#ifndef _libslic3r_h_ #define _libslic3r_h_ #include "libslic3r_version.h" // this needs to be included early for MSVC (listing it in Build.PL is not enough) #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Technologies.hpp" typedef int32_t coord_t; typedef double coordf_t; //FIXME This epsilon value is used for many non-related purposes: // For a threshold of a squared Euclidean distance, // for a trheshold in a difference of radians, // for a threshold of a cross product of two non-normalized vectors etc. #define EPSILON 1e-4 // Scaling factor for a conversion from coord_t to coordf_t: 10e-6 // This scaling generates a following fixed point representation with for a 32bit integer: // 0..4294mm with 1nm resolution // int32_t fits an interval of (-2147.48mm, +2147.48mm) #define SCALING_FACTOR 0.000001 // RESOLUTION, SCALED_RESOLUTION: Used as an error threshold for a Douglas-Peucker polyline simplification algorithm. #define RESOLUTION 0.0125 #define SCALED_RESOLUTION (RESOLUTION / SCALING_FACTOR) #define PI 3.141592653589793238 // When extruding a closed loop, the loop is interrupted and shortened a bit to reduce the seam. #define LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER 0.15 // Maximum perimeter length for the loop to apply the small perimeter speed. #define SMALL_PERIMETER_LENGTH (6.5 / SCALING_FACTOR) * 2 * PI #define INSET_OVERLAP_TOLERANCE 0.4 // 3mm ring around the top / bottom / bridging areas. //FIXME This is quite a lot. #define EXTERNAL_INFILL_MARGIN 3. //FIXME Better to use an inline function with an explicit return type. //inline coord_t scale_(coordf_t v) { return coord_t(floor(v / SCALING_FACTOR + 0.5f)); } #define scale_(val) ((val) / SCALING_FACTOR) #define SCALED_EPSILON scale_(EPSILON) #define SLIC3R_DEBUG_OUT_PATH_PREFIX "out/" inline std::string debug_out_path(const char *name, ...) { char buffer[2048]; va_list args; va_start(args, name); std::vsprintf(buffer, name, args); va_end(args); return std::string(SLIC3R_DEBUG_OUT_PATH_PREFIX) + std::string(buffer); } #ifdef _MSC_VER // Visual Studio older than 2015 does not support the prinf type specifier %zu. Use %Iu instead. #define PRINTF_ZU "%Iu" #else #define PRINTF_ZU "%zu" #endif #ifndef UNUSED #define UNUSED(x) (void)(x) #endif /* UNUSED */ // Detect whether the compiler supports C++11 noexcept exception specifications. #if defined(_MSC_VER) && _MSC_VER < 1900 #define noexcept throw() #endif // Write slices as SVG images into out directory during the 2D processing of the slices. // #define SLIC3R_DEBUG_SLICE_PROCESSING namespace Slic3r { template inline T unscale(Q v) { return T(v) * T(SCALING_FACTOR); } enum Axis { X=0, Y, Z, E, F, NUM_AXES }; template inline void append_to(std::vector &dst, const std::vector &src) { dst.insert(dst.end(), src.begin(), src.end()); } template inline void append(std::vector& dest, const std::vector& src) { if (dest.empty()) dest = src; else dest.insert(dest.end(), src.begin(), src.end()); } template inline void append(std::vector& dest, std::vector&& src) { if (dest.empty()) dest = std::move(src); else std::move(std::begin(src), std::end(src), std::back_inserter(dest)); src.clear(); src.shrink_to_fit(); } // Casting an std::vector<> from one type to another type without warnings about a loss of accuracy. template std::vector cast(const std::vector &src) { std::vector dst; dst.reserve(src.size()); for (const T_FROM &a : src) dst.emplace_back((T_TO)a); return dst; } template inline void remove_nulls(std::vector &vec) { vec.erase( std::remove_if(vec.begin(), vec.end(), [](const T *ptr) { return ptr == nullptr; }), vec.end()); } template inline void sort_remove_duplicates(std::vector &vec) { std::sort(vec.begin(), vec.end()); vec.erase(std::unique(vec.begin(), vec.end()), vec.end()); } // Older compilers do not provide a std::make_unique template. Provide a simple one. template inline std::unique_ptr make_unique(Args&&... args) { return std::unique_ptr(new T(std::forward(args)...)); } template static inline T sqr(T x) { return x * x; } template static inline T clamp(const T low, const T high, const T value) { return std::max(low, std::min(high, value)); } template static inline T lerp(const T& a, const T& b, Number t) { assert((t >= Number(-EPSILON)) && (t <= Number(1) + Number(EPSILON))); return (Number(1) - t) * a + t * b; } template static inline bool is_approx(Number value, Number test_value) { return std::fabs(double(value) - double(test_value)) < double(EPSILON); } } // namespace Slic3r #endif