#include "../ClipperUtils.hpp" #include "../PolylineCollection.hpp" #include "../Surface.hpp" #include #include #include #include "FillGyroid.hpp" namespace Slic3r { static inline double f(double x, double z_sin, double z_cos, bool vertical, bool flip) { if (vertical) { double phase_offset = (z_cos < 0 ? M_PI : 0) + M_PI; double a = sin(x + phase_offset); double b = - z_cos; double res = z_sin * cos(x + phase_offset + (flip ? M_PI : 0.)); double r = sqrt(sqr(a) + sqr(b)); return asin(a/r) + asin(res/r) + M_PI; } else { double phase_offset = z_sin < 0 ? M_PI : 0.; double a = cos(x + phase_offset); double b = - z_sin; double res = z_cos * sin(x + phase_offset + (flip ? 0 : M_PI)); double r = sqrt(sqr(a) + sqr(b)); return (asin(a/r) + asin(res/r) + 0.5 * M_PI); } } static inline Polyline make_wave( const std::vector& one_period, double width, double height, double offset, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip) { std::vector points = one_period; double period = points.back()(0); if (width != period) // do not extend if already truncated { points.reserve(one_period.size() * floor(width / period)); points.pop_back(); int n = points.size(); do { points.emplace_back(Vec2d(points[points.size()-n](0) + period, points[points.size()-n](1))); } while (points.back()(0) < width - EPSILON); points.emplace_back(Vec2d(width, f(width, z_sin, z_cos, vertical, flip))); } // and construct the final polyline to return: Polyline polyline; polyline.points.reserve(points.size()); for (auto& point : points) { point(1) += offset; point(1) = clamp(0., height, double(point(1))); if (vertical) std::swap(point(0), point(1)); polyline.points.emplace_back((point * scaleFactor).cast()); } return polyline; } static std::vector make_one_period(double width, double scaleFactor, double z_cos, double z_sin, bool vertical, bool flip, double tolerance) { std::vector points; double dx = M_PI_2; // exact coordinates on main inflexion lobes double limit = std::min(2*M_PI, width); points.reserve(ceil(limit / tolerance / 3)); for (double x = 0.; x < limit - EPSILON; x += dx) { points.emplace_back(Vec2d(x, f(x, z_sin, z_cos, vertical, flip))); } points.emplace_back(Vec2d(limit, f(limit, z_sin, z_cos, vertical, flip))); // piecewise increase in resolution up to requested tolerance for(;;) { size_t size = points.size(); for (unsigned int i = 1;i < size; ++i) { auto& lp = points[i-1]; // left point auto& rp = points[i]; // right point double x = lp(0) + (rp(0) - lp(0)) / 2; double y = f(x, z_sin, z_cos, vertical, flip); Vec2d ip = {x, y}; if (std::abs(cross2(Vec2d(ip - lp), Vec2d(ip - rp))) > sqr(tolerance)) { points.emplace_back(std::move(ip)); } } if (size == points.size()) break; else { // insert new points in order std::sort(points.begin(), points.end(), [](const Vec2d &lhs, const Vec2d &rhs) { return lhs(0) < rhs(0); }); } } return points; } static Polylines make_gyroid_waves(double gridZ, double density_adjusted, double line_spacing, double width, double height) { const double scaleFactor = scale_(line_spacing) / density_adjusted; // tolerance (in scaled units) // TODO: should consider layer thickness const double tolerance = line_spacing / 2 / unscale(scaleFactor); //scale factor for 5% : 8 712 388 // 1z = 10^-6 mm ? const double z = gridZ / scaleFactor; const double z_sin = sin(z); const double z_cos = cos(z); bool vertical = (std::abs(z_sin) <= std::abs(z_cos)); double lower_bound = 0.; double upper_bound = height; bool flip = true; if (vertical) { flip = false; lower_bound = -M_PI; upper_bound = width - M_PI_2; std::swap(width,height); } std::vector one_period_odd = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip, tolerance); // creates one period of the waves, so it doesn't have to be recalculated all the time flip = !flip; // even polylines are a bit shifted std::vector one_period_even = make_one_period(width, scaleFactor, z_cos, z_sin, vertical, flip, tolerance); Polylines result; for (double y0 = lower_bound; y0 < upper_bound + EPSILON; y0 += M_PI) { // creates odd polylines result.emplace_back(make_wave(one_period_odd, width, height, y0, scaleFactor, z_cos, z_sin, vertical, flip)); // creates even polylines y0 += M_PI; if (y0 < upper_bound + EPSILON) { result.emplace_back(make_wave(one_period_even, width, height, y0, scaleFactor, z_cos, z_sin, vertical, flip)); } } return result; } void FillGyroid::_fill_surface_single( const FillParams ¶ms, unsigned int thickness_layers, const std::pair &direction, ExPolygon &expolygon, Polylines &polylines_out) { expolygon.rotate(-this->angle); BoundingBox bb = expolygon.contour.bounding_box(); // Density adjusted to have a good %of weight. double density_adjusted = std::max(0., params.density * 2.44); // Distance between the gyroid waves in scaled coordinates. coord_t distance = coord_t(scale_(this->spacing) / density_adjusted); // align bounding box to a multiple of our grid module bb.merge(_align_to_grid(bb.min, Point(2*M_PI*distance, 2*M_PI*distance))); // generate pattern Polylines polylines_square = make_gyroid_waves( scale_(this->z), density_adjusted, this->spacing, ceil(bb.size()(0) / distance) + 1., ceil(bb.size()(1) / distance) + 1.); // clip pattern to boundaries, keeping the polyline order & ordering the fragment to be able to join them easily Polylines polylines_chained; for (size_t idx_polyline = 0; idx_polyline < polylines_square.size(); ++idx_polyline) { // shift the polyline to the grid origin Polyline &poly_to_cut = polylines_square[idx_polyline]; poly_to_cut.translate(bb.min); // intersect Polylines polylines_to_sort = intersection_pl(Polylines() = { poly_to_cut }, (Polygons)expolygon); for (Polyline &polyline : polylines_to_sort) { //TODO: replace by closest_index_point() if (idx_polyline % 2 == 0) { if (poly_to_cut.points.front().distance_to_square(polyline.points.front()) > poly_to_cut.points.front().distance_to_square(polyline.points.back())) { polyline.reverse(); } } else { if (poly_to_cut.points.back().distance_to_square(polyline.points.front()) > poly_to_cut.points.back().distance_to_square(polyline.points.back())) { polyline.reverse(); } } } if (polylines_to_sort.size() > 1) { Point nearest = poly_to_cut.points.front(); if (idx_polyline % 2 != 0) { nearest = poly_to_cut.points.back(); } //Bubble sort for (size_t idx_sort = polylines_to_sort.size() - 1; idx_sort > 0; idx_sort--) { for (size_t idx_bubble = 0; idx_bubble < idx_sort; idx_bubble++) { if (polylines_to_sort[idx_bubble + 1].points.front().distance_to_square(nearest) < polylines_to_sort[idx_bubble].points.front().distance_to_square(nearest)) { iter_swap(polylines_to_sort.begin() + idx_bubble, polylines_to_sort.begin() + idx_bubble + 1); } } } } polylines_chained.insert(polylines_chained.end(), polylines_to_sort.begin(), polylines_to_sort.end()); } size_t polylines_out_first_idx = polylines_out.size(); if (!polylines_chained.empty()) { // connect lines if (params.dont_connect) { polylines_out.insert(polylines_out.end(), polylines_chained.begin(), polylines_chained.end()); } else { this->connect_infill(polylines_chained, expolygon, polylines_out, params); } } //remove too small bits (larger than longer); for (size_t idx = polylines_out_first_idx; idx < polylines_out.size(); idx++) { if (polylines_out[idx].length() < scale_(this->spacing * 3)) { polylines_out.erase(polylines_out.begin() + idx); idx--; } } // new paths must be rotated back for (Polylines::iterator it = polylines_out.begin() + polylines_out_first_idx; it != polylines_out.end(); ++it) { it->rotate(this->angle); } } } // namespace Slic3r