package Slic3r::Print; use File::Basename qw(basename fileparse); use File::Spec; use List::Util qw(min max first); use Slic3r::ExtrusionPath ':roles'; use Slic3r::Flow ':roles'; use Slic3r::Geometry qw(X Y Z X1 Y1 X2 Y2 MIN MAX PI scale unscale move_points chained_path convex_hull); use Slic3r::Geometry::Clipper qw(diff_ex union_ex union_pt intersection_ex intersection offset offset2 union union_pt_chained JT_ROUND JT_SQUARE); use Slic3r::Print::State ':steps'; our $status_cb; sub new { # TODO: port PlaceholderParser methods to C++, then its own constructor # can call them and no need for this new() method at all my ($class) = @_; my $self = $class->_new; $self->placeholder_parser->apply_env_variables; $self->placeholder_parser->update_timestamp; return $self; } sub set_status_cb { my ($class, $cb) = @_; $status_cb = $cb; } sub status_cb { return $status_cb; } sub apply_config { my ($self, $config) = @_; $config = $config->clone; $config->normalize; # apply variables to placeholder parser $self->placeholder_parser->apply_config($config); # handle changes to print config my $print_diff = $self->config->diff($config); if (@$print_diff) { $self->config->apply_dynamic($config); # TODO: only invalidate changed steps $self->_state->invalidate_all; } # handle changes to object config defaults $self->default_object_config->apply_dynamic($config); foreach my $object (@{$self->objects}) { # we don't assume that $config contains a full ObjectConfig, # so we base it on the current print-wise default my $new = $self->default_object_config->clone; # we override the new config with object-specific options my $model_object_config = $object->model_object->config->clone; $model_object_config->normalize; $new->apply_dynamic($model_object_config); # check whether the new config is different from the current one my $diff = $object->config->diff($new); if (@$diff) { $object->config->apply($new); # TODO: only invalidate changed steps $object->_state->invalidate_all; } } # handle changes to regions config defaults $self->default_region_config->apply_dynamic($config); # All regions now have distinct settings. # Check whether applying the new region config defaults we'd get different regions. my $rearrange_regions = 0; REGION: foreach my $region_id (0..($self->region_count - 1)) { foreach my $object (@{$self->objects}) { foreach my $volume_id (@{ $object->get_region_volumes($region_id) }) { my $volume = $object->model_object->volumes->[$volume_id]; my $new = $self->default_region_config->clone; { my $model_object_config = $object->model_object->config->clone; $model_object_config->normalize; $new->apply_dynamic($model_object_config); } if (defined $volume->material_id) { my $material_config = $object->model_object->model->get_material($volume->material_id)->config->clone; $material_config->normalize; $new->apply_dynamic($material_config); } if (!$new->equals($self->regions->[$region_id]->config)) { $rearrange_regions = 1; last REGION; } } } } # Some optimization is possible: if the volumes-regions mappings don't change # but still region configs are changed somehow, we could just apply the diff # and invalidate the affected steps. if ($rearrange_regions) { # the current subdivision of regions does not make sense anymore. # we need to remove all objects and re-add them my @model_objects = map $_->model_object, @{$self->objects}; $self->clear_objects; $self->add_model_object($_) for @model_objects; } } sub has_support_material { my $self = shift; return (first { $_->config->support_material } @{$self->objects}) || (first { $_->config->raft_layers > 0 } @{$self->objects}) || (first { $_->config->support_material_enforce_layers > 0 } @{$self->objects}); } # caller is responsible for supplying models whose objects don't collide # and have explicit instance positions sub add_model_object { my $self = shift; my ($object, $obj_idx) = @_; my $object_config = $object->config->clone; $object_config->normalize; # initialize print object and store it at the given position my $o; if (defined $obj_idx) { $o = $self->set_new_object($obj_idx, $object, $object->bounding_box); } else { $o = $self->add_object($object, $object->bounding_box); } $o->set_copies([ map Slic3r::Point->new_scale(@{ $_->offset }), @{ $object->instances } ]); $o->set_layer_height_ranges($object->layer_height_ranges); # TODO: translate _trigger_copies to C++, then this can be done by # PrintObject constructor $o->_trigger_copies; foreach my $volume_id (0..$#{$object->volumes}) { my $volume = $object->volumes->[$volume_id]; # get the config applied to this volume: start from our global defaults my $config = Slic3r::Config::PrintRegion->new; $config->apply($self->default_region_config); # override the defaults with per-object config and then with per-material config $config->apply_dynamic($object_config); if (defined $volume->material_id) { my $material_config = $volume->material->config->clone; $material_config->normalize; $config->apply_dynamic($material_config); } # find an existing print region with the same config my $region_id; foreach my $i (0..($self->region_count - 1)) { my $region = $self->regions->[$i]; if ($config->equals($region->config)) { $region_id = $i; last; } } # if no region exists with the same config, create a new one if (!defined $region_id) { my $r = $self->add_region(); $r->config->apply($config); $region_id = $self->region_count - 1; } # assign volume to region $o->add_region_volume($region_id, $volume_id); } # apply config to print object $o->config->apply($self->default_object_config); $o->config->apply_dynamic($object_config); $self->_state->invalidate(STEP_SKIRT); $self->_state->invalidate(STEP_BRIM); } sub reload_object { my ($self, $obj_idx) = @_; # TODO: this method should check whether the per-object config and per-material configs # have changed in such a way that regions need to be rearranged or we can just apply # the diff and invalidate something. Same logic as apply_config() # For now we just re-add all objects since we haven't implemented this incremental logic yet. # This should also check whether object volumes (parts) have changed. my @models_objects = map $_->model_object, @{$self->objects}; $self->clear_objects; $self->add_model_object($_) for @models_objects; } sub validate { my $self = shift; if ($self->config->complete_objects) { # check horizontal clearance { my @a = (); foreach my $object (@{$self->objects}) { # get convex hulls of all meshes assigned to this print object my @mesh_convex_hulls = map $object->model_object->volumes->[$_]->mesh->convex_hull, map @$_, grep defined $_, @{$object->region_volumes}; # make a single convex hull for all of them my $convex_hull = convex_hull([ map @$_, @mesh_convex_hulls ]); # apply the same transformations we apply to the actual meshes when slicing them $object->model_object->instances->[0]->transform_polygon($convex_hull, 1); # align object to Z = 0 and apply XY shift $convex_hull->translate(@{$object->_copies_shift}); # grow convex hull with the clearance margin ($convex_hull) = @{offset([$convex_hull], scale $self->config->extruder_clearance_radius / 2, 1, JT_ROUND, scale(0.1))}; # now we need that no instance of $convex_hull does not intersect any of the previously checked object instances for my $copy (@{$object->_shifted_copies}) { my $p = $convex_hull->clone; $p->translate(@$copy); if (@{ intersection(\@a, [$p]) }) { die "Some objects are too close; your extruder will collide with them.\n"; } @a = @{union([@a, $p])}; } } } # check vertical clearance { my @object_height = (); foreach my $object (@{$self->objects}) { my $height = $object->size->z; push @object_height, $height for @{$object->copies}; } @object_height = sort { $a <=> $b } @object_height; # ignore the tallest *copy* (this is why we repeat height for all of them): # it will be printed as last one so its height doesn't matter pop @object_height; if (@object_height && max(@object_height) > scale $self->config->extruder_clearance_height) { die "Some objects are too tall and cannot be printed without extruder collisions.\n"; } } } if ($self->config->spiral_vase) { if ((map @{$_->copies}, @{$self->objects}) > 1) { die "The Spiral Vase option can only be used when printing a single object.\n"; } if (@{$self->regions} > 1) { die "The Spiral Vase option can only be used when printing single material objects.\n"; } } } # 0-based indices of used extruders sub extruders { my ($self) = @_; # initialize all extruder(s) we need my @used_extruders = (); foreach my $region (@{$self->regions}) { push @used_extruders, map $region->config->get("${_}_extruder")-1, qw(perimeter infill); } foreach my $object (@{$self->objects}) { push @used_extruders, map $object->config->get("${_}_extruder")-1, qw(support_material support_material_interface); } my %h = map { $_ => 1 } @used_extruders; return [ sort keys %h ]; } sub init_extruders { my $self = shift; # enforce tall skirt if using ooze_prevention # FIXME: this is not idempotent (i.e. switching ooze_prevention off will not revert skirt settings) if ($self->config->ooze_prevention && @{$self->extruders} > 1) { $self->config->set('skirt_height', -1); $self->config->set('skirts', 1) if $self->config->skirts == 0; } } # this value is not supposed to be compared with $layer->id # since they have different semantics sub total_layer_count { my $self = shift; return max(map $_->total_layer_count, @{$self->objects}); } sub regions_count { my $self = shift; return scalar @{$self->regions}; } sub bounding_box { my $self = shift; my @points = (); foreach my $object (@{$self->objects}) { foreach my $copy (@{$object->_shifted_copies}) { push @points, [ $copy->[X], $copy->[Y] ], [ $copy->[X] + $object->size->[X], $copy->[Y] + $object->size->[Y] ]; } } return Slic3r::Geometry::BoundingBox->new_from_points([ map Slic3r::Point->new(@$_), @points ]); } sub size { my $self = shift; return $self->bounding_box->size; } sub _simplify_slices { my $self = shift; my ($distance) = @_; foreach my $layer (map @{$_->layers}, @{$self->objects}) { $layer->slices->simplify($distance); $_->slices->simplify($distance) for @{$layer->regions}; } } sub process { my ($self) = @_; my $status_cb = $self->status_cb // sub {}; my $print_step = sub { my ($step, $cb) = @_; if (!$self->_state->done($step)) { $self->_state->set_started($step); $cb->(); ### Re-enable this for step-based slicing: ### $self->_state->set_done($step); } }; my $object_step = sub { my ($step, $cb) = @_; for my $obj_idx (0..($self->object_count - 1)) { my $object = $self->objects->[$obj_idx]; if (!$object->_state->done($step)) { $object->_state->set_started($step); $cb->($obj_idx); ### Re-enable this for step-based slicing: ### $object->_state->set_done($step); } } }; # STEP_INIT_EXTRUDERS $print_step->(STEP_INIT_EXTRUDERS, sub { $self->init_extruders; }); # STEP_SLICE # skein the STL into layers # each layer has surfaces with holes $status_cb->(10, "Processing triangulated mesh"); $object_step->(STEP_SLICE, sub { $self->objects->[$_[0]]->slice; }); die "No layers were detected. You might want to repair your STL file(s) or check their size and retry.\n" if !grep @{$_->layers}, @{$self->objects}; # make perimeters # this will add a set of extrusion loops to each layer # as well as generate infill boundaries $status_cb->(20, "Generating perimeters"); $object_step->(STEP_PERIMETERS, sub { $self->objects->[$_[0]]->make_perimeters; }); $status_cb->(30, "Preparing infill"); $object_step->(STEP_PREPARE_INFILL, sub { my $object = $self->objects->[$_[0]]; # this will assign a type (top/bottom/internal) to $layerm->slices # and transform $layerm->fill_surfaces from expolygon # to typed top/bottom/internal surfaces; $object->detect_surfaces_type; # decide what surfaces are to be filled $_->prepare_fill_surfaces for map @{$_->regions}, @{$object->layers}; # this will detect bridges and reverse bridges # and rearrange top/bottom/internal surfaces $object->process_external_surfaces; # detect which fill surfaces are near external layers # they will be split in internal and internal-solid surfaces $object->discover_horizontal_shells; $object->clip_fill_surfaces; # the following step needs to be done before combination because it may need # to remove only half of the combined infill $object->bridge_over_infill; # combine fill surfaces to honor the "infill every N layers" option $object->combine_infill; }); # this will generate extrusion paths for each layer $status_cb->(70, "Infilling layers"); $object_step->(STEP_INFILL, sub { my $object = $self->objects->[$_[0]]; Slic3r::parallelize( threads => $self->config->threads, items => sub { my @items = (); # [layer_id, region_id] for my $region_id (0 .. ($self->regions_count-1)) { push @items, map [$_, $region_id], 0..($object->layer_count - 1); } @items; }, thread_cb => sub { my $q = shift; while (defined (my $obj_layer = $q->dequeue)) { my ($i, $region_id) = @$obj_layer; my $layerm = $object->layers->[$i]->regions->[$region_id]; $layerm->fills->append( $object->fill_maker->make_fill($layerm) ); } }, collect_cb => sub {}, no_threads_cb => sub { foreach my $layerm (map @{$_->regions}, @{$object->layers}) { $layerm->fills->append($object->fill_maker->make_fill($layerm)); } }, ); ### we could free memory now, but this would make this step not idempotent ### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers}; }); # generate support material $status_cb->(85, "Generating support material") if $self->has_support_material; $object_step->(STEP_SUPPORTMATERIAL, sub { $self->objects->[$_[0]]->generate_support_material; }); # make skirt $status_cb->(88, "Generating skirt/brim"); $print_step->(STEP_SKIRT, sub { $self->make_skirt; }); $print_step->(STEP_BRIM, sub { $self->make_brim; # must come after make_skirt }); # time to make some statistics if (0) { eval "use Devel::Size"; print "MEMORY USAGE:\n"; printf " meshes = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->meshes), @{$self->objects})/1024/1024; printf " layer slices = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->slices), map @{$_->layers}, @{$self->objects})/1024/1024; printf " region slices = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->slices), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024; printf " perimeters = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->perimeters), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024; printf " fills = %.1fMb\n", List::Util::sum(map Devel::Size::total_size($_->fills), map @{$_->regions}, map @{$_->layers}, @{$self->objects})/1024/1024; printf " print object = %.1fMb\n", Devel::Size::total_size($self)/1024/1024; } if (0) { eval "use Slic3r::Test::SectionCut"; Slic3r::Test::SectionCut->new(print => $self)->export_svg("section_cut.svg"); } } sub export_gcode { my $self = shift; my %params = @_; my $status_cb = $self->status_cb // sub {}; # output everything to a G-code file my $output_file = $self->expanded_output_filepath($params{output_file}); $status_cb->(90, "Exporting G-code" . ($output_file ? " to $output_file" : "")); $self->write_gcode($params{output_fh} || $output_file); # run post-processing scripts if (@{$self->config->post_process}) { $status_cb->(95, "Running post-processing scripts"); $self->config->setenv; for (@{$self->config->post_process}) { Slic3r::debugf " '%s' '%s'\n", $_, $output_file; system($_, $output_file); } } } sub export_svg { my $self = shift; my %params = @_; # is this needed? $self->init_extruders; $_->slice for @{$self->objects}; my $fh = $params{output_fh}; if (!$fh) { my $output_file = $self->expanded_output_filepath($params{output_file}); $output_file =~ s/\.gcode$/.svg/i; Slic3r::open(\$fh, ">", $output_file) or die "Failed to open $output_file for writing\n"; print "Exporting to $output_file..." unless $params{quiet}; } my $print_size = $self->size; print $fh sprintf <<"EOF", unscale($print_size->[X]), unscale($print_size->[Y]); EOF my $print_polygon = sub { my ($polygon, $type) = @_; printf $fh qq{ \n}, $type, (join ' ', map { join ',', map unscale $_, @$_ } @$polygon), ($type eq 'contour' ? 'white' : 'black'); }; my @layers = sort { $a->print_z <=> $b->print_z } map { @{$_->layers}, @{$_->support_layers} } @{$self->objects}; my $layer_id = -1; my @previous_layer_slices = (); for my $layer (@layers) { $layer_id++; # TODO: remove slic3r:z for raft layers printf $fh qq{ \n}, $layer_id, unscale($layer->slice_z); my @current_layer_slices = (); # sort slices so that the outermost ones come first my @slices = sort { $a->contour->encloses_point($b->contour->[0]) ? 0 : 1 } @{$layer->slices}; foreach my $copy (@{$layer->object->copies}) { foreach my $slice (@slices) { my $expolygon = $slice->clone; $expolygon->translate(@$copy); $print_polygon->($expolygon->contour, 'contour'); $print_polygon->($_, 'hole') for @{$expolygon->holes}; push @current_layer_slices, $expolygon; } } # generate support material if ($self->has_support_material && $layer->id > 0) { my (@supported_slices, @unsupported_slices) = (); foreach my $expolygon (@current_layer_slices) { my $intersection = intersection_ex( [ map @$_, @previous_layer_slices ], $expolygon, ); @$intersection ? push @supported_slices, $expolygon : push @unsupported_slices, $expolygon; } my @supported_points = map @$_, @$_, @supported_slices; foreach my $expolygon (@unsupported_slices) { # look for the nearest point to this island among all # supported points my $contour = $expolygon->contour; my $support_point = $contour->first_point->nearest_point(\@supported_points) or next; my $anchor_point = $support_point->nearest_point([ @$contour ]); printf $fh qq{ \n}, map @$_, $support_point, $anchor_point; } } print $fh qq{ \n}; @previous_layer_slices = @current_layer_slices; } print $fh "\n"; close $fh; print "Done.\n" unless $params{quiet}; } sub make_skirt { my $self = shift; # since this method must be idempotent, we clear skirt paths *before* # checking whether we need to generate them $self->skirt->clear; return unless $self->config->skirts > 0 || ($self->config->ooze_prevention && @{$self->extruders} > 1); # First off we need to decide how tall the skirt must be. # The skirt_height option from config is expressed in layers, but our # object might have different layer heights, so we need to find the print_z # of the highest layer involved. # Note that unless skirt_height == -1 (which means it's printed on all layers) # the actual skirt might not reach this $skirt_height_z value since the print # order of objects on each layer is not guaranteed and will not generally # include the thickest object first. It is just guaranteed that a skirt is # prepended to the first 'n' layers (with 'n' = skirt_height). # $skirt_height_z in this case is the highest possible skirt height for safety. my $skirt_height_z = -1; foreach my $object (@{$self->objects}) { my $skirt_height = ($self->config->skirt_height == -1) ? scalar(@{$object->layers}) : min($self->config->skirt_height, scalar(@{$object->layers})); my $highest_layer = $object->layers->[$skirt_height-1]; $skirt_height_z = max($skirt_height_z, $highest_layer->print_z); } # collect points from all layers contained in skirt height my @points = (); foreach my $object (@{$self->objects}) { my @object_points = (); # get object layers up to $skirt_height_z foreach my $layer (@{$object->layers}) { last if $layer->print_z > $skirt_height_z; push @object_points, map @$_, map @$_, @{$layer->slices}; } # get support layers up to $skirt_height_z foreach my $layer (@{$object->support_layers}) { last if $layer->print_z > $skirt_height_z; push @object_points, map @{$_->polyline}, @{$layer->support_fills} if $layer->support_fills; push @object_points, map @{$_->polyline}, @{$layer->support_interface_fills} if $layer->support_interface_fills; } # repeat points for each object copy foreach my $copy (@{$object->_shifted_copies}) { my @copy_points = map $_->clone, @object_points; $_->translate(@$copy) for @copy_points; push @points, @copy_points; } } return if @points < 3; # at least three points required for a convex hull # find out convex hull my $convex_hull = convex_hull(\@points); my @extruded_length = (); # for each extruder # skirt may be printed on several layers, having distinct layer heights, # but loops must be aligned so can't vary width/spacing # TODO: use each extruder's own flow my $first_layer_height = $self->objects->[0]->config->get_value('first_layer_height'); my $flow = Slic3r::Flow->new_from_width( width => ($self->config->first_layer_extrusion_width || $self->regions->[0]->config->perimeter_extrusion_width), role => FLOW_ROLE_PERIMETER, nozzle_diameter => $self->config->nozzle_diameter->[0], layer_height => $first_layer_height, bridge_flow_ratio => 0, ); my $spacing = $flow->spacing; my $mm3_per_mm = $flow->mm3_per_mm($first_layer_height); my @extruders_e_per_mm = (); my $extruder_idx = 0; # draw outlines from outside to inside # loop while we have less skirts than required or any extruder hasn't reached the min length if any my $distance = scale $self->config->skirt_distance; for (my $i = $self->config->skirts; $i > 0; $i--) { $distance += scale $spacing; my $loop = offset([$convex_hull], $distance, 1, JT_ROUND, scale(0.1))->[0]; $self->skirt->append(Slic3r::ExtrusionLoop->new_from_paths( Slic3r::ExtrusionPath->new( polyline => Slic3r::Polygon->new(@$loop)->split_at_first_point, role => EXTR_ROLE_SKIRT, mm3_per_mm => $mm3_per_mm, width => $flow->width, height => $first_layer_height, ), )); if ($self->config->min_skirt_length > 0) { $extruded_length[$extruder_idx] ||= 0; if (!$extruders_e_per_mm[$extruder_idx]) { my $extruder = Slic3r::Extruder->new($extruder_idx, $self->config); $extruders_e_per_mm[$extruder_idx] = $extruder->e_per_mm($mm3_per_mm); } $extruded_length[$extruder_idx] += unscale $loop->length * $extruders_e_per_mm[$extruder_idx]; $i++ if defined first { ($extruded_length[$_] // 0) < $self->config->min_skirt_length } 0 .. $#{$self->extruders}; if ($extruded_length[$extruder_idx] >= $self->config->min_skirt_length) { if ($extruder_idx < $#{$self->extruders}) { $extruder_idx++; next; } } } } $self->skirt->reverse; } sub make_brim { my $self = shift; # since this method must be idempotent, we clear brim paths *before* # checking whether we need to generate them $self->brim->clear; return unless $self->config->brim_width > 0; # brim is only printed on first layer and uses support material extruder my $first_layer_height = $self->objects->[0]->config->get_abs_value('first_layer_height'); my $flow = Slic3r::Flow->new_from_width( width => ($self->config->first_layer_extrusion_width || $self->regions->[0]->config->perimeter_extrusion_width), role => FLOW_ROLE_PERIMETER, nozzle_diameter => $self->config->get_at('nozzle_diameter', $self->objects->[0]->config->support_material_extruder-1), layer_height => $first_layer_height, bridge_flow_ratio => 0, ); my $mm3_per_mm = $flow->mm3_per_mm($first_layer_height); my $grow_distance = $flow->scaled_width / 2; my @islands = (); # array of polygons foreach my $obj_idx (0 .. ($self->object_count - 1)) { my $object = $self->objects->[$obj_idx]; my $layer0 = $object->layers->[0]; my @object_islands = ( (map $_->contour, @{$layer0->slices}), ); if (@{ $object->support_layers }) { my $support_layer0 = $object->support_layers->[0]; push @object_islands, (map @{$_->polyline->grow($grow_distance)}, @{$support_layer0->support_fills}) if $support_layer0->support_fills; push @object_islands, (map @{$_->polyline->grow($grow_distance)}, @{$support_layer0->support_interface_fills}) if $support_layer0->support_interface_fills; } foreach my $copy (@{$object->_shifted_copies}) { push @islands, map { $_->translate(@$copy); $_ } map $_->clone, @object_islands; } } # if brim touches skirt, make it around skirt too # TODO: calculate actual skirt width (using each extruder's flow in multi-extruder setups) if ($self->config->skirt_distance + (($self->config->skirts - 1) * $flow->spacing) <= $self->config->brim_width) { push @islands, map @{$_->split_at_first_point->polyline->grow($grow_distance)}, @{$self->skirt}; } my @loops = (); my $num_loops = sprintf "%.0f", $self->config->brim_width / $flow->width; for my $i (reverse 1 .. $num_loops) { # JT_SQUARE ensures no vertex is outside the given offset distance # -0.5 because islands are not represented by their centerlines # (first offset more, then step back - reverse order than the one used for # perimeters because here we're offsetting outwards) push @loops, @{offset2(\@islands, ($i + 0.5) * $flow->scaled_spacing, -1.0 * $flow->scaled_spacing, 100000, JT_SQUARE)}; } $self->brim->append(map Slic3r::ExtrusionLoop->new_from_paths( Slic3r::ExtrusionPath->new( polyline => Slic3r::Polygon->new(@$_)->split_at_first_point, role => EXTR_ROLE_SKIRT, mm3_per_mm => $mm3_per_mm, width => $flow->width, height => $first_layer_height, ), ), reverse @{union_pt_chained(\@loops)}); } sub write_gcode { my $self = shift; my ($file) = @_; # open output gcode file if we weren't supplied a file-handle my $fh; if (ref $file eq 'IO::Scalar') { $fh = $file; } else { Slic3r::open(\$fh, ">", $file) or die "Failed to open $file for writing\n"; # enable UTF-8 output since user might have entered Unicode characters in fields like notes binmode $fh, ':utf8'; } # write some information my @lt = localtime; printf $fh "; generated by Slic3r $Slic3r::VERSION on %04d-%02d-%02d at %02d:%02d:%02d\n\n", $lt[5] + 1900, $lt[4]+1, $lt[3], $lt[2], $lt[1], $lt[0]; print $fh "; $_\n" foreach split /\R/, $self->config->notes; print $fh "\n" if $self->config->notes; my $first_object = $self->objects->[0]; my $layer_height = $first_object->config->layer_height; for my $region_id (0..($self->region_count - 1)) { printf $fh "; perimeters extrusion width = %.2fmm\n", $self->regions->[$region_id]->flow(FLOW_ROLE_PERIMETER, $layer_height, 0, 0, undef, $first_object)->width; printf $fh "; infill extrusion width = %.2fmm\n", $self->regions->[$region_id]->flow(FLOW_ROLE_INFILL, $layer_height, 0, 0, undef, $first_object)->width; printf $fh "; solid infill extrusion width = %.2fmm\n", $self->regions->[$region_id]->flow(FLOW_ROLE_SOLID_INFILL, $layer_height, 0, 0, undef, $first_object)->width; printf $fh "; top infill extrusion width = %.2fmm\n", $self->regions->[$region_id]->flow(FLOW_ROLE_TOP_SOLID_INFILL, $layer_height, 0, 0, undef, $first_object)->width; printf $fh "; support material extrusion width = %.2fmm\n", $self->objects->[0]->support_material_flow->width if $self->has_support_material; printf $fh "; first layer extrusion width = %.2fmm\n", $self->regions->[$region_id]->flow(FLOW_ROLE_PERIMETER, $layer_height, 0, 1, undef, $self->objects->[0])->width if $self->regions->[$region_id]->config->first_layer_extrusion_width; print $fh "\n"; } # prepare the helper object for replacing placeholders in custom G-code and output filename $self->placeholder_parser->update_timestamp; # set up our helper object my $gcodegen = Slic3r::GCode->new( placeholder_parser => $self->placeholder_parser, layer_count => $self->total_layer_count, ); $gcodegen->config->apply_print_config($self->config); $gcodegen->set_extruders($self->extruders, $self->config); print $fh "G21 ; set units to millimeters\n" if $self->config->gcode_flavor ne 'makerware'; print $fh $gcodegen->set_fan(0, 1) if $self->config->cooling && $self->config->disable_fan_first_layers; # set bed temperature if ((my $temp = $self->config->first_layer_bed_temperature) && $self->config->start_gcode !~ /M(?:190|140)/i) { printf $fh $gcodegen->set_bed_temperature($temp, 1); } # set extruder(s) temperature before and after start G-code my $print_first_layer_temperature = sub { my ($wait) = @_; return if $self->config->start_gcode =~ /M(?:109|104)/i; for my $t (@{$self->extruders}) { my $temp = $self->config->get_at('first_layer_temperature', $t); $temp += $self->config->standby_temperature_delta if $self->config->ooze_prevention; printf $fh $gcodegen->set_temperature($temp, $wait, $t) if $temp > 0; } }; $print_first_layer_temperature->(0); printf $fh "%s\n", $gcodegen->placeholder_parser->process($self->config->start_gcode); $print_first_layer_temperature->(1); # set other general things print $fh "G90 ; use absolute coordinates\n" if $self->config->gcode_flavor ne 'makerware'; if ($self->config->gcode_flavor =~ /^(?:reprap|teacup)$/) { printf $fh $gcodegen->reset_e; if ($self->config->use_relative_e_distances) { print $fh "M83 ; use relative distances for extrusion\n"; } else { print $fh "M82 ; use absolute distances for extrusion\n"; } } # initialize a motion planner for object-to-object travel moves if ($self->config->avoid_crossing_perimeters) { my $distance_from_objects = 1; # compute the offsetted convex hull for each object and repeat it for each copy. my @islands = (); foreach my $obj_idx (0 .. ($self->object_count - 1)) { my $convex_hull = convex_hull([ map @{$_->contour}, map @{$_->slices}, @{$self->objects->[$obj_idx]->layers}, ]); # discard layers only containing thin walls (offset would fail on an empty polygon) if (@$convex_hull) { my $expolygon = Slic3r::ExPolygon->new($convex_hull); my @island = @{$expolygon->offset_ex(scale $distance_from_objects, 1, JT_SQUARE)}; foreach my $copy (@{ $self->objects->[$obj_idx]->_shifted_copies }) { push @islands, map { my $c = $_->clone; $c->translate(@$copy); $c } @island; } } } $gcodegen->external_mp(Slic3r::GCode::MotionPlanner->new( islands => union_ex([ map @$_, @islands ]), internal => 0, )); } # calculate wiping points if needed if ($self->config->ooze_prevention) { my @skirt_points = map @$_, map @$_, @{$self->skirt}; if (@skirt_points) { my $outer_skirt = convex_hull(\@skirt_points); my @skirts = (); foreach my $extruder_id (@{$self->extruders}) { push @skirts, my $s = $outer_skirt->clone; $s->translate(map scale($_), @{$self->config->get_at('extruder_offset', $extruder_id)}); } my $convex_hull = convex_hull([ map @$_, @skirts ]); $gcodegen->standby_points([ map $_->clone, map @$_, map $_->subdivide(scale 10), @{offset([$convex_hull], scale 3)} ]); } } # prepare the layer processor my $layer_gcode = Slic3r::GCode::Layer->new( print => $self, gcodegen => $gcodegen, ); # set initial extruder only after custom start G-code print $fh $gcodegen->set_extruder($self->extruders->[0]); # do all objects for each layer if ($self->config->complete_objects) { # print objects from the smallest to the tallest to avoid collisions # when moving onto next object starting point my @obj_idx = sort { $self->objects->[$a]->size->[Z] <=> $self->objects->[$b]->size->[Z] } 0..($self->object_count - 1); my $finished_objects = 0; for my $obj_idx (@obj_idx) { for my $copy (@{ $self->objects->[$obj_idx]->_shifted_copies }) { # move to the origin position for the copy we're going to print. # this happens before Z goes down to layer 0 again, so that # no collision happens hopefully. if ($finished_objects > 0) { $gcodegen->set_shift(map unscale $copy->[$_], X,Y); print $fh $gcodegen->retract; print $fh $gcodegen->G0(Slic3r::Point->new(0,0), undef, 0, $gcodegen->config->travel_speed*60, 'move to origin position for next object'); } my $buffer = Slic3r::GCode::CoolingBuffer->new( config => $self->config, gcodegen => $gcodegen, ); my $object = $self->objects->[$obj_idx]; my @layers = sort { $a->print_z <=> $b->print_z } @{$object->layers}, @{$object->support_layers}; for my $layer (@layers) { # if we are printing the bottom layer of an object, and we have already finished # another one, set first layer temperatures. this happens before the Z move # is triggered, so machine has more time to reach such temperatures if ($layer->id == 0 && $finished_objects > 0) { printf $fh $gcodegen->set_bed_temperature($self->config->first_layer_bed_temperature), if $self->config->first_layer_bed_temperature; $print_first_layer_temperature->(); } print $fh $buffer->append( $layer_gcode->process_layer($layer, [$copy]), $layer->object."", $layer->id, $layer->print_z, ); } print $fh $buffer->flush; $finished_objects++; } } } else { # order objects using a nearest neighbor search my @obj_idx = @{chained_path([ map Slic3r::Point->new(@{$_->_shifted_copies->[0]}), @{$self->objects} ])}; # sort layers by Z my %layers = (); # print_z => [ [layers], [layers], [layers] ] by obj_idx foreach my $obj_idx (0 .. ($self->object_count - 1)) { my $object = $self->objects->[$obj_idx]; foreach my $layer (@{$object->layers}, @{$object->support_layers}) { $layers{ $layer->print_z } ||= []; $layers{ $layer->print_z }[$obj_idx] ||= []; push @{$layers{ $layer->print_z }[$obj_idx]}, $layer; } } my $buffer = Slic3r::GCode::CoolingBuffer->new( config => $self->config, gcodegen => $gcodegen, ); foreach my $print_z (sort { $a <=> $b } keys %layers) { foreach my $obj_idx (@obj_idx) { foreach my $layer (@{ $layers{$print_z}[$obj_idx] // [] }) { print $fh $buffer->append( $layer_gcode->process_layer($layer, $layer->object->_shifted_copies), $layer->object . ref($layer), # differentiate $obj_id between normal layers and support layers $layer->id, $layer->print_z, ); } } } print $fh $buffer->flush; } # write end commands to file print $fh $gcodegen->retract if $gcodegen->extruder; # empty prints don't even set an extruder print $fh $gcodegen->set_fan(0); printf $fh "%s\n", $gcodegen->placeholder_parser->process($self->config->end_gcode); $self->total_used_filament(0); $self->total_extruded_volume(0); foreach my $extruder_id (@{$self->extruders}) { my $extruder = $gcodegen->extruders->{$extruder_id}; # the final retraction doesn't really count as "used filament" my $used_filament = $extruder->absolute_E + $extruder->retract_length; my $extruded_volume = $extruder->extruded_volume($used_filament); printf $fh "; filament used = %.1fmm (%.1fcm3)\n", $used_filament, $extruded_volume/1000; $self->total_used_filament($self->total_used_filament + $used_filament); $self->total_extruded_volume($self->total_extruded_volume + $extruded_volume); } # append full config print $fh "\n"; foreach my $config ($self->config, $self->default_object_config, $self->default_region_config) { foreach my $opt_key (sort @{$config->get_keys}) { next if $Slic3r::Config::Options->{$opt_key}{shortcut}; printf $fh "; %s = %s\n", $opt_key, $config->serialize($opt_key); } } # close our gcode file close $fh; } # this method will return the supplied input file path after expanding its # format variables with their values sub expanded_output_filepath { my $self = shift; my ($path) = @_; return undef if !@{$self->objects}; my $input_file = first { defined $_ } map $_->model_object->input_file, @{$self->objects}; return undef if !defined $input_file; my $filename = my $filename_base = basename($input_file); $filename_base =~ s/\.[^.]+$//; # without suffix my $extra = { input_filename => $filename, input_filename_base => $filename_base, }; if ($path && -d $path) { # if output path is an existing directory, we take that and append # the specified filename format $path = File::Spec->join($path, $self->config->output_filename_format); } elsif (!$path) { # if no explicit output file was defined, we take the input # file directory and append the specified filename format $path = (fileparse($input_file))[1] . $self->config->output_filename_format; } else { # path is a full path to a file so we use it as it is } # make sure we use an up-to-date timestamp $self->placeholder_parser->update_timestamp; return $self->placeholder_parser->process($path, $extra); } sub invalidate_step { my ($self, $step, $obj_idx) = @_; # invalidate $step in the correct state object if ($Slic3r::Print::State::print_step->{$step}) { $self->_state->invalidate($step); } else { # object step if (defined $obj_idx) { $self->objects->[$obj_idx]->_state->invalidate($step); } else { $_->_state->invalidate($step) for @{$self->objects}; } } # recursively invalidate steps depending on $step $self->invalidate_step($_) for grep { grep { $_ == $step } @{$Slic3r::Print::State::prereqs{$_}} } keys %Slic3r::Print::State::prereqs; } # This method assigns extruders to the volumes having a material # but not having extruders set in the material config. sub auto_assign_extruders { my ($self, $model_object) = @_; # only assign extruders if object has more than one volume return if @{$model_object->volumes} == 1; my $extruders = scalar @{ $self->config->nozzle_diameter }; foreach my $i (0..$#{$model_object->volumes}) { my $volume = $model_object->volumes->[$i]; if (defined $volume->material_id) { my $material = $model_object->model->get_material($volume->material_id); my $config = $material->config; my $extruder_id = $i + 1; $config->set_ifndef('extruder', $extruder_id); } } } 1;