayerRegion *layerm : lower_layer->m_regions) { if (layerm->region().config().fill_density.value == 0) continue; Polygons internal; for (Surface &surface : layerm->m_fill_surfaces.surfaces) if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid) polygons_append(internal, std::move(surface.expolygon)); layerm->m_fill_surfaces.remove_types({ stInternal, stInternalVoid }); layerm->m_fill_surfaces.append(intersection_ex(internal, upper_internal, ApplySafetyOffset::Yes), stInternal); layerm->m_fill_surfaces.append(diff_ex (internal, upper_internal, ApplySafetyOffset::Yes), stInternalVoid); // If there are voids it means that our internal infill is not adjacent to // perimeters. In this case it would be nice to add a loop around infill to // make it more robust and nicer. TODO. #ifdef SLIC3R_DEBUG_SLICE_PROCESSING layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces"); #endif } m_print->throw_if_canceled(); } } // void PrintObject::clip_fill_surfaces() void PrintObject::discover_horizontal_shells() { BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()"; for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) { for (size_t i = 0; i < m_layers.size(); ++i) { m_print->throw_if_canceled(); Layer *layer = m_layers[i]; LayerRegion *layerm = layer->regions()[region_id]; const PrintRegionConfig ®ion_config = layerm->region().config(); if (region_config.solid_infill_every_layers.value > 0 && region_config.fill_density.value > 0 && (i % region_config.solid_infill_every_layers) == 0) { // Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge. SurfaceType type = (region_config.fill_density == 100 || region_config.solid_infill_every_layers == 1) ? stInternalSolid : stInternalBridge; for (Surface &surface : layerm->m_fill_surfaces.surfaces) if (surface.surface_type == stInternal) surface.surface_type = type; } // The rest has already been performed by discover_vertical_shells(). } // for each layer } // for each region #ifdef SLIC3R_DEBUG_SLICE_PROCESSING for (size_t region_id = 0; region_id < this->num_printing_regions(); ++region_id) { for (const Layer *layer : m_layers) { const LayerRegion *layerm = layer->m_regions[region_id]; layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells"); layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells"); } // for each layer } // for each region #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ } // void PrintObject::discover_horizontal_shells() // combine fill surfaces across layers to honor the "infill every N layers" option // Idempotence of this method is guaranteed by the fact that we don't remove things from // fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries. void PrintObject::combine_infill() { // Work on each region separately. for (size_t region_id = 0; region_id < this->num_printing_regions(); ++ region_id) { const PrintRegion ®ion = this->printing_region(region_id); const size_t every = region.config().infill_every_layers.value; if (every < 2 || region.config().fill_density == 0.) continue; // Limit the number of combined layers to the maximum height allowed by this regions' nozzle. //FIXME limit the layer height to max_layer_height double nozzle_diameter = std::min( this->print()->config().nozzle_diameter.get_at(region.config().infill_extruder.value - 1), this->print()->config().nozzle_diameter.get_at(region.config().solid_infill_extruder.value - 1)); // define the combinations std::vector<size_t> combine(m_layers.size(), 0); { double current_height = 0.; size_t num_layers = 0; for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) { m_print->throw_if_canceled(); const Layer *layer = m_layers[layer_idx]; if (layer->id() == 0) // Skip first print layer (which may not be first layer in array because of raft). continue; // Check whether the combination of this layer with the lower layers' buffer // would exceed max layer height or max combined layer count. if (current_height + layer->height >= nozzle_diameter + EPSILON || num_layers >= every) { // Append combination to lower layer. combine[layer_idx - 1] = num_layers; current_height = 0.; num_layers = 0; } current_height += layer->height; ++ num_layers; } // Append lower layers (if any) to uppermost layer. combine[m_layers.size() - 1] = num_layers; } // loop through layers to which we have assigned layers to combine for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) { m_print->throw_if_canceled(); size_t num_layers = combine[layer_idx]; if (num_layers <= 1) continue; // Get all the LayerRegion objects to be combined. std::vector<LayerRegion*> layerms; layerms.reserve(num_layers); for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i) layerms.emplace_back(m_layers[i]->regions()[region_id]); // We need to perform a multi-layer intersection, so let's split it in pairs. // Initialize the intersection with the candidates of the lowest layer. ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces().filter_by_type(stInternal)); // Start looping from the second layer and intersect the current intersection with it. for (size_t i = 1; i < layerms.size(); ++ i) intersection = intersection_ex(layerms[i]->fill_surfaces().filter_by_type(stInternal), intersection); double area_threshold = layerms.front()->infill_area_threshold(); if (! intersection.empty() && area_threshold > 0.) intersection.erase(std::remove_if(intersection.begin(), intersection.end(), [area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }), intersection.end()); if (intersection.empty()) continue; // Slic3r::debugf " combining %d %s regions from layers %d-%d\n", // scalar(@$intersection), // ($type == stInternal ? 'internal' : 'internal-solid'), // $layer_idx-($every-1), $layer_idx; // intersection now contains the regions that can be combined across the full amount of layers, // so let's remove those areas from all layers. Polygons intersection_with_clearance; intersection_with_clearance.reserve(intersection.size()); float clearance_offset = 0.5f * layerms.back()->flow(frPerimeter).scaled_width() + // Because fill areas for rectilinear and honeycomb are grown // later to overlap perimeters, we need to counteract that too. ((region.config().fill_pattern == ipRectilinear || region.config().fill_pattern == ipMonotonic || region.config().fill_pattern == ipGrid || region.config().fill_pattern == ipLine || region.config().fill_pattern == ipHoneycomb) ? 1.5f : 0.5f) * layerms.back()->flow(frSolidInfill).scaled_width(); for (ExPolygon &expoly : intersection) polygons_append(intersection_with_clearance, offset(expoly, clearance_offset)); for (LayerRegion *layerm : layerms) { Polygons internal = to_polygons(std::move(layerm->fill_surfaces().filter_by_type(stInternal))); layerm->m_fill_surfaces.remove_type(stInternal); layerm->m_fill_surfaces.append(diff_ex(internal, intersection_with_clearance), stInternal); if (layerm == layerms.back()) { // Apply surfaces back with adjusted depth to the uppermost layer. Surface templ(stInternal, ExPolygon()); templ.thickness = 0.; for (LayerRegion *layerm2 : layerms) templ.thickness += layerm2->layer()->height; templ.thickness_layers = (unsigned short)layerms.size(); layerm->m_fill_surfaces.append(intersection, templ); } else { // Save void surfaces. layerm->m_fill_surfaces.append( intersection_ex(internal, intersection_with_clearance), stInternalVoid); } } } } } // void PrintObject::combine_infill() void PrintObject::_generate_support_material() { if (this->has_support() && (m_config.support_material_style == smsTree || m_config.support_material_style == smsOrganic)) { fff_tree_support_generate(*this, std::function<void()>([this](){ this->throw_if_canceled(); })); } else { // If support style is set to Organic however only raft will be built but no support, // build snug raft instead. PrintObjectSupportMaterial support_material(this, m_slicing_params); support_material.generate(*this); } } static void project_triangles_to_slabs(SpanOfConstPtrs<Layer> layers, const indexed_triangle_set &custom_facets, const Transform3f &tr, bool seam, std::vector<Polygons> &out) { if (custom_facets.indices.empty()) return; const float tr_det_sign = (tr.matrix().determinant() > 0. ? 1.f : -1.f); // The projection will be at most a pentagon. Let's minimize heap // reallocations by saving in in the following struct. // Points are used so that scaling can be done in parallel // and they can be moved from to create an ExPolygon later. struct LightPolygon { LightPolygon() { pts.reserve(5); } LightPolygon(const std::array<Vec2f, 3>& tri) { pts.reserve(3); pts.emplace_back(scaled<coord_t>(tri.front())); pts.emplace_back(scaled<coord_t>(tri[1])); pts.emplace_back(scaled<coord_t>(tri.back())); } Points pts; void add(const Vec2f& pt) { pts.emplace_back(scaled<coord_t>(pt)); assert(pts.size() <= 5); } }; // Structure to collect projected polygons. One element for each triangle. // Saves vector of polygons and layer_id of the first one. struct TriangleProjections { size_t first_layer_id; std::vector<LightPolygon> polygons; }; // Vector to collect resulting projections from each triangle. std::vector<TriangleProjections> projections_of_triangles(custom_facets.indices.size()); // Iterate over all triangles. tbb::parallel_for( tbb::blocked_range<size_t>(0, custom_facets.indices.size()), [&custom_facets, &tr, tr_det_sign, seam, layers, &projections_of_triangles](const tbb::blocked_range<size_t>& range) { for (size_t idx = range.begin(); idx < range.end(); ++ idx) { std::array<Vec3f, 3> facet; // Transform the triangle into worlds coords. for (int i=0; i<3; ++i) facet[i] = tr * custom_facets.vertices[custom_facets.indices[idx](i)]; // Ignore triangles with upward-pointing normal. Don't forget about mirroring. float z_comp = (facet[1]-facet[0]).cross(facet[2]-facet[0]).z(); if (! seam && tr_det_sign * z_comp > 0.) continue; // The algorithm does not process vertical triangles, but it should for seam. // In that case, tilt the triangle a bit so the projection does not degenerate. if (seam && z_comp == 0.f) facet[0].x() += float(EPSILON); // Sort the three vertices according to z-coordinate. std::sort(facet.begin(), facet.end(), [](const Vec3f& pt1, const Vec3f&pt2) { return pt1.z() < pt2.z(); }); std::array<Vec2f, 3> trianglef; for (int i=0; i<3; ++i) trianglef[i] = to_2d(facet[i]); // Find lowest slice not below the triangle. auto it = std::lower_bound(layers.begin(), layers.end(), facet[0].z()+EPSILON, [](const Layer* l1, float z) { return l1->slice_z < z; }); // Count how many projections will be generated for this triangle // and allocate respective amount in projections_of_triangles. size_t first_layer_id = projections_of_triangles[idx].first_layer_id = it - layers.begin(); size_t last_layer_id = first_layer_id; // The cast in the condition below is important. The comparison must // be an exact opposite of the one lower in the code where // the polygons are appended. And that one is on floats. while (last_layer_id + 1 < layers.size() && float(layers[last_layer_id]->slice_z) <= facet[2].z()) ++last_layer_id; if (first_layer_id == last_layer_id) { // The triangle fits just a single slab, just project it. This also avoids division by zero for horizontal triangles. float dz = facet[2].z() - facet[0].z(); assert(dz >= 0); // The face is nearly horizontal and it crosses the slicing plane at first_layer_id - 1. // Rather add this face to both the planes. bool add_below = dz < float(2. * EPSILON) && first_layer_id > 0 && layers[first_layer_id - 1]->slice_z > facet[0].z() - EPSILON; projections_of_triangles[idx].polygons.reserve(add_below ? 2 : 1); projections_of_triangles[idx].polygons.emplace_back(trianglef); if (add_below) { -- projections_of_triangles[idx].first_layer_id; projections_of_triangles[idx].polygons.emplace_back(trianglef); } continue; } projections_of_triangles[idx].polygons.resize(last_layer_id - first_layer_id + 1); // Calculate how to move points on triangle sides per unit z increment. Vec2f ta(trianglef[1] - trianglef[0]); Vec2f tb(trianglef[2] - trianglef[0]); ta *= 1.f/(facet[1].z() - facet[0].z()); tb *= 1.f/(facet[2].z() - facet[0].z()); // Projection on current slice will be built directly in place. LightPolygon* proj = &projections_of_triangles[idx].polygons[0]; proj->add(trianglef[0]); bool passed_first = false; bool stop = false; // Project a sub-polygon on all slices intersecting the triangle. while (it != layers.end()) { const float z = float((*it)->slice_z); // Projections of triangle sides intersections with slices. // a moves along one side, b tracks the other. Vec2f a; Vec2f b; // If the middle vertex was already passed, append the vertex // and use ta for tracking the remaining side. if (z > facet[1].z() && ! passed_first) { proj->add(trianglef[1]); ta = trianglef[2]-trianglef[1]; ta *= 1.f/(facet[2].z() - facet[1].z()); passed_first = true; } // This slice is above the triangle already. if (z > facet[2].z() || it+1 == layers.end()) { proj->add(trianglef[2]); stop = true; } else { // Move a, b along the side it currently tracks to get // projected intersection with current slice. a = passed_first ? (trianglef[1]+ta*(z-facet[1].z())) : (trianglef[0]+ta*(z-facet[0].z())); b = trianglef[0]+tb*(z-facet[0].z()); proj->add(a); proj->add(b); } if (stop) break; // Advance to the next layer. ++it; ++proj; assert(proj <= &projections_of_triangles[idx].polygons.back() ); // a, b are first two points of the polygon for the next layer. proj->add(b); proj->add(a); } } }); // end of parallel_for // Make sure that the output vector can be used. out.resize(layers.size()); // Now append the collected polygons to respective layers. for (auto& trg : projections_of_triangles) { int layer_id = int(trg.first_layer_id); for (LightPolygon &poly : trg.polygons) { if (layer_id >= int(out.size())) break; // part of triangle could be projected above top layer assert(! poly.pts.empty()); // The resulting triangles are fed to the Clipper library, which seem to handle flipped triangles well. // if (cross2(Vec2d((poly.pts[1] - poly.pts[0]).cast<double>()), Vec2d((poly.pts[2] - poly.pts[1]).cast<double>())) < 0) // std::swap(poly.pts.front(), poly.pts.back()); out[layer_id].emplace_back(std::move(poly.pts)); ++layer_id; } } } void PrintObject::project_and_append_custom_facets( bool seam, EnforcerBlockerType type, std::vector<Polygons>& out) const { for (const ModelVolume* mv : this->model_object()->volumes) if (mv->is_model_part()) { const indexed_triangle_set custom_facets = seam ? mv->seam_facets.get_facets_strict(*mv, type) : mv->supported_facets.get_facets_strict(*mv, type); if (! custom_facets.indices.empty()) { if (seam) project_triangles_to_slabs(this->layers(), custom_facets, (this->trafo_centered() * mv->get_matrix()).cast<float>(), seam, out); else { std::vector<Polygons> projected; // Support blockers or enforcers. Project downward facing painted areas upwards to their respective slicing plane. slice_mesh_slabs(custom_facets, zs_from_layers(this->layers()), this->trafo_centered() * mv->get_matrix(), nullptr, &projected, [](){}); // Merge these projections with the output, layer by layer. assert(! projected.empty()); assert(out.empty() || out.size() == projected.size()); if (out.empty()) out = std::move(projected); else for (size_t i = 0; i < out.size(); ++ i) append(out[i], std::move(projected[i])); } } } } const Layer* PrintObject::get_layer_at_printz(coordf_t print_z) const { auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [print_z](const Layer *layer) { return layer->print_z < print_z; }); return (it == m_layers.end() || (*it)->print_z != print_z) ? nullptr : *it; } Layer* PrintObject::get_layer_at_printz(coordf_t print_z) { return const_cast<Layer*>(std::as_const(*this).get_layer_at_printz(print_z)); } // Get a layer approximately at print_z. const Layer* PrintObject::get_layer_at_printz(coordf_t print_z, coordf_t epsilon) const { coordf_t limit = print_z - epsilon; auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; }); return (it == m_layers.end() || (*it)->print_z > print_z + epsilon) ? nullptr : *it; } Layer* PrintObject::get_layer_at_printz(coordf_t print_z, coordf_t epsilon) { return const_cast<Layer*>(std::as_const(*this).get_layer_at_printz(print_z, epsilon)); } const Layer *PrintObject::get_first_layer_bellow_printz(coordf_t print_z, coordf_t epsilon) const { coordf_t limit = print_z + epsilon; auto it = Slic3r::lower_bound_by_predicate(m_layers.begin(), m_layers.end(), [limit](const Layer *layer) { return layer->print_z < limit; }); return (it == m_layers.begin()) ? nullptr : *(--it); } } // namespace Slic3r