/* TODO LIST --------- 1. cooling moves - DONE 2. account for perimeter and finish_layer extrusions and subtract it from last wipe - DONE 3. priming extrusions (last wipe must clear the color) - DONE 4. Peter's wipe tower - layer's are not exactly square 5. Peter's wipe tower - variable width for higher levels 6. Peter's wipe tower - make sure it is not too sparse (apply max_bridge_distance and make last wipe longer) 7. Peter's wipe tower - enable enhanced first layer adhesion */ #include "WipeTower.hpp" #include #include #include #include #include #if ENABLE_GCODE_VIEWER #include "GCodeProcessor.hpp" #else #include "Analyzer.hpp" #endif // ENABLE_GCODE_VIEWER #include "BoundingBox.hpp" #if defined(__linux) || defined(__GNUC__ ) #include #endif /* __linux */ #ifdef _MSC_VER #define strcasecmp _stricmp #endif namespace Slic3r { class WipeTowerWriter { public: WipeTowerWriter(float layer_height, float line_width, GCodeFlavor flavor, const std::vector& filament_parameters) : m_current_pos(std::numeric_limits::max(), std::numeric_limits::max()), m_current_z(0.f), m_current_feedrate(0.f), m_layer_height(layer_height), m_extrusion_flow(0.f), m_preview_suppressed(false), m_elapsed_time(0.f), m_default_analyzer_line_width(line_width), m_gcode_flavor(flavor), m_filpar(filament_parameters) { // adds tag for analyzer: char buf[64]; #if ENABLE_GCODE_VIEWER sprintf(buf, ";%s%f\n", GCodeProcessor::Height_Tag.c_str(), m_layer_height); // don't rely on GCodeAnalyzer knowing the layer height - it knows nothing at priming #else sprintf(buf, ";%s%f\n", GCodeAnalyzer::Height_Tag.c_str(), m_layer_height); // don't rely on GCodeAnalyzer knowing the layer height - it knows nothing at priming #endif // ENABLE_GCODE_VIEWER m_gcode += buf; #if ENABLE_GCODE_VIEWER sprintf(buf, ";%s%d\n", GCodeProcessor::Extrusion_Role_Tag.c_str(), erWipeTower); #else sprintf(buf, ";%s%d\n", GCodeAnalyzer::Extrusion_Role_Tag.c_str(), erWipeTower); #endif // ENABLE_GCODE_VIEWER m_gcode += buf; change_analyzer_line_width(line_width); } WipeTowerWriter& change_analyzer_line_width(float line_width) { // adds tag for analyzer: char buf[64]; #if ENABLE_GCODE_VIEWER sprintf(buf, ";%s%f\n", GCodeProcessor::Width_Tag.c_str(), line_width); #else sprintf(buf, ";%s%f\n", GCodeAnalyzer::Width_Tag.c_str(), line_width); #endif // ENABLE_GCODE_VIEWER m_gcode += buf; return *this; } WipeTowerWriter& change_analyzer_mm3_per_mm(float len, float e) { static const float area = float(M_PI) * 1.75f * 1.75f / 4.f; float mm3_per_mm = (len == 0.f ? 0.f : area * e / len); // adds tag for analyzer: char buf[64]; #if ENABLE_GCODE_VIEWER sprintf(buf, ";%s%f\n", GCodeProcessor::Mm3_Per_Mm_Tag.c_str(), mm3_per_mm); #else sprintf(buf, ";%s%f\n", GCodeAnalyzer::Mm3_Per_Mm_Tag.c_str(), mm3_per_mm); #endif // ENABLE_GCODE_VIEWER m_gcode += buf; return *this; } WipeTowerWriter& set_initial_position(const Vec2f &pos, float width = 0.f, float depth = 0.f, float internal_angle = 0.f) { m_wipe_tower_width = width; m_wipe_tower_depth = depth; m_internal_angle = internal_angle; m_start_pos = this->rotate(pos); m_current_pos = pos; return *this; } WipeTowerWriter& set_initial_tool(size_t tool) { m_current_tool = tool; return *this; } WipeTowerWriter& set_z(float z) { m_current_z = z; return *this; } WipeTowerWriter& set_extrusion_flow(float flow) { m_extrusion_flow = flow; return *this; } WipeTowerWriter& set_y_shift(float shift) { m_current_pos.y() -= shift-m_y_shift; m_y_shift = shift; return (*this); } WipeTowerWriter& disable_linear_advance() { m_gcode += (m_gcode_flavor == gcfRepRap ? (std::string("M572 D") + std::to_string(m_current_tool) + " S0\n") : std::string("M900 K0\n")); return *this; } // Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various // filament loading and cooling moves from normal extrusion moves. Therefore the writer // is asked to suppres output of some lines, which look like extrusions. WipeTowerWriter& suppress_preview() { change_analyzer_line_width(0.f); m_preview_suppressed = true; return *this; } WipeTowerWriter& resume_preview() { change_analyzer_line_width(m_default_analyzer_line_width); m_preview_suppressed = false; return *this; } WipeTowerWriter& feedrate(float f) { if (f != m_current_feedrate) m_gcode += "G1" + set_format_F(f) + "\n"; return *this; } const std::string& gcode() const { return m_gcode; } const std::vector& extrusions() const { return m_extrusions; } float x() const { return m_current_pos.x(); } float y() const { return m_current_pos.y(); } const Vec2f& pos() const { return m_current_pos; } const Vec2f start_pos_rotated() const { return m_start_pos; } const Vec2f pos_rotated() const { return this->rotate(m_current_pos); } float elapsed_time() const { return m_elapsed_time; } float get_and_reset_used_filament_length() { float temp = m_used_filament_length; m_used_filament_length = 0.f; return temp; } // Extrude with an explicitely provided amount of extrusion. WipeTowerWriter& extrude_explicit(float x, float y, float e, float f = 0.f, bool record_length = false, bool limit_volumetric_flow = true) { if (x == m_current_pos.x() && y == m_current_pos.y() && e == 0.f && (f == 0.f || f == m_current_feedrate)) // Neither extrusion nor a travel move. return *this; float dx = x - m_current_pos.x(); float dy = y - m_current_pos.y(); float len = std::sqrt(dx*dx+dy*dy); if (record_length) m_used_filament_length += e; // Now do the "internal rotation" with respect to the wipe tower center Vec2f rotated_current_pos(this->pos_rotated()); Vec2f rot(this->rotate(Vec2f(x,y))); // this is where we want to go if (! m_preview_suppressed && e > 0.f && len > 0.f) { change_analyzer_mm3_per_mm(len, e); // Width of a squished extrusion, corrected for the roundings of the squished extrusions. // This is left zero if it is a travel move. float width = e * m_filpar[0].filament_area / (len * m_layer_height); // Correct for the roundings of a squished extrusion. width += m_layer_height * float(1. - M_PI / 4.); if (m_extrusions.empty() || m_extrusions.back().pos != rotated_current_pos) m_extrusions.emplace_back(WipeTower::Extrusion(rotated_current_pos, 0, m_current_tool)); m_extrusions.emplace_back(WipeTower::Extrusion(rot, width, m_current_tool)); } m_gcode += "G1"; if (std::abs(rot.x() - rotated_current_pos.x()) > (float)EPSILON) m_gcode += set_format_X(rot.x()); if (std::abs(rot.y() - rotated_current_pos.y()) > (float)EPSILON) m_gcode += set_format_Y(rot.y()); if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) { if (limit_volumetric_flow) { float e_speed = e / (((len == 0.f) ? std::abs(e) : len) / f * 60.f); f /= std::max(1.f, e_speed / m_filpar[m_current_tool].max_e_speed); } m_gcode += set_format_F(f); } m_current_pos.x() = x; m_current_pos.y() = y; // Update the elapsed time with a rough estimate. m_elapsed_time += ((len == 0.f) ? std::abs(e) : len) / m_current_feedrate * 60.f; m_gcode += "\n"; return *this; } WipeTowerWriter& extrude_explicit(const Vec2f &dest, float e, float f = 0.f, bool record_length = false, bool limit_volumetric_flow = true) { return extrude_explicit(dest.x(), dest.y(), e, f, record_length); } // Travel to a new XY position. f=0 means use the current value. WipeTowerWriter& travel(float x, float y, float f = 0.f) { return extrude_explicit(x, y, 0.f, f); } WipeTowerWriter& travel(const Vec2f &dest, float f = 0.f) { return extrude_explicit(dest.x(), dest.y(), 0.f, f); } // Extrude a line from current position to x, y with the extrusion amount given by m_extrusion_flow. WipeTowerWriter& extrude(float x, float y, float f = 0.f) { float dx = x - m_current_pos.x(); float dy = y - m_current_pos.y(); return extrude_explicit(x, y, std::sqrt(dx*dx+dy*dy) * m_extrusion_flow, f, true); } WipeTowerWriter& extrude(const Vec2f &dest, const float f = 0.f) { return extrude(dest.x(), dest.y(), f); } WipeTowerWriter& rectangle(const Vec2f& ld,float width,float height,const float f = 0.f) { Vec2f corners[4]; corners[0] = ld; corners[1] = ld + Vec2f(width,0.f); corners[2] = ld + Vec2f(width,height); corners[3] = ld + Vec2f(0.f,height); int index_of_closest = 0; if (x()-ld.x() > ld.x()+width-x()) // closer to the right index_of_closest = 1; if (y()-ld.y() > ld.y()+height-y()) // closer to the top index_of_closest = (index_of_closest==0 ? 3 : 2); travel(corners[index_of_closest].x(), y()); // travel to the closest corner travel(x(),corners[index_of_closest].y()); int i = index_of_closest; do { ++i; if (i==4) i=0; extrude(corners[i], f); } while (i != index_of_closest); return (*this); } WipeTowerWriter& load(float e, float f = 0.f) { if (e == 0.f && (f == 0.f || f == m_current_feedrate)) return *this; m_gcode += "G1"; if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } WipeTowerWriter& retract(float e, float f = 0.f) { return load(-e, f); } // Loads filament while also moving towards given points in x-axis (x feedrate is limited by cutting the distance short if necessary) WipeTowerWriter& load_move_x_advanced(float farthest_x, float loading_dist, float loading_speed, float max_x_speed = 50.f) { float time = std::abs(loading_dist / loading_speed); // time that the move must take float x_distance = std::abs(farthest_x - x()); // max x-distance that we can travel float x_speed = x_distance / time; // x-speed to do it in that time if (x_speed > max_x_speed) { // Necessary x_speed is too high - we must shorten the distance to achieve max_x_speed and still respect the time. x_distance = max_x_speed * time; x_speed = max_x_speed; } float end_point = x() + (farthest_x > x() ? 1.f : -1.f) * x_distance; return extrude_explicit(end_point, y(), loading_dist, x_speed * 60.f, false, false); } // Elevate the extruder head above the current print_z position. WipeTowerWriter& z_hop(float hop, float f = 0.f) { m_gcode += std::string("G1") + set_format_Z(m_current_z + hop); if (f != 0 && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } // Lower the extruder head back to the current print_z position. WipeTowerWriter& z_hop_reset(float f = 0.f) { return z_hop(0, f); } // Move to x1, +y_increment, // extrude quickly amount e to x2 with feed f. WipeTowerWriter& ram(float x1, float x2, float dy, float e0, float e, float f) { extrude_explicit(x1, m_current_pos.y() + dy, e0, f, true, false); extrude_explicit(x2, m_current_pos.y(), e, 0.f, true, false); return *this; } // Let the end of the pulled out filament cool down in the cooling tube // by moving up and down and moving the print head left / right // at the current Y position to spread the leaking material. WipeTowerWriter& cool(float x1, float x2, float e1, float e2, float f) { extrude_explicit(x1, m_current_pos.y(), e1, f, false, false); extrude_explicit(x2, m_current_pos.y(), e2, false, false); return *this; } WipeTowerWriter& set_tool(size_t tool) { m_current_tool = tool; return *this; } // Set extruder temperature, don't wait by default. WipeTowerWriter& set_extruder_temp(int temperature, bool wait = false) { m_gcode += "M" + std::to_string(wait ? 109 : 104) + " S" + std::to_string(temperature) + "\n"; return *this; } // Wait for a period of time (seconds). WipeTowerWriter& wait(float time) { if (time==0.f) return *this; char buf[128]; sprintf(buf, "G4 S%.3f\n", time); m_gcode += buf; return *this; } // Set speed factor override percentage. WipeTowerWriter& speed_override(int speed) { m_gcode += "M220 S" + std::to_string(speed) + "\n"; return *this; } // Let the firmware back up the active speed override value. WipeTowerWriter& speed_override_backup() { // This is only supported by Prusa at this point (https://github.com/prusa3d/PrusaSlicer/issues/3114) if (m_gcode_flavor == gcfMarlin) m_gcode += "M220 B\n"; return *this; } // Let the firmware restore the active speed override value. WipeTowerWriter& speed_override_restore() { if (m_gcode_flavor == gcfMarlin) m_gcode += "M220 R\n"; return *this; } // Set digital trimpot motor WipeTowerWriter& set_extruder_trimpot(int current) { if (m_gcode_flavor == gcfRepRap) m_gcode += "M906 E"; else m_gcode += "M907 E"; m_gcode += std::to_string(current) + "\n"; return *this; } WipeTowerWriter& flush_planner_queue() { m_gcode += "G4 S0\n"; return *this; } // Reset internal extruder counter. WipeTowerWriter& reset_extruder() { m_gcode += "G92 E0\n"; return *this; } WipeTowerWriter& comment_with_value(const char *comment, int value) { m_gcode += std::string(";") + comment + std::to_string(value) + "\n"; return *this; } WipeTowerWriter& set_fan(unsigned speed) { if (speed == m_last_fan_speed) return *this; if (speed == 0) m_gcode += "M107\n"; else m_gcode += "M106 S" + std::to_string(unsigned(255.0 * speed / 100.0)) + "\n"; m_last_fan_speed = speed; return *this; } WipeTowerWriter& append(const std::string& text) { m_gcode += text; return *this; } private: Vec2f m_start_pos; Vec2f m_current_pos; float m_current_z; float m_current_feedrate; size_t m_current_tool; float m_layer_height; float m_extrusion_flow; bool m_preview_suppressed; std::string m_gcode; std::vector m_extrusions; float m_elapsed_time; float m_internal_angle = 0.f; float m_y_shift = 0.f; float m_wipe_tower_width = 0.f; float m_wipe_tower_depth = 0.f; unsigned m_last_fan_speed = 0; int current_temp = -1; const float m_default_analyzer_line_width; float m_used_filament_length = 0.f; GCodeFlavor m_gcode_flavor; const std::vector& m_filpar; std::string set_format_X(float x) { char buf[64]; sprintf(buf, " X%.3f", x); m_current_pos.x() = x; return buf; } std::string set_format_Y(float y) { char buf[64]; sprintf(buf, " Y%.3f", y); m_current_pos.y() = y; return buf; } std::string set_format_Z(float z) { char buf[64]; sprintf(buf, " Z%.3f", z); return buf; } std::string set_format_E(float e) { char buf[64]; sprintf(buf, " E%.4f", e); return buf; } std::string set_format_F(float f) { char buf[64]; sprintf(buf, " F%d", int(floor(f + 0.5f))); m_current_feedrate = f; return buf; } WipeTowerWriter& operator=(const WipeTowerWriter &rhs); // Rotate the point around center of the wipe tower about given angle (in degrees) Vec2f rotate(Vec2f pt) const { pt.x() -= m_wipe_tower_width / 2.f; pt.y() += m_y_shift - m_wipe_tower_depth / 2.f; double angle = m_internal_angle * float(M_PI/180.); double c = cos(angle); double s = sin(angle); return Vec2f(float(pt.x() * c - pt.y() * s) + m_wipe_tower_width / 2.f, float(pt.x() * s + pt.y() * c) + m_wipe_tower_depth / 2.f); } }; // class WipeTowerWriter WipeTower::WipeTower(const PrintConfig& config, const std::vector>& wiping_matrix, size_t initial_tool) : m_semm(config.single_extruder_multi_material.value), m_wipe_tower_pos(config.wipe_tower_x, config.wipe_tower_y), m_wipe_tower_width(float(config.wipe_tower_width)), m_wipe_tower_rotation_angle(float(config.wipe_tower_rotation_angle)), m_y_shift(0.f), m_z_pos(0.f), m_is_first_layer(false), m_bridging(float(config.wipe_tower_bridging)), m_no_sparse_layers(config.wipe_tower_no_sparse_layers), m_gcode_flavor(config.gcode_flavor), m_current_tool(initial_tool), wipe_volumes(wiping_matrix) { // If this is a single extruder MM printer, we will use all the SE-specific config values. // Otherwise, the defaults will be used to turn off the SE stuff. if (m_semm) { m_cooling_tube_retraction = float(config.cooling_tube_retraction); m_cooling_tube_length = float(config.cooling_tube_length); m_parking_pos_retraction = float(config.parking_pos_retraction); m_extra_loading_move = float(config.extra_loading_move); m_set_extruder_trimpot = config.high_current_on_filament_swap; } // Calculate where the priming lines should be - very naive test not detecting parallelograms or custom shapes const std::vector& bed_points = config.bed_shape.values; m_bed_shape = (bed_points.size() == 4 ? RectangularBed : CircularBed); m_bed_width = float(BoundingBoxf(bed_points).size().x()); m_bed_bottom_left = m_bed_shape == RectangularBed ? Vec2f(bed_points.front().x(), bed_points.front().y()) : Vec2f::Zero(); } void WipeTower::set_extruder(size_t idx, const PrintConfig& config) { //while (m_filpar.size() < idx+1) // makes sure the required element is in the vector m_filpar.push_back(FilamentParameters()); m_filpar[idx].material = config.filament_type.get_at(idx); m_filpar[idx].temperature = config.temperature.get_at(idx); m_filpar[idx].first_layer_temperature = config.first_layer_temperature.get_at(idx); // If this is a single extruder MM printer, we will use all the SE-specific config values. // Otherwise, the defaults will be used to turn off the SE stuff. if (m_semm) { m_filpar[idx].loading_speed = float(config.filament_loading_speed.get_at(idx)); m_filpar[idx].loading_speed_start = float(config.filament_loading_speed_start.get_at(idx)); m_filpar[idx].unloading_speed = float(config.filament_unloading_speed.get_at(idx)); m_filpar[idx].unloading_speed_start = float(config.filament_unloading_speed_start.get_at(idx)); m_filpar[idx].delay = float(config.filament_toolchange_delay.get_at(idx)); m_filpar[idx].cooling_moves = config.filament_cooling_moves.get_at(idx); m_filpar[idx].cooling_initial_speed = float(config.filament_cooling_initial_speed.get_at(idx)); m_filpar[idx].cooling_final_speed = float(config.filament_cooling_final_speed.get_at(idx)); } m_filpar[idx].filament_area = float((M_PI/4.f) * pow(config.filament_diameter.get_at(idx), 2)); // all extruders are assumed to have the same filament diameter at this point float nozzle_diameter = float(config.nozzle_diameter.get_at(idx)); m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM float max_vol_speed = float(config.filament_max_volumetric_speed.get_at(idx)); if (max_vol_speed!= 0.f) m_filpar[idx].max_e_speed = (max_vol_speed / filament_area()); m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter if (m_semm) { std::istringstream stream{config.filament_ramming_parameters.get_at(idx)}; float speed = 0.f; stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator; m_filpar[idx].ramming_line_width_multiplicator /= 100; m_filpar[idx].ramming_step_multiplicator /= 100; while (stream >> speed) m_filpar[idx].ramming_speed.push_back(speed); } m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later } // Returns gcode to prime the nozzles at the front edge of the print bed. std::vector WipeTower::prime( // print_z of the first layer. float first_layer_height, // Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object. const std::vector &tools, // If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower. // If false, the last priming are will be large enough to wipe the last extruder sufficiently. bool /*last_wipe_inside_wipe_tower*/) { this->set_layer(first_layer_height, first_layer_height, tools.size(), true, false); this->m_current_tool = tools.front(); // The Prusa i3 MK2 has a working space of [0, -2.2] to [250, 210]. // Due to the XYZ calibration, this working space may shrink slightly from all directions, // therefore the homing position is shifted inside the bed by 0.2 in the firmware to [0.2, -2.0]. // box_coordinates cleaning_box(xy(0.5f, - 1.5f), m_wipe_tower_width, wipe_area); float prime_section_width = std::min(0.9f * m_bed_width / tools.size(), 60.f); box_coordinates cleaning_box(Vec2f(0.02f * m_bed_width, 0.01f + m_perimeter_width/2.f), prime_section_width, 100.f); // In case of a circular bed, place it so it goes across the diameter and hope it will fit if (m_bed_shape == CircularBed) cleaning_box.translate(-m_bed_width/2 + m_bed_width * 0.03f, -m_bed_width * 0.12f); if (m_bed_shape == RectangularBed) cleaning_box.translate(m_bed_bottom_left); std::vector results; // Iterate over all priming toolchanges and push respective ToolChangeResults into results vector. for (size_t idx_tool = 0; idx_tool < tools.size(); ++ idx_tool) { size_t old_tool = m_current_tool; WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool); // This is the first toolchange - initiate priming if (idx_tool == 0) { writer.append(";--------------------\n" "; CP PRIMING START\n") .append(";--------------------\n") .speed_override_backup() .speed_override(100) .set_initial_position(Vec2f::Zero()) // Always move to the starting position .travel(cleaning_box.ld, 7200); if (m_set_extruder_trimpot) writer.set_extruder_trimpot(750); // Increase the extruder driver current to allow fast ramming. } else writer.set_initial_position(results.back().end_pos); unsigned int tool = tools[idx_tool]; m_left_to_right = true; toolchange_Change(writer, tool, m_filpar[tool].material); // Select the tool, set a speed override for soluble and flex materials. toolchange_Load(writer, cleaning_box); // Prime the tool. if (idx_tool + 1 == tools.size()) { // Last tool should not be unloaded, but it should be wiped enough to become of a pure color. toolchange_Wipe(writer, cleaning_box, wipe_volumes[tools[idx_tool-1]][tool]); } else { // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. //writer.travel(writer.x(), writer.y() + m_perimeter_width, 7200); toolchange_Wipe(writer, cleaning_box , 20.f); box_coordinates box = cleaning_box; box.translate(0.f, writer.y() - cleaning_box.ld.y() + m_perimeter_width); toolchange_Unload(writer, box , m_filpar[m_current_tool].material, m_filpar[tools[idx_tool + 1]].first_layer_temperature); cleaning_box.translate(prime_section_width, 0.f); writer.travel(cleaning_box.ld, 7200); } ++ m_num_tool_changes; // Ask our writer about how much material was consumed: if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); ToolChangeResult result; result.priming = true; result.initial_tool = int(old_tool); result.new_tool = int(m_current_tool); result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos(); results.push_back(std::move(result)); // This is the last priming toolchange - finish priming if (idx_tool+1 == tools.size()) { // Reset the extruder current to a normal value. if (m_set_extruder_trimpot) writer.set_extruder_trimpot(550); writer.speed_override_restore() .feedrate(6000) .flush_planner_queue() .reset_extruder() .append("; CP PRIMING END\n" ";------------------\n" "\n\n"); } } m_old_temperature = -1; // If the priming is turned off in config, the temperature changing commands will not actually appear // in the output gcode - we should not remember emitting them (we will output them twice in the worst case) // so that tool_change() will know to extrude the wipe tower brim: m_print_brim = true; return results; } WipeTower::ToolChangeResult WipeTower::tool_change(size_t tool, bool last_in_layer) { if ( m_print_brim ) return toolchange_Brim(); size_t old_tool = m_current_tool; float wipe_area = 0.f; bool last_change_in_layer = false; float wipe_volume = 0.f; // Finds this toolchange info if (tool != (unsigned int)(-1)) { for (const auto &b : m_layer_info->tool_changes) if ( b.new_tool == tool ) { wipe_volume = b.wipe_volume; if (tool == m_layer_info->tool_changes.back().new_tool) last_change_in_layer = true; wipe_area = b.required_depth * m_layer_info->extra_spacing; break; } } else { // Otherwise we are going to Unload only. And m_layer_info would be invalid. } box_coordinates cleaning_box( Vec2f(m_perimeter_width / 2.f, m_perimeter_width / 2.f), m_wipe_tower_width - m_perimeter_width, (tool != (unsigned int)(-1) ? /*m_layer_info->depth*/wipe_area+m_depth_traversed-0.5f*m_perimeter_width : m_wipe_tower_depth-m_perimeter_width)); WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool) .set_y_shift(m_y_shift + (tool!=(unsigned int)(-1) && (m_current_shape == SHAPE_REVERSED && !m_peters_wipe_tower) ? m_layer_info->depth - m_layer_info->toolchanges_depth(): 0.f)) .append(";--------------------\n" "; CP TOOLCHANGE START\n") .comment_with_value(" toolchange #", m_num_tool_changes + 1); // the number is zero-based if (tool != (unsigned)(-1)) writer.append(std::string("; material : " + (m_current_tool < m_filpar.size() ? m_filpar[m_current_tool].material : "(NONE)") + " -> " + m_filpar[tool].material + "\n").c_str()) .append(";--------------------\n"); writer.speed_override_backup(); writer.speed_override(100); Vec2f initial_position = cleaning_box.ld + Vec2f(0.f, m_depth_traversed); writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); // Increase the extruder driver current to allow fast ramming. if (m_set_extruder_trimpot) writer.set_extruder_trimpot(750); // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. if (tool != (unsigned int)-1){ // This is not the last change. toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, m_is_first_layer ? m_filpar[tool].first_layer_temperature : m_filpar[tool].temperature); toolchange_Change(writer, tool, m_filpar[tool].material); // Change the tool, set a speed override for soluble and flex materials. toolchange_Load(writer, cleaning_box); writer.travel(writer.x(), writer.y()-m_perimeter_width); // cooling and loading were done a bit down the road toolchange_Wipe(writer, cleaning_box, wipe_volume); // Wipe the newly loaded filament until the end of the assigned wipe area. ++ m_num_tool_changes; } else toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, m_filpar[m_current_tool].temperature); m_depth_traversed += wipe_area; if (last_change_in_layer) {// draw perimeter line writer.set_y_shift(m_y_shift); if (m_peters_wipe_tower) writer.rectangle(Vec2f::Zero(), m_layer_info->depth + 3*m_perimeter_width, m_wipe_tower_depth); else { writer.rectangle(Vec2f::Zero(), m_wipe_tower_width, m_layer_info->depth + m_perimeter_width); if (layer_finished()) { // no finish_layer will be called, we must wipe the nozzle writer.travel(writer.x()> m_wipe_tower_width / 2.f ? 0.f : m_wipe_tower_width, writer.y()); } } } if (m_set_extruder_trimpot) writer.set_extruder_trimpot(550); // Reset the extruder current to a normal value. writer.speed_override_restore(); writer.feedrate(6000) .flush_planner_queue() .reset_extruder() .append("; CP TOOLCHANGE END\n" ";------------------\n" "\n\n"); // Ask our writer about how much material was consumed: if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); ToolChangeResult result; result.priming = false; result.initial_tool = int(old_tool); result.new_tool = int(m_current_tool); result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos_rotated(); return result; } WipeTower::ToolChangeResult WipeTower::toolchange_Brim(bool sideOnly, float y_offset) { size_t old_tool = m_current_tool; const box_coordinates wipeTower_box( Vec2f::Zero(), m_wipe_tower_width, m_wipe_tower_depth); WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow * 1.1f) .set_z(m_z_pos) // Let the writer know the current Z position as a base for Z-hop. .set_initial_tool(m_current_tool) .append(";-------------------------------------\n" "; CP WIPE TOWER FIRST LAYER BRIM START\n"); Vec2f initial_position = wipeTower_box.lu - Vec2f(m_perimeter_width * 6.f, 0); writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); writer.extrude_explicit(wipeTower_box.ld - Vec2f(m_perimeter_width * 6.f, 0), // Prime the extruder left of the wipe tower. 1.5f * m_extrusion_flow * (wipeTower_box.lu.y() - wipeTower_box.ld.y()), 2400); // The tool is supposed to be active and primed at the time when the wipe tower brim is extruded. // Extrude 4 rounds of a brim around the future wipe tower. box_coordinates box(wipeTower_box); // the brim shall have 'normal' spacing with no extra void space float spacing = m_perimeter_width - m_layer_height*float(1.-M_PI_4); for (size_t i = 0; i < 4; ++ i) { box.expand(spacing); writer.travel (box.ld, 7000) .extrude(box.lu, 2100).extrude(box.ru) .extrude(box.rd ).extrude(box.ld); } writer.travel(wipeTower_box.ld, 7000); // Move to the front left corner. writer.travel(wipeTower_box.rd) // Always wipe the nozzle with a long wipe to reduce stringing when moving away from the wipe tower. .travel(wipeTower_box.ld); writer.append("; CP WIPE TOWER FIRST LAYER BRIM END\n" ";-----------------------------------\n"); // Save actual brim width to be later passed to the Print object, which will use it // for skirt calculation and pass it to GLCanvas for precise preview box m_wipe_tower_brim_width = wipeTower_box.ld.x() - box.ld.x() + spacing/2.f; m_print_brim = false; // Mark the brim as extruded // Ask our writer about how much material was consumed: if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); ToolChangeResult result; result.priming = false; result.initial_tool = int(old_tool); result.new_tool = int(m_current_tool); result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos_rotated(); return result; } // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. void WipeTower::toolchange_Unload( WipeTowerWriter &writer, const box_coordinates &cleaning_box, const std::string& current_material, const int new_temperature) { float xl = cleaning_box.ld.x() + 1.f * m_perimeter_width; float xr = cleaning_box.rd.x() - 1.f * m_perimeter_width; const float line_width = m_perimeter_width * m_filpar[m_current_tool].ramming_line_width_multiplicator; // desired ramming line thickness const float y_step = line_width * m_filpar[m_current_tool].ramming_step_multiplicator * m_extra_spacing; // spacing between lines in mm writer.append("; CP TOOLCHANGE UNLOAD\n") .change_analyzer_line_width(line_width); unsigned i = 0; // iterates through ramming_speed m_left_to_right = true; // current direction of ramming float remaining = xr - xl ; // keeps track of distance to the next turnaround float e_done = 0; // measures E move done from each segment writer.travel(xl, cleaning_box.ld.y() + m_depth_traversed + y_step/2.f ); // move to starting position // if the ending point of the ram would end up in mid air, align it with the end of the wipe tower: if (m_layer_info > m_plan.begin() && m_layer_info < m_plan.end() && (m_layer_info-1!=m_plan.begin() || !m_adhesion )) { // this is y of the center of previous sparse infill border float sparse_beginning_y = 0.f; if (m_current_shape == SHAPE_REVERSED) sparse_beginning_y += ((m_layer_info-1)->depth - (m_layer_info-1)->toolchanges_depth()) - ((m_layer_info)->depth-(m_layer_info)->toolchanges_depth()) ; else sparse_beginning_y += (m_layer_info-1)->toolchanges_depth() + m_perimeter_width; //debugging: /* float oldx = writer.x(); float oldy = writer.y(); writer.travel(xr,sparse_beginning_y); writer.extrude(xr+5,writer.y()); writer.travel(oldx,oldy);*/ float sum_of_depths = 0.f; for (const auto& tch : m_layer_info->tool_changes) { // let's find this toolchange if (tch.old_tool == m_current_tool) { sum_of_depths += tch.ramming_depth; float ramming_end_y = sum_of_depths; ramming_end_y -= (y_step/m_extra_spacing-m_perimeter_width) / 2.f; // center of final ramming line // debugging: /*float oldx = writer.x(); float oldy = writer.y(); writer.travel(xl,ramming_end_y); writer.extrude(xl-15,writer.y()); writer.travel(oldx,oldy);*/ if ( (m_current_shape == SHAPE_REVERSED && ramming_end_y < sparse_beginning_y - 0.5f*m_perimeter_width ) || (m_current_shape == SHAPE_NORMAL && ramming_end_y > sparse_beginning_y + 0.5f*m_perimeter_width ) ) { writer.extrude(xl + tch.first_wipe_line-1.f*m_perimeter_width,writer.y()); remaining -= tch.first_wipe_line-1.f*m_perimeter_width; } break; } sum_of_depths += tch.required_depth; } } writer.disable_linear_advance(); // now the ramming itself: while (i < m_filpar[m_current_tool].ramming_speed.size()) { const float x = volume_to_length(m_filpar[m_current_tool].ramming_speed[i] * 0.25f, line_width, m_layer_height); const float e = m_filpar[m_current_tool].ramming_speed[i] * 0.25f / filament_area(); // transform volume per sec to E move; const float dist = std::min(x - e_done, remaining); // distance to travel for either the next 0.25s, or to the next turnaround const float actual_time = dist/x * 0.25f; writer.ram(writer.x(), writer.x() + (m_left_to_right ? 1.f : -1.f) * dist, 0.f, 0.f, e * (dist / x), dist / (actual_time / 60.f)); remaining -= dist; if (remaining < WT_EPSILON) { // we reached a turning point writer.travel(writer.x(), writer.y() + y_step, 7200); m_left_to_right = !m_left_to_right; remaining = xr - xl; } e_done += dist; // subtract what was actually done if (e_done > x - WT_EPSILON) { // current segment finished ++i; e_done = 0; } } Vec2f end_of_ramming(writer.x(),writer.y()); writer.change_analyzer_line_width(m_perimeter_width); // so the next lines are not affected by ramming_line_width_multiplier // Retraction: float old_x = writer.x(); float turning_point = (!m_left_to_right ? xl : xr ); if (m_semm && (m_cooling_tube_retraction != 0 || m_cooling_tube_length != 0)) { float total_retraction_distance = m_cooling_tube_retraction + m_cooling_tube_length/2.f - 15.f; // the 15mm is reserved for the first part after ramming writer.suppress_preview() .retract(15.f, m_filpar[m_current_tool].unloading_speed_start * 60.f) // feedrate 5000mm/min = 83mm/s .retract(0.70f * total_retraction_distance, 1.0f * m_filpar[m_current_tool].unloading_speed * 60.f) .retract(0.20f * total_retraction_distance, 0.5f * m_filpar[m_current_tool].unloading_speed * 60.f) .retract(0.10f * total_retraction_distance, 0.3f * m_filpar[m_current_tool].unloading_speed * 60.f) /*.load_move_x_advanced(turning_point, -15.f, 83.f, 50.f) // this is done at fixed speed .load_move_x_advanced(old_x, -0.70f * total_retraction_distance, 1.0f * m_filpar[m_current_tool].unloading_speed) .load_move_x_advanced(turning_point, -0.20f * total_retraction_distance, 0.5f * m_filpar[m_current_tool].unloading_speed) .load_move_x_advanced(old_x, -0.10f * total_retraction_distance, 0.3f * m_filpar[m_current_tool].unloading_speed) .travel(old_x, writer.y()) // in case previous move was shortened to limit feedrate*/ .resume_preview(); } // Wipe tower should only change temperature with single extruder MM. Otherwise, all temperatures should // be already set and there is no need to change anything. Also, the temperature could be changed // for wrong extruder. if (m_semm) { if (new_temperature != 0 && (new_temperature != m_old_temperature || m_is_first_layer) ) { // Set the extruder temperature, but don't wait. // If the required temperature is the same as last time, don't emit the M104 again (if user adjusted the value, it would be reset) // However, always change temperatures on the first layer (this is to avoid issues with priming lines turned off). writer.set_extruder_temp(new_temperature, false); m_old_temperature = new_temperature; } } // Cooling: const int& number_of_moves = m_filpar[m_current_tool].cooling_moves; if (number_of_moves > 0) { const float& initial_speed = m_filpar[m_current_tool].cooling_initial_speed; const float& final_speed = m_filpar[m_current_tool].cooling_final_speed; float speed_inc = (final_speed - initial_speed) / (2.f * number_of_moves - 1.f); writer.suppress_preview() .travel(writer.x(), writer.y() + y_step); old_x = writer.x(); turning_point = xr-old_x > old_x-xl ? xr : xl; for (int i=0; i cleaning_box.lu.y()-0.5f*m_perimeter_width) break; // in case next line would not fit traversed_x -= writer.x(); x_to_wipe -= std::abs(traversed_x); if (x_to_wipe < WT_EPSILON) { writer.travel(m_left_to_right ? xl + 1.5f*m_perimeter_width : xr - 1.5f*m_perimeter_width, writer.y(), 7200); break; } // stepping to the next line: writer.extrude(writer.x() + (i % 4 == 0 ? -1.f : (i % 4 == 1 ? 1.f : 0.f)) * 1.5f*m_perimeter_width, writer.y() + dy); m_left_to_right = !m_left_to_right; } // this is neither priming nor not the last toolchange on this layer - we are going back to the model - wipe the nozzle if (m_layer_info != m_plan.end() && m_current_tool != m_layer_info->tool_changes.back().new_tool) { m_left_to_right = !m_left_to_right; writer.travel(writer.x(), writer.y() - dy) .travel(m_left_to_right ? m_wipe_tower_width : 0.f, writer.y()); } writer.set_extrusion_flow(m_extrusion_flow); // Reset the extrusion flow. } WipeTower::ToolChangeResult WipeTower::finish_layer() { // This should only be called if the layer is not finished yet. // Otherwise the caller would likely travel to the wipe tower in vain. assert(! this->layer_finished()); size_t old_tool = m_current_tool; WipeTowerWriter writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool) .set_y_shift(m_y_shift - (m_current_shape == SHAPE_REVERSED && !m_peters_wipe_tower ? m_layer_info->toolchanges_depth() : 0.f)) .append(";--------------------\n" "; CP EMPTY GRID START\n") .comment_with_value(" layer #", m_num_layer_changes + 1); // Slow down on the 1st layer. float speed_factor = m_is_first_layer ? 0.5f : 1.f; float current_depth = m_layer_info->depth - m_layer_info->toolchanges_depth(); box_coordinates fill_box(Vec2f(m_perimeter_width, m_depth_traversed + m_perimeter_width), m_wipe_tower_width - 2 * m_perimeter_width, current_depth-m_perimeter_width); writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), // so there is never a diagonal travel m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); bool toolchanges_on_layer = m_layer_info->toolchanges_depth() > WT_EPSILON; box_coordinates box = fill_box; for (int i=0;i<2;++i) { if (! toolchanges_on_layer) { if (i==0) box.expand(m_perimeter_width); else box.expand(-m_perimeter_width); } else i=2; // only draw the inner perimeter, outer has been already drawn by tool_change(...) writer.rectangle(box.ld, box.rd.x()-box.ld.x(), box.ru.y()-box.rd.y(), 2900*speed_factor); } // we are in one of the corners, travel to ld along the perimeter: if (writer.x() > fill_box.ld.x()+EPSILON) writer.travel(fill_box.ld.x(),writer.y()); if (writer.y() > fill_box.ld.y()+EPSILON) writer.travel(writer.x(),fill_box.ld.y()); if (m_is_first_layer && m_adhesion) { // Extrude a dense infill at the 1st layer to improve 1st layer adhesion of the wipe tower. box.expand(-m_perimeter_width/2.f); int nsteps = int(floor((box.lu.y() - box.ld.y()) / (2*m_perimeter_width))); float step = (box.lu.y() - box.ld.y()) / nsteps; writer.travel(box.ld - Vec2f(m_perimeter_width/2.f, m_perimeter_width/2.f)); if (nsteps >= 0) for (int i = 0; i < nsteps; ++i) { writer.extrude(box.ld.x()+m_perimeter_width/2.f, writer.y() + 0.5f * step); writer.extrude(box.rd.x() - m_perimeter_width / 2.f, writer.y()); writer.extrude(box.rd.x() - m_perimeter_width / 2.f, writer.y() + 0.5f * step); writer.extrude(box.ld.x() + m_perimeter_width / 2.f, writer.y()); } writer.travel(box.rd.x()-m_perimeter_width/2.f,writer.y()); // wipe the nozzle } else { // Extrude a sparse infill to support the material to be printed above. const float dy = (fill_box.lu.y() - fill_box.ld.y() - m_perimeter_width); const float left = fill_box.lu.x() + 2*m_perimeter_width; const float right = fill_box.ru.x() - 2 * m_perimeter_width; if (dy > m_perimeter_width) { // Extrude an inverse U at the left of the region. writer.travel(fill_box.ld + Vec2f(m_perimeter_width * 2, 0.f)) .extrude(fill_box.lu + Vec2f(m_perimeter_width * 2, 0.f), 2900 * speed_factor); const int n = 1+int((right-left)/m_bridging); const float dx = (right-left)/n; for (int i=1;i<=n;++i) { float x=left+dx*i; writer.travel(x,writer.y()); writer.extrude(x,i%2 ? fill_box.rd.y() : fill_box.ru.y()); } writer.travel(left,writer.y(),7200); // wipes the nozzle before moving away from the wipe tower } else writer.travel(right,writer.y(),7200); // wipes the nozzle before moving away from the wipe tower } writer.append("; CP EMPTY GRID END\n" ";------------------\n\n\n\n\n\n\n"); m_depth_traversed = m_wipe_tower_depth-m_perimeter_width; // Ask our writer about how much material was consumed. // Skip this in case the layer is sparse and config option to not print sparse layers is enabled. if (! m_no_sparse_layers || toolchanges_on_layer) if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); ToolChangeResult result; result.priming = false; result.initial_tool = int(old_tool); result.new_tool = int(m_current_tool); result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos_rotated(); return result; } // Appends a toolchange into m_plan and calculates neccessary depth of the corresponding box void WipeTower::plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, bool brim, float wipe_volume) { assert(m_plan.empty() || m_plan.back().z <= z_par + WT_EPSILON); // refuses to add a layer below the last one if (m_plan.empty() || m_plan.back().z + WT_EPSILON < z_par) // if we moved to a new layer, we'll add it to m_plan first m_plan.push_back(WipeTowerInfo(z_par, layer_height_par)); if (brim) { // this toolchange prints brim - we must add it to m_plan, but not to count its depth m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool)); return; } if (old_tool==new_tool) // new layer without toolchanges - we are done return; // this is an actual toolchange - let's calculate depth to reserve on the wipe tower float depth = 0.f; float width = m_wipe_tower_width - 3*m_perimeter_width; float length_to_extrude = volume_to_length(0.25f * std::accumulate(m_filpar[old_tool].ramming_speed.begin(), m_filpar[old_tool].ramming_speed.end(), 0.f), m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator, layer_height_par); depth = (int(length_to_extrude / width) + 1) * (m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator * m_filpar[old_tool].ramming_step_multiplicator); float ramming_depth = depth; length_to_extrude = width*((length_to_extrude / width)-int(length_to_extrude / width)) - width; float first_wipe_line = -length_to_extrude; length_to_extrude += volume_to_length(wipe_volume, m_perimeter_width, layer_height_par); length_to_extrude = std::max(length_to_extrude,0.f); depth += (int(length_to_extrude / width) + 1) * m_perimeter_width; depth *= m_extra_spacing; m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, depth, ramming_depth, first_wipe_line, wipe_volume)); } void WipeTower::plan_tower() { // Calculate m_wipe_tower_depth (maximum depth for all the layers) and propagate depths downwards m_wipe_tower_depth = 0.f; for (auto& layer : m_plan) layer.depth = 0.f; for (int layer_index = int(m_plan.size()) - 1; layer_index >= 0; --layer_index) { float this_layer_depth = std::max(m_plan[layer_index].depth, m_plan[layer_index].toolchanges_depth()); m_plan[layer_index].depth = this_layer_depth; if (this_layer_depth > m_wipe_tower_depth - m_perimeter_width) m_wipe_tower_depth = this_layer_depth + m_perimeter_width; for (int i = layer_index - 1; i >= 0 ; i--) { if (m_plan[i].depth - this_layer_depth < 2*m_perimeter_width ) m_plan[i].depth = this_layer_depth; } } } void WipeTower::save_on_last_wipe() { for (m_layer_info=m_plan.begin();m_layer_infoz, m_layer_info->height, 0, m_layer_info->z == m_plan.front().z, m_layer_info->z == m_plan.back().z); if (m_layer_info->tool_changes.size()==0) // we have no way to save anything on an empty layer continue; for (const auto &toolchange : m_layer_info->tool_changes) tool_change(toolchange.new_tool, false); float width = m_wipe_tower_width - 3*m_perimeter_width; // width we draw into float length_to_save = 2*(m_wipe_tower_width+m_wipe_tower_depth) + (!layer_finished() ? finish_layer().total_extrusion_length_in_plane() : 0.f); float length_to_wipe = volume_to_length(m_layer_info->tool_changes.back().wipe_volume, m_perimeter_width,m_layer_info->height) - m_layer_info->tool_changes.back().first_wipe_line - length_to_save; length_to_wipe = std::max(length_to_wipe,0.f); float depth_to_wipe = m_perimeter_width * (std::floor(length_to_wipe/width) + ( length_to_wipe > 0.f ? 1.f : 0.f ) ) * m_extra_spacing; //depth += (int(length_to_extrude / width) + 1) * m_perimeter_width; m_layer_info->tool_changes.back().required_depth = m_layer_info->tool_changes.back().ramming_depth + depth_to_wipe; } } // Processes vector m_plan and calls respective functions to generate G-code for the wipe tower // Resulting ToolChangeResults are appended into vector "result" void WipeTower::generate(std::vector> &result) { if (m_plan.empty()) return; m_extra_spacing = 1.f; plan_tower(); for (int i=0;i<5;++i) { save_on_last_wipe(); plan_tower(); } if (m_peters_wipe_tower) make_wipe_tower_square(); m_layer_info = m_plan.begin(); // we don't know which extruder to start with - we'll set it according to the first toolchange for (const auto& layer : m_plan) { if (!layer.tool_changes.empty()) { m_current_tool = layer.tool_changes.front().old_tool; break; } } for (auto& used : m_used_filament_length) // reset used filament stats used = 0.f; m_old_temperature = -1; // reset last temperature written in the gcode std::vector layer_result; for (auto layer : m_plan) { set_layer(layer.z,layer.height,0,layer.z == m_plan.front().z,layer.z == m_plan.back().z); if (m_peters_wipe_tower) m_internal_rotation += 90.f; else m_internal_rotation += 180.f; if (!m_peters_wipe_tower && m_layer_info->depth < m_wipe_tower_depth - m_perimeter_width) m_y_shift = (m_wipe_tower_depth-m_layer_info->depth-m_perimeter_width)/2.f; for (const auto &toolchange : layer.tool_changes) layer_result.emplace_back(tool_change(toolchange.new_tool, false)); if (! layer_finished()) { auto finish_layer_toolchange = finish_layer(); if ( ! layer.tool_changes.empty() ) { // we will merge it to the last toolchange auto& last_toolchange = layer_result.back(); if (last_toolchange.end_pos != finish_layer_toolchange.start_pos) { char buf[2048]; // Add a travel move from tc1.end_pos to tc2.start_pos. sprintf(buf, "G1 X%.3f Y%.3f F7200\n", finish_layer_toolchange.start_pos.x(), finish_layer_toolchange.start_pos.y()); last_toolchange.gcode += buf; } last_toolchange.gcode += finish_layer_toolchange.gcode; last_toolchange.extrusions.insert(last_toolchange.extrusions.end(), finish_layer_toolchange.extrusions.begin(), finish_layer_toolchange.extrusions.end()); last_toolchange.end_pos = finish_layer_toolchange.end_pos; } else layer_result.emplace_back(std::move(finish_layer_toolchange)); } result.emplace_back(std::move(layer_result)); m_is_first_layer = false; } } void WipeTower::make_wipe_tower_square() { const float width = m_wipe_tower_width - 3 * m_perimeter_width; const float depth = m_wipe_tower_depth - m_perimeter_width; // area that we actually print into is width*depth float side = sqrt(depth * width); m_wipe_tower_width = side + 3 * m_perimeter_width; m_wipe_tower_depth = side + 2 * m_perimeter_width; // For all layers, find how depth changed and update all toolchange depths for (auto &lay : m_plan) { side = sqrt(lay.depth * width); float width_ratio = width / side; //lay.extra_spacing = width_ratio; for (auto &tch : lay.tool_changes) tch.required_depth *= width_ratio; } plan_tower(); // propagates depth downwards again (width has changed) for (auto& lay : m_plan) // depths set, now the spacing lay.extra_spacing = lay.depth / lay.toolchanges_depth(); } }; // namespace Slic3r