package Slic3r::Layer::Region; use strict; use warnings; use List::Util qw(sum first); use Slic3r::ExtrusionLoop ':roles'; use Slic3r::ExtrusionPath ':roles'; use Slic3r::Flow ':roles'; use Slic3r::Geometry qw(PI A B scale unscale chained_path); use Slic3r::Geometry::Clipper qw(union_ex diff_ex intersection_ex offset offset_ex offset2 offset2_ex union_pt diff intersection union diff intersection_ppl diff_ppl); use Slic3r::Surface ':types'; # TODO: lazy sub infill_area_threshold { my $self = shift; return $self->flow(FLOW_ROLE_SOLID_INFILL)->scaled_spacing ** 2; } sub id { return $_[0]->layer->id; } sub slice_z { return $_[0]->layer->slice_z; } sub print_z { return $_[0]->layer->print_z; } sub height { return $_[0]->layer->height; } sub object { return $_[0]->layer->object; } sub print { return $_[0]->layer->print; } sub config { return $_[0]->region->config; } sub merge_slices { my ($self) = @_; my $expolygons = union_ex([ map $_->p, @{$self->slices} ]); $self->slices->clear; $self->slices->append(Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNAL, )) for @$expolygons; } sub make_perimeters { my ($self, $slices, $fill_surfaces) = @_; # other perimeters my $perimeter_flow = $self->flow(FLOW_ROLE_PERIMETER); my $mm3_per_mm = $perimeter_flow->mm3_per_mm; my $pwidth = $perimeter_flow->scaled_width; my $pspacing = $perimeter_flow->scaled_spacing; # external perimeters my $ext_perimeter_flow = $self->flow(FLOW_ROLE_EXTERNAL_PERIMETER); my $ext_mm3_per_mm = $ext_perimeter_flow->mm3_per_mm; my $ext_pwidth = $ext_perimeter_flow->scaled_width; my $ext_pspacing = scale($ext_perimeter_flow->spacing_to($perimeter_flow)); # overhang perimeters my $overhang_flow = $self->region->flow(FLOW_ROLE_PERIMETER, -1, 1, 0, -1, $self->layer->object); my $mm3_per_mm_overhang = $overhang_flow->mm3_per_mm; # solid infill my $solid_infill_flow = $self->flow(FLOW_ROLE_SOLID_INFILL); my $ispacing = $solid_infill_flow->scaled_spacing; my $gap_area_threshold = $pwidth ** 2; # Calculate the minimum required spacing between two adjacent traces. # This should be equal to the nominal flow spacing but we experiment # with some tolerance in order to avoid triggering medial axis when # some squishing might work. Loops are still spaced by the entire # flow spacing; this only applies to collapsing parts. my $min_spacing = $pspacing * (1 - &Slic3r::INSET_OVERLAP_TOLERANCE); my $ext_min_spacing = $ext_pspacing * (1 - &Slic3r::INSET_OVERLAP_TOLERANCE); $self->perimeters->clear; $self->thin_fills->clear; my @contours = (); # array of Polygons with ccw orientation my @holes = (); # array of Polygons with cw orientation my @thin_walls = (); # array of ExPolygons # we need to process each island separately because we might have different # extra perimeters for each one foreach my $surface (@$slices) { # detect how many perimeters must be generated for this island my $loop_number = $self->config->perimeters + ($surface->extra_perimeters || 0); my @last = @{$surface->expolygon}; my @gaps = (); # array of ExPolygons if ($loop_number > 0) { # we loop one time more than needed in order to find gaps after the last perimeter was applied for my $i (1 .. ($loop_number+1)) { # outer loop is 1 my @offsets = (); if ($i == 1) { # the minimum thickness of a single loop is: # ext_width/2 + ext_spacing/2 + spacing/2 + width/2 if ($self->config->thin_walls) { @offsets = @{offset2( \@last, -(0.5*$ext_pwidth + 0.5*$ext_min_spacing - 1), +(0.5*$ext_min_spacing - 1), )}; } else { @offsets = @{offset( \@last, -0.5*$ext_pwidth, )}; } # look for thin walls if ($self->config->thin_walls) { my $diff = diff_ex( \@last, offset(\@offsets, +0.5*$ext_pwidth), 1, # medial axis requires non-overlapping geometry ); push @thin_walls, @$diff; } } else { my $distance = ($i == 2) ? $ext_pspacing : $pspacing; if ($self->config->thin_walls) { @offsets = @{offset2( \@last, -($distance + 0.5*$min_spacing - 1), +(0.5*$min_spacing - 1), )}; } else { @offsets = @{offset( \@last, -$distance, )}; } # look for gaps if ($self->region->config->gap_fill_speed > 0 && $self->config->fill_density > 0) { # not using safety offset here would "detect" very narrow gaps # (but still long enough to escape the area threshold) that gap fill # won't be able to fill but we'd still remove from infill area my $diff = diff_ex( offset(\@last, -0.5*$pspacing), offset(\@offsets, +0.5*$pspacing + 10), # safety offset ); push @gaps, grep abs($_->area) >= $gap_area_threshold, @$diff; } } last if !@offsets; last if $i > $loop_number; # we were only looking for gaps this time # clone polygons because these ExPolygons will go out of scope very soon @last = @offsets; foreach my $polygon (@offsets) { if ($polygon->is_counter_clockwise) { push @contours, $polygon; } else { push @holes, $polygon; } } } } # fill gaps if (@gaps) { if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "gaps.svg", expolygons => \@gaps, ); } # where $pwidth < thickness < 2*$pspacing, infill with width = 1.5*$pwidth # where 0.5*$pwidth < thickness < $pwidth, infill with width = 0.5*$pwidth my @gap_sizes = ( [ $pwidth, 2*$pspacing, unscale 1.5*$pwidth ], [ 0.5*$pwidth, $pwidth, unscale 0.5*$pwidth ], ); foreach my $gap_size (@gap_sizes) { my @gap_fill = $self->_fill_gaps(@$gap_size, \@gaps); $self->thin_fills->append(@gap_fill); # Make sure we don't infill narrow parts that are already gap-filled # (we only consider this surface's gaps to reduce the diff() complexity). # Growing actual extrusions ensures that gaps not filled by medial axis # are not subtracted from fill surfaces (they might be too short gaps # that medial axis skips but infill might join with other infill regions # and use zigzag). my $w = $gap_size->[2]; my @filled = map { @{($_->isa('Slic3r::ExtrusionLoop') ? $_->polygon->split_at_first_point : $_->polyline) ->grow(scale $w/2)}; } @gap_fill; @last = @{diff(\@last, \@filled)}; } } # create one more offset to be used as boundary for fill # we offset by half the perimeter spacing (to get to the actual infill boundary) # and then we offset back and forth by half the infill spacing to only consider the # non-collapsing regions my $min_perimeter_infill_spacing = $ispacing * (1 - &Slic3r::INSET_OVERLAP_TOLERANCE); $fill_surfaces->append( map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL), # use a bogus surface type @{offset2_ex( [ map @{$_->simplify_p(&Slic3r::SCALED_RESOLUTION)}, @{union_ex(\@last)} ], -($pspacing/2 + $min_perimeter_infill_spacing/2), +$min_perimeter_infill_spacing/2, )} ); } # process thin walls by collapsing slices to single passes my @thin_wall_polylines = (); if (@thin_walls) { # the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width # (actually, something larger than that still may exist due to mitering or other causes) my $min_width = $pwidth / 4; @thin_walls = @{offset2_ex([ map @$_, @thin_walls ], -$min_width/2, +$min_width/2)}; # the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop @thin_wall_polylines = map @{$_->medial_axis($pwidth + $pspacing, $min_width)}, @thin_walls; Slic3r::debugf " %d thin walls detected\n", scalar(@thin_wall_polylines) if $Slic3r::debug; if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output( "medial_axis.svg", no_arrows => 1, expolygons => \@thin_walls, green_polylines => [ map $_->polygon->split_at_first_point, @{$self->perimeters} ], red_polylines => \@thin_wall_polylines, ); } } # find nesting hierarchies separately for contours and holes my $contours_pt = union_pt(\@contours); my $holes_pt = union_pt(\@holes); # prepare grown lower layer slices for overhang detection my $lower_slices = Slic3r::ExPolygon::Collection->new; if ($self->layer->lower_layer && $self->region->config->overhangs) { # We consider overhang any part where the entire nozzle diameter is not supported by the # lower layer, so we take lower slices and offset them by half the nozzle diameter used # in the current layer my $nozzle_diameter = $self->layer->print->config->get_at('nozzle_diameter', $self->region->config->perimeter_extruder-1); $lower_slices->append( @{offset_ex([ map @$_, @{$self->layer->lower_layer->slices} ], scale +$nozzle_diameter/2)}, ); } my $lower_slices_p = $lower_slices->polygons; # prepare a coderef for traversing the PolyTree object # external contours are root items of $contours_pt # internal contours are the ones next to external my $traverse; $traverse = sub { my ($polynodes, $depth, $is_contour) = @_; # convert all polynodes to ExtrusionLoop objects my $collection = Slic3r::ExtrusionPath::Collection->new; my @children = (); foreach my $polynode (@$polynodes) { my $polygon = ($polynode->{outer} // $polynode->{hole})->clone; my $role = EXTR_ROLE_PERIMETER; my $loop_role = EXTRL_ROLE_DEFAULT; my $root_level = $depth == 0; my $no_children = !@{ $polynode->{children} }; my $is_external = $is_contour ? $root_level : $no_children; my $is_internal = $is_contour ? $no_children : $root_level; if ($is_external) { # external perimeters are root level in case of contours # and items with no children in case of holes $role = EXTR_ROLE_EXTERNAL_PERIMETER; $loop_role = EXTRL_ROLE_EXTERNAL_PERIMETER; } elsif ($is_contour && $is_internal) { # internal perimeters are root level in case of holes # and items with no children in case of contours $loop_role = EXTRL_ROLE_CONTOUR_INTERNAL_PERIMETER; } # detect overhanging/bridging perimeters my @paths = (); if ($self->region->config->overhangs && $self->layer->id > 0) { # get non-overhang paths by intersecting this loop with the grown lower slices foreach my $polyline (@{ intersection_ppl([ $polygon ], $lower_slices_p) }) { push @paths, Slic3r::ExtrusionPath->new( polyline => $polyline, role => $role, mm3_per_mm => ($is_external ? $ext_mm3_per_mm : $mm3_per_mm), width => ($is_external ? $ext_perimeter_flow->width : $perimeter_flow->width), height => $self->height, ); } # get overhang paths by checking what parts of this loop fall # outside the grown lower slices (thus where the distance between # the loop centerline and original lower slices is >= half nozzle diameter foreach my $polyline (@{ diff_ppl([ $polygon ], $lower_slices_p) }) { push @paths, Slic3r::ExtrusionPath->new( polyline => $polyline, role => EXTR_ROLE_OVERHANG_PERIMETER, mm3_per_mm => $mm3_per_mm_overhang, width => $overhang_flow->width, height => $self->height, ); } # reapply the nearest point search for starting point # (clone because the collection gets DESTROY'ed) # We allow polyline reversal because Clipper may have randomly # reversed polylines during clipping. my $collection = Slic3r::ExtrusionPath::Collection->new(@paths); @paths = map $_->clone, @{$collection->chained_path(0)}; } else { push @paths, Slic3r::ExtrusionPath->new( polyline => $polygon->split_at_first_point, role => $role, mm3_per_mm => $mm3_per_mm, width => $perimeter_flow->width, height => $self->height, ); } my $loop = Slic3r::ExtrusionLoop->new_from_paths(@paths); $loop->role($loop_role); # return ccw contours and cw holes # GCode.pm will convert all of them to ccw, but it needs to know # what the holes are in order to compute the correct inwards move # We do this on the final Loop object instead of the polygon because # overhang clipping might have reversed its order since Clipper does # not preserve polyline orientation. if ($is_contour) { $loop->make_counter_clockwise; } else { $loop->make_clockwise; } $collection->append($loop); # save the children push @children, $polynode->{children}; } # if we're handling the top-level contours, add thin walls as candidates too # in order to include them in the nearest-neighbor search if ($is_contour && $depth == 0) { foreach my $polyline (@thin_wall_polylines) { $collection->append(Slic3r::ExtrusionPath->new( polyline => $polyline, role => EXTR_ROLE_EXTERNAL_PERIMETER, mm3_per_mm => $mm3_per_mm, width => $perimeter_flow->width, height => $self->height, )); } } # use a nearest neighbor search to order these children # TODO: supply second argument to chained_path() too? # Optimization: since islands are going to be sorted by slice anyway in the # G-code export process, we skip chained_path here my ($sorted_collection, @orig_indices); if ($is_contour && $depth == 0) { $sorted_collection = $collection; @orig_indices = (0..$#$sorted_collection); } else { $sorted_collection = $collection->chained_path_indices(0); @orig_indices = @{$sorted_collection->orig_indices}; } my @loops = (); foreach my $loop (@$sorted_collection) { my $orig_index = shift @orig_indices; if ($loop->isa('Slic3r::ExtrusionPath')) { push @loops, $loop->clone; } else { # if this is an external contour find all holes belonging to this contour(s) # and prepend them if ($is_contour && $depth == 0) { # $loop is the outermost loop of an island my @holes = (); for (my $i = 0; $i <= $#$holes_pt; $i++) { if ($loop->polygon->contains_point($holes_pt->[$i]{outer}->first_point)) { push @holes, splice @$holes_pt, $i, 1; # remove from candidates to reduce complexity $i--; } } # order holes efficiently @holes = @holes[@{chained_path([ map {($_->{outer} // $_->{hole})->first_point} @holes ])}]; push @loops, reverse map $traverse->([$_], 0, 0), @holes; } # traverse children and prepend them to this loop push @loops, $traverse->($children[$orig_index], $depth+1, $is_contour); push @loops, $loop->clone; } } return @loops; }; # order loops from inner to outer (in terms of object slices) my @loops = $traverse->($contours_pt, 0, 1); # if brim will be printed, reverse the order of perimeters so that # we continue inwards after having finished the brim # TODO: add test for perimeter order @loops = reverse @loops if $self->region->config->external_perimeters_first || ($self->layer->id == 0 && $self->print->config->brim_width > 0); # append perimeters $self->perimeters->append(@loops); } sub _fill_gaps { my ($self, $min, $max, $w, $gaps) = @_; my $this = diff_ex( offset2([ map @$_, @$gaps ], -$min/2, +$min/2), offset2([ map @$_, @$gaps ], -$max/2, +$max/2), 1, ); my $flow = $self->flow(FLOW_ROLE_SOLID_INFILL, 0, $w); my %path_args = ( role => EXTR_ROLE_GAPFILL, mm3_per_mm => $flow->mm3_per_mm, width => $flow->width, height => $self->height, ); my @polylines = map @{$_->medial_axis($max, $min/2)}, @$this; Slic3r::debugf " %d gaps filled with extrusion width = %s\n", scalar @$this, $w if @$this; for my $i (0..$#polylines) { if ($polylines[$i]->isa('Slic3r::Polygon')) { my $loop = Slic3r::ExtrusionLoop->new; $loop->append(Slic3r::ExtrusionPath->new(polyline => $polylines[$i]->split_at_first_point, %path_args)); $polylines[$i] = $loop; } elsif ($polylines[$i]->is_valid && $polylines[$i]->first_point->coincides_with($polylines[$i]->last_point)) { # since medial_axis() now returns only Polyline objects, detect loops here my $loop = Slic3r::ExtrusionLoop->new; $loop->append(Slic3r::ExtrusionPath->new(polyline => $polylines[$i], %path_args)); $polylines[$i] = $loop; } else { $polylines[$i] = Slic3r::ExtrusionPath->new(polyline => $polylines[$i], %path_args); } } return @polylines; } sub prepare_fill_surfaces { my $self = shift; # Note: in order to make the psPrepareInfill step idempotent, we should never # alter fill_surfaces boundaries on which our idempotency relies since that's # the only meaningful information returned by psPerimeters. # if no solid layers are requested, turn top/bottom surfaces to internal if ($self->config->top_solid_layers == 0) { $_->surface_type(S_TYPE_INTERNAL) for @{$self->fill_surfaces->filter_by_type(S_TYPE_TOP)}; } if ($self->config->bottom_solid_layers == 0) { $_->surface_type(S_TYPE_INTERNAL) for @{$self->fill_surfaces->filter_by_type(S_TYPE_BOTTOM)}, @{$self->fill_surfaces->filter_by_type(S_TYPE_BOTTOMBRIDGE)}; } # turn too small internal regions into solid regions according to the user setting if ($self->config->fill_density > 0) { my $min_area = scale scale $self->config->solid_infill_below_area; # scaling an area requires two calls! $_->surface_type(S_TYPE_INTERNALSOLID) for grep { $_->area <= $min_area } @{$self->fill_surfaces->filter_by_type(S_TYPE_INTERNAL)}; } } sub process_external_surfaces { my ($self, $lower_layer) = @_; my @surfaces = @{$self->fill_surfaces}; my $margin = scale &Slic3r::EXTERNAL_INFILL_MARGIN; my @bottom = (); foreach my $surface (grep $_->is_bottom, @surfaces) { my $grown = $surface->expolygon->offset_ex(+$margin); # detect bridge direction before merging grown surfaces otherwise adjacent bridges # would get merged into a single one while they need different directions # also, supply the original expolygon instead of the grown one, because in case # of very thin (but still working) anchors, the grown expolygon would go beyond them my $angle; if ($lower_layer) { my $bridge_detector = Slic3r::Layer::BridgeDetector->new( expolygon => $surface->expolygon, lower_slices => $lower_layer->slices, extrusion_width => $self->flow(FLOW_ROLE_INFILL, $self->height, 1)->scaled_width, ); Slic3r::debugf "Processing bridge at layer %d:\n", $self->id; $angle = $bridge_detector->detect_angle; if (defined $angle && $self->object->config->support_material) { $self->bridged->append(@{ $bridge_detector->coverage($angle) }); $self->unsupported_bridge_edges->append(@{ $bridge_detector->unsupported_edges }); } } push @bottom, map $surface->clone(expolygon => $_, bridge_angle => $angle), @$grown; } my @top = (); foreach my $surface (grep $_->surface_type == S_TYPE_TOP, @surfaces) { # give priority to bottom surfaces my $grown = diff_ex( $surface->expolygon->offset(+$margin), [ map $_->p, @bottom ], ); push @top, map $surface->clone(expolygon => $_), @$grown; } # if we're slicing with no infill, we can't extend external surfaces # over non-existent infill my @fill_boundaries = $self->config->fill_density > 0 ? @surfaces : grep $_->surface_type != S_TYPE_INTERNAL, @surfaces; # intersect the grown surfaces with the actual fill boundaries my @new_surfaces = (); foreach my $group (@{Slic3r::Surface::Collection->new(@top, @bottom)->group}) { push @new_surfaces, map $group->[0]->clone(expolygon => $_), @{intersection_ex( [ map $_->p, @$group ], [ map $_->p, @fill_boundaries ], 1, # to ensure adjacent expolygons are unified )}; } # subtract the new top surfaces from the other non-top surfaces and re-add them my @other = grep $_->surface_type != S_TYPE_TOP && !$_->is_bottom, @surfaces; foreach my $group (@{Slic3r::Surface::Collection->new(@other)->group}) { push @new_surfaces, map $group->[0]->clone(expolygon => $_), @{diff_ex( [ map $_->p, @$group ], [ map $_->p, @new_surfaces ], )}; } $self->fill_surfaces->clear; $self->fill_surfaces->append(@new_surfaces); } 1;