#include #include #include #include "../ClipperUtils.hpp" #include "../Geometry.hpp" #include "../Layer.hpp" #include "../Print.hpp" #include "../PrintConfig.hpp" #include "../Surface.hpp" #include "FillBase.hpp" #include "FillRectilinear2.hpp" namespace Slic3r { struct SurfaceFillParams { // Zero based extruder ID. unsigned int extruder = 0; // Infill pattern, adjusted for the density etc. InfillPattern pattern = InfillPattern(0); // FillBase // in unscaled coordinates coordf_t spacing = 0.; // infill / perimeter overlap, in unscaled coordinates coordf_t overlap = 0.; // Angle as provided by the region config, in radians. float angle = 0.f; // Non-negative for a bridge. float bridge_angle = 0.f; // FillParams float density = 0.f; // Don't connect the fill lines around the inner perimeter. bool dont_connect = false; // Don't adjust spacing to fill the space evenly. bool dont_adjust = false; // width, height of extrusion, nozzle diameter, is bridge // For the output, for fill generator. Flow flow = Flow(0.f, 0.f, 0.f, false); // For the output ExtrusionRole extrusion_role = ExtrusionRole(0); // Various print settings? // Index of this entry in a linear vector. size_t idx = 0; bool operator<(const SurfaceFillParams &rhs) const { #define RETURN_COMPARE_NON_EQUAL(KEY) if (this->KEY < rhs.KEY) return true; if (this->KEY > rhs.KEY) return false; #define RETURN_COMPARE_NON_EQUAL_TYPED(TYPE, KEY) if (TYPE(this->KEY) < TYPE(rhs.KEY)) return true; if (TYPE(this->KEY) > TYPE(rhs.KEY)) return false; // Sort first by decreasing bridging angle, so that the bridges are processed with priority when trimming one layer by the other. if (this->bridge_angle > rhs.bridge_angle) return true; if (this->bridge_angle < rhs.bridge_angle) return false; RETURN_COMPARE_NON_EQUAL(extruder); RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, pattern); RETURN_COMPARE_NON_EQUAL(spacing); RETURN_COMPARE_NON_EQUAL(overlap); RETURN_COMPARE_NON_EQUAL(angle); RETURN_COMPARE_NON_EQUAL(density); RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, dont_connect); RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, dont_adjust); RETURN_COMPARE_NON_EQUAL(flow.width); RETURN_COMPARE_NON_EQUAL(flow.height); RETURN_COMPARE_NON_EQUAL(flow.nozzle_diameter); RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, flow.bridge); RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, extrusion_role); return false; } bool operator==(const SurfaceFillParams &rhs) const { return this->extruder == rhs.extruder && this->pattern == rhs.pattern && this->pattern == rhs.pattern && this->spacing == rhs.spacing && this->overlap == rhs.overlap && this->angle == rhs.angle && this->density == rhs.density && this->dont_connect == rhs.dont_connect && this->dont_adjust == rhs.dont_adjust && this->flow == rhs.flow && this->extrusion_role == rhs.extrusion_role; } }; struct SurfaceFill { SurfaceFill(const SurfaceFillParams& params) : region_id(size_t(-1)), surface(stCount, ExPolygon()), params(params) {} size_t region_id; Surface surface; ExPolygons expolygons; SurfaceFillParams params; }; std::vector group_fills(const Layer &layer) { std::vector surface_fills; // Fill in a map of a region & surface to SurfaceFillParams. std::set set_surface_params; std::vector> region_to_surface_params(layer.regions().size(), std::vector()); SurfaceFillParams params; bool has_internal_voids = false; for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) { const LayerRegion &layerm = *layer.regions()[region_id]; region_to_surface_params[region_id].assign(layerm.fill_surfaces.size(), nullptr); for (const Surface &surface : layerm.fill_surfaces.surfaces) if (surface.surface_type == stInternalVoid) has_internal_voids = true; else { FlowRole extrusion_role = surface.is_top() ? frTopSolidInfill : (surface.is_solid() ? frSolidInfill : frInfill); bool is_bridge = layer.id() > 0 && surface.is_bridge(); params.extruder = layerm.region()->extruder(extrusion_role); params.pattern = layerm.region()->config().fill_pattern.value; params.density = float(layerm.region()->config().fill_density); if (surface.is_solid()) { params.density = 100.f; params.pattern = (surface.is_external() && ! is_bridge) ? (surface.is_top() ? layerm.region()->config().top_fill_pattern.value : layerm.region()->config().bottom_fill_pattern.value) : ipRectilinear; } else if (params.density <= 0) continue; params.extrusion_role = is_bridge ? erBridgeInfill : (surface.is_solid() ? (surface.is_top() ? erTopSolidInfill : erSolidInfill) : erInternalInfill); params.bridge_angle = float(surface.bridge_angle); params.angle = float(Geometry::deg2rad(layerm.region()->config().fill_angle.value)); // calculate the actual flow we'll be using for this infill params.flow = layerm.region()->flow( extrusion_role, (surface.thickness == -1) ? layer.height : surface.thickness, // extrusion height is_bridge || Fill::use_bridge_flow(params.pattern), // bridge flow? layer.id() == 0, // first layer? -1, // auto width *layer.object() ); // Calculate flow spacing for infill pattern generation. if (! surface.is_solid() && ! is_bridge) { // it's internal infill, so we can calculate a generic flow spacing // for all layers, for avoiding the ugly effect of // misaligned infill on first layer because of different extrusion width and // layer height params.spacing = layerm.region()->flow( frInfill, layer.object()->config().layer_height.value, // TODO: handle infill_every_layers? false, // no bridge false, // no first layer -1, // auto width *layer.object() ).spacing(); } else params.spacing = params.flow.spacing(); auto it_params = set_surface_params.find(params); if (it_params == set_surface_params.end()) it_params = set_surface_params.insert(it_params, params); region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()] = &(*it_params); } } surface_fills.reserve(set_surface_params.size()); for (const SurfaceFillParams ¶ms : set_surface_params) { const_cast(params).idx = surface_fills.size(); surface_fills.emplace_back(params); } for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) { const LayerRegion &layerm = *layer.regions()[region_id]; for (const Surface &surface : layerm.fill_surfaces.surfaces) if (surface.surface_type != stInternalVoid) { const SurfaceFillParams *params = region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()]; if (params != nullptr) { SurfaceFill &fill = surface_fills[params->idx]; if (fill.region_id == size_t(-1)) { fill.region_id = region_id; fill.surface = surface; fill.expolygons.emplace_back(std::move(fill.surface.expolygon)); } else fill.expolygons.emplace_back(surface.expolygon); } } } { Polygons all_polygons; for (SurfaceFill &fill : surface_fills) if (! fill.expolygons.empty()) { if (fill.expolygons.size() > 1 || ! all_polygons.empty()) { Polygons polys = to_polygons(std::move(fill.expolygons)); // Make a union of polygons, use a safety offset, subtract the preceding polygons. // Bridges are processed first (see SurfaceFill::operator<()) fill.expolygons = all_polygons.empty() ? union_ex(polys, true) : diff_ex(polys, all_polygons, true); append(all_polygons, std::move(polys)); } else if (&fill != &surface_fills.back()) append(all_polygons, to_polygons(fill.expolygons)); } } // we need to detect any narrow surfaces that might collapse // when adding spacing below // such narrow surfaces are often generated in sloping walls // by bridge_over_infill() and combine_infill() as a result of the // subtraction of the combinable area from the layer infill area, // which leaves small areas near the perimeters // we are going to grow such regions by overlapping them with the void (if any) // TODO: detect and investigate whether there could be narrow regions without // any void neighbors if (has_internal_voids) { // Internal voids are generated only if "infill_only_where_needed" or "infill_every_layers" are active. coord_t distance_between_surfaces = 0; Polygons surfaces_polygons; Polygons voids; int region_internal_infill = -1; int region_solid_infill = -1; int region_some_infill = -1; for (SurfaceFill &surface_fill : surface_fills) if (! surface_fill.expolygons.empty()) { distance_between_surfaces = std::max(distance_between_surfaces, surface_fill.params.flow.scaled_spacing()); append((surface_fill.surface.surface_type == stInternalVoid) ? voids : surfaces_polygons, to_polygons(surface_fill.expolygons)); if (surface_fill.surface.surface_type == stInternalSolid) region_internal_infill = (int)surface_fill.region_id; if (surface_fill.surface.is_solid()) region_solid_infill = (int)surface_fill.region_id; if (surface_fill.surface.surface_type != stInternalVoid) region_some_infill = (int)surface_fill.region_id; } if (! voids.empty() && ! surfaces_polygons.empty()) { // First clip voids by the printing polygons, as the voids were ignored by the loop above during mutual clipping. voids = diff(voids, surfaces_polygons); // Corners of infill regions, which would not be filled with an extrusion path with a radius of distance_between_surfaces/2 Polygons collapsed = diff( surfaces_polygons, offset2(surfaces_polygons, (float)-distance_between_surfaces/2, (float)+distance_between_surfaces/2), true); //FIXME why the voids are added to collapsed here? First it is expensive, second the result may lead to some unwanted regions being // added if two offsetted void regions merge. // polygons_append(voids, collapsed); ExPolygons extensions = intersection_ex(offset(collapsed, (float)distance_between_surfaces), voids, true); // Now find an internal infill SurfaceFill to add these extrusions to. SurfaceFill *internal_solid_fill = nullptr; unsigned int region_id = 0; if (region_internal_infill != -1) region_id = region_internal_infill; else if (region_solid_infill != -1) region_id = region_solid_infill; else if (region_some_infill != -1) region_id = region_some_infill; const LayerRegion& layerm = *layer.regions()[region_id]; for (SurfaceFill &surface_fill : surface_fills) if (surface_fill.surface.surface_type == stInternalSolid && std::abs(layer.height - surface_fill.params.flow.height) < EPSILON) { internal_solid_fill = &surface_fill; break; } if (internal_solid_fill == nullptr) { // Produce another solid fill. params.extruder = layerm.region()->extruder(frSolidInfill); params.pattern = ipRectilinear; params.density = 100.f; params.extrusion_role = erInternalInfill; params.angle = float(Geometry::deg2rad(layerm.region()->config().fill_angle.value)); // calculate the actual flow we'll be using for this infill params.flow = layerm.region()->flow( frSolidInfill, layer.height, // extrusion height false, // bridge flow? layer.id() == 0, // first layer? -1, // auto width *layer.object() ); params.spacing = params.flow.spacing(); surface_fills.emplace_back(params); surface_fills.back().surface.surface_type = stInternalSolid; surface_fills.back().surface.thickness = layer.height; surface_fills.back().expolygons = std::move(extensions); } else { append(extensions, std::move(internal_solid_fill->expolygons)); internal_solid_fill->expolygons = union_ex(extensions); } } } return surface_fills; } #ifdef SLIC3R_DEBUG_SLICE_PROCESSING void export_group_fills_to_svg(const char *path, const std::vector &fills) { BoundingBox bbox; for (const auto &fill : fills) for (const auto &expoly : fill.expolygons) bbox.merge(get_extents(expoly)); Point legend_size = export_surface_type_legend_to_svg_box_size(); Point legend_pos(bbox.min(0), bbox.max(1)); bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1))); SVG svg(path, bbox); const float transparency = 0.5f; for (const auto &fill : fills) for (const auto &expoly : fill.expolygons) svg.draw(expoly, surface_type_to_color_name(fill.surface.surface_type), transparency); export_surface_type_legend_to_svg(svg, legend_pos); svg.Close(); } #endif // friend to Layer void Layer::make_fills(FillAdaptive_Internal::Octree* adaptive_fill_octree) { for (LayerRegion *layerm : m_regions) layerm->fills.clear(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING // this->export_region_fill_surfaces_to_svg_debug("10_fill-initial"); #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ std::vector surface_fills = group_fills(*this); const Slic3r::BoundingBox bbox = this->object()->bounding_box(); #ifdef SLIC3R_DEBUG_SLICE_PROCESSING { static int iRun = 0; export_group_fills_to_svg(debug_out_path("Layer-fill_surfaces-10_fill-final-%d.svg", iRun ++).c_str(), surface_fills); } #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */ for (SurfaceFill &surface_fill : surface_fills) { // Create the filler object. std::unique_ptr f = std::unique_ptr(Fill::new_from_type(surface_fill.params.pattern)); f->set_bounding_box(bbox); f->layer_id = this->id(); f->z = this->print_z; f->angle = surface_fill.params.angle; f->adapt_fill_octree = adaptive_fill_octree; // calculate flow spacing for infill pattern generation bool using_internal_flow = ! surface_fill.surface.is_solid() && ! surface_fill.params.flow.bridge; double link_max_length = 0.; if (! surface_fill.params.flow.bridge) { #if 0 link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing()); // printf("flow spacing: %f, is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length); #else if (surface_fill.params.density > 80.) // 80% link_max_length = 3. * f->spacing; #endif } // Maximum length of the perimeter segment linking two infill lines. f->link_max_length = (coord_t)scale_(link_max_length); // Used by the concentric infill pattern to clip the loops to create extrusion paths. f->loop_clipping = coord_t(scale_(surface_fill.params.flow.nozzle_diameter) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER); // apply half spacing using this flow's own spacing and generate infill FillParams params; params.density = float(0.01 * surface_fill.params.density); params.dont_adjust = surface_fill.params.dont_adjust; // false for (ExPolygon &expoly : surface_fill.expolygons) { // Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon. f->spacing = surface_fill.params.spacing; surface_fill.surface.expolygon = std::move(expoly); Polylines polylines; try { polylines = f->fill_surface(&surface_fill.surface, params); } catch (InfillFailedException &) { } if (! polylines.empty()) { // calculate actual flow from spacing (which might have been adjusted by the infill // pattern generator) double flow_mm3_per_mm = surface_fill.params.flow.mm3_per_mm(); double flow_width = surface_fill.params.flow.width; if (using_internal_flow) { // if we used the internal flow we're not doing a solid infill // so we can safely ignore the slight variation that might have // been applied to f->spacing } else { Flow new_flow = Flow::new_from_spacing(float(f->spacing), surface_fill.params.flow.nozzle_diameter, surface_fill.params.flow.height, surface_fill.params.flow.bridge); flow_mm3_per_mm = new_flow.mm3_per_mm(); flow_width = new_flow.width; } // Save into layer. ExtrusionEntityCollection* eec = nullptr; m_regions[surface_fill.region_id]->fills.entities.push_back(eec = new ExtrusionEntityCollection()); // Only concentric fills are not sorted. eec->no_sort = f->no_sort(); extrusion_entities_append_paths( eec->entities, std::move(polylines), surface_fill.params.extrusion_role, flow_mm3_per_mm, float(flow_width), surface_fill.params.flow.height); } } } // add thin fill regions // Unpacks the collection, creates multiple collections per path. // The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection. // Why the paths are unpacked? for (LayerRegion *layerm : m_regions) for (const ExtrusionEntity *thin_fill : layerm->thin_fills.entities) { ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection()); layerm->fills.entities.push_back(&collection); collection.entities.push_back(thin_fill->clone()); } #ifndef NDEBUG for (LayerRegion *layerm : m_regions) for (size_t i = 0; i < layerm->fills.entities.size(); ++ i) assert(dynamic_cast(layerm->fills.entities[i]) != nullptr); #endif } // Create ironing extrusions over top surfaces. void Layer::make_ironing() { // LayerRegion::slices contains surfaces marked with SurfaceType. // Here we want to collect top surfaces extruded with the same extruder. // A surface will be ironed with the same extruder to not contaminate the print with another material leaking from the nozzle. // First classify regions based on the extruder used. struct IroningParams { int extruder = -1; bool just_infill = false; // Spacing of the ironing lines, also to calculate the extrusion flow from. double line_spacing; // Height of the extrusion, to calculate the extrusion flow from. double height; double speed; double angle; bool operator<(const IroningParams &rhs) const { if (this->extruder < rhs.extruder) return true; if (this->extruder > rhs.extruder) return false; if (int(this->just_infill) < int(rhs.just_infill)) return true; if (int(this->just_infill) > int(rhs.just_infill)) return false; if (this->line_spacing < rhs.line_spacing) return true; if (this->line_spacing > rhs.line_spacing) return false; if (this->height < rhs.height) return true; if (this->height > rhs.height) return false; if (this->speed < rhs.speed) return true; if (this->speed > rhs.speed) return false; if (this->angle < rhs.angle) return true; if (this->angle > rhs.angle) return false; return false; } bool operator==(const IroningParams &rhs) const { return this->extruder == rhs.extruder && this->just_infill == rhs.just_infill && this->line_spacing == rhs.line_spacing && this->height == rhs.height && this->speed == rhs.speed && this->angle == rhs.angle; } LayerRegion *layerm = nullptr; // IdeaMaker: ironing // ironing flowrate (5% percent) // ironing speed (10 mm/sec) // Kisslicer: // iron off, Sweep, Group // ironing speed: 15 mm/sec // Cura: // Pattern (zig-zag / concentric) // line spacing (0.1mm) // flow: from normal layer height. 10% // speed: 20 mm/sec }; std::vector by_extruder; bool extruder_dont_care = this->object()->config().wipe_into_objects; double default_layer_height = this->object()->config().layer_height; for (LayerRegion *layerm : m_regions) if (! layerm->slices.empty()) { IroningParams ironing_params; const PrintRegionConfig &config = layerm->region()->config(); if (config.ironing && (config.ironing_type == IroningType::AllSolid || (config.top_solid_layers > 0 && (config.ironing_type == IroningType::TopSurfaces || (config.ironing_type == IroningType::TopmostOnly && layerm->layer()->upper_layer == nullptr))))) { if (config.perimeter_extruder == config.solid_infill_extruder || config.perimeters == 0) { // Iron the whole face. ironing_params.extruder = config.solid_infill_extruder; } else { // Iron just the infill. ironing_params.extruder = config.solid_infill_extruder; } } if (ironing_params.extruder != -1) { ironing_params.just_infill = false; ironing_params.line_spacing = config.ironing_spacing; ironing_params.height = default_layer_height * 0.01 * config.ironing_flowrate; ironing_params.speed = config.ironing_speed; ironing_params.angle = config.fill_angle * M_PI / 180.; ironing_params.layerm = layerm; by_extruder.emplace_back(ironing_params); } } std::sort(by_extruder.begin(), by_extruder.end()); FillRectilinear2 fill; FillParams fill_params; fill.set_bounding_box(this->object()->bounding_box()); fill.layer_id = this->id(); fill.z = this->print_z; fill.overlap = 0; fill_params.density = 1.; // fill_params.dont_connect = true; fill_params.dont_connect = false; fill_params.monotonous = true; for (size_t i = 0; i < by_extruder.size(); ++ i) { // Find span of regions equivalent to the ironing operation. IroningParams &ironing_params = by_extruder[i]; size_t j = i; for (++ j; j < by_extruder.size() && ironing_params == by_extruder[j]; ++ j) ; // Create the ironing extrusions for regions object()->print()->config().nozzle_diameter.values[ironing_params.extruder - 1]; if (ironing_params.just_infill) { // Just infill. } else { // Infill and perimeter. // Merge top surfaces with the same ironing parameters. Polygons polys; for (size_t k = i; k < j; ++ k) for (const Surface &surface : by_extruder[k].layerm->slices.surfaces) if (surface.surface_type == stTop) polygons_append(polys, surface.expolygon); // Trim the top surfaces with half the nozzle diameter. ironing_areas = intersection_ex(polys, offset(this->lslices, - float(scale_(0.5 * nozzle_dmr)))); } // Create the filler object. fill.spacing = ironing_params.line_spacing; fill.angle = float(ironing_params.angle + 0.25 * M_PI); fill.link_max_length = (coord_t)scale_(3. * fill.spacing); double height = ironing_params.height * fill.spacing / nozzle_dmr; Flow flow = Flow::new_from_spacing(float(nozzle_dmr), 0., float(height), false); double flow_mm3_per_mm = flow.mm3_per_mm(); Surface surface_fill(stTop, ExPolygon()); for (ExPolygon &expoly : ironing_areas) { surface_fill.expolygon = std::move(expoly); Polylines polylines; try { polylines = fill.fill_surface(&surface_fill, fill_params); } catch (InfillFailedException &) { } if (! polylines.empty()) { // Save into layer. ExtrusionEntityCollection *eec = nullptr; ironing_params.layerm->fills.entities.push_back(eec = new ExtrusionEntityCollection()); // Don't sort the ironing infill lines as they are monotonously ordered. eec->no_sort = true; extrusion_entities_append_paths( eec->entities, std::move(polylines), erIroning, flow_mm3_per_mm, float(flow.width), float(height)); } } } } } // namespace Slic3r