#include "BoundingBox.hpp" #include "ClipperUtils.hpp" #include "EdgeGrid.hpp" #include "Layer.hpp" #include "Print.hpp" #include "VoronoiVisualUtils.hpp" #include #include #include #include #include #include #include #include #include namespace Slic3r { struct ColoredLine { Line line; int color; int poly_idx = -1; int local_line_idx = -1; }; } #include namespace boost { namespace polygon { template <> struct geometry_concept { typedef segment_concept type; }; template <> struct segment_traits { typedef coord_t coordinate_type; typedef Slic3r::Point point_type; static inline point_type get(const Slic3r::ColoredLine& line, direction_1d dir) { return dir.to_int() ? line.line.b : line.line.a; } }; } } namespace Slic3r { // Assumes that is at most same projected_l length or below than projection_l static bool project_line_on_line(const Line &projection_l, const Line &projected_l, Line *new_projected) { const Vec2d v1 = (projection_l.b - projection_l.a).cast(); const Vec2d va = (projected_l.a - projection_l.a).cast(); const Vec2d vb = (projected_l.b - projection_l.a).cast(); const double l2 = v1.squaredNorm(); // avoid a sqrt if (l2 == 0.0) return false; double t1 = va.dot(v1) / l2; double t2 = vb.dot(v1) / l2; t1 = std::clamp(t1, 0., 1.); t2 = std::clamp(t2, 0., 1.); assert(t1 >= 0.); assert(t2 >= 0.); assert(t1 <= 1.); assert(t2 <= 1.); Point p1 = projection_l.a + (t1 * v1).cast(); Point p2 = projection_l.a + (t2 * v1).cast(); *new_projected = Line(p1, p2); return true; } struct PaintedLine { size_t contour_idx; size_t line_idx; Line projected_line; int color; }; struct PaintedLineVisitor { PaintedLineVisitor(const EdgeGrid::Grid &grid, std::vector &painted_lines) : grid(grid), painted_lines(painted_lines) { painted_lines_set.reserve(painted_lines.capacity()); } void reset() { painted_lines_set.clear(); } bool operator()(coord_t iy, coord_t ix) { // Called with a row and column of the grid cell, which is intersected by a line. auto cell_data_range = grid.cell_data_range(iy, ix); const Vec2d v1 = line_to_test.vector().cast(); for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) { Line grid_line = grid.line(*it_contour_and_segment); const Vec2d v2 = grid_line.vector().cast(); // When lines have too different length, it is necessary to normalize them if (Slic3r::sqr(v1.dot(v2)) > cos_threshold2 * v1.squaredNorm() * v2.squaredNorm()) { // The two vectors are nearly collinear (their mutual angle is lower than 30 degrees) if (painted_lines_set.find(*it_contour_and_segment) == painted_lines_set.end()) { double dist_1 = grid_line.distance_to(line_to_test.a); double dist_2 = grid_line.distance_to(line_to_test.b); double dist_3 = line_to_test.distance_to(grid_line.a); double dist_4 = line_to_test.distance_to(grid_line.b); double total_dist = std::min(std::min(dist_1, dist_2), std::min(dist_3, dist_4)); if (total_dist < 50 * SCALED_EPSILON) { Line line_to_test_projected; project_line_on_line(grid_line, line_to_test, &line_to_test_projected); if (Line(grid_line.a, line_to_test_projected.a).length() > Line(grid_line.a, line_to_test_projected.b).length()) { line_to_test_projected.reverse(); } painted_lines.push_back({it_contour_and_segment->first, it_contour_and_segment->second, line_to_test_projected, this->color}); painted_lines_set.insert(*it_contour_and_segment); } } } } // Continue traversing the grid along the edge. return true; } const EdgeGrid::Grid &grid; std::vector &painted_lines; Line line_to_test; std::unordered_set, boost::hash>> painted_lines_set; int color = -1; static inline const double cos_threshold2 = Slic3r::sqr(cos(M_PI * 30. / 180.)); }; static std::vector to_colored_lines(const Polygon &polygon, int color) { std::vector lines; if (polygon.points.size() > 2) { lines.reserve(polygon.points.size()); for (auto it = polygon.points.begin(); it != polygon.points.end() - 1; ++it) lines.push_back({Line(*it, *(it + 1)), color}); lines.push_back({Line(polygon.points.back(), polygon.points.front()), color}); } return lines; } static Polygon colored_points_to_polygon(const std::vector &lines) { Polygon out; out.points.reserve(lines.size()); for (const ColoredLine &l : lines) out.points.emplace_back(l.line.a); return out; } static Polygons colored_points_to_polygon(const std::vector> &lines) { Polygons out; for (const std::vector &l : lines) out.emplace_back(colored_points_to_polygon(l)); return out; } // Flatten the vector of vectors into a vector. static inline std::vector to_lines(const std::vector> &c_lines) { size_t n_lines = 0; for (const auto &c_line : c_lines) n_lines += c_line.size(); std::vector lines; lines.reserve(n_lines); for (const auto &c_line : c_lines) lines.insert(lines.end(), c_line.begin(), c_line.end()); return lines; } // Double vertex equal to a coord_t point after conversion to double. static bool vertex_equal_to_point(const Voronoi::VD::vertex_type &vertex, const Point &ipt) { // Convert ipt to doubles, force the 80bit FPU temporary to 64bit and then compare. // This should work with any settings of math compiler switches and the C++ compiler // shall understand the memcpies as type punning and it shall optimize them out. using ulp_cmp_type = boost::polygon::detail::ulp_comparison; ulp_cmp_type ulp_cmp; static constexpr int ULPS = boost::polygon::voronoi_diagram_traits::vertex_equality_predicate_type::ULPS; return ulp_cmp(vertex.x(), double(ipt.x()), ULPS) == ulp_cmp_type::EQUAL && ulp_cmp(vertex.y(), double(ipt.y()), ULPS) == ulp_cmp_type::EQUAL; } static inline bool vertex_equal_to_point(const Voronoi::VD::vertex_type *vertex, const Point &ipt) { return vertex_equal_to_point(*vertex, ipt); } static std::vector> get_segments(const std::vector &polygon) { std::vector> segments; size_t segment_end = 0; while (segment_end + 1 < polygon.size() && polygon[segment_end].color == polygon[segment_end + 1].color) segment_end++; if (segment_end == polygon.size() - 1) return {std::make_pair(0, polygon.size() - 1)}; size_t first_different_color = (segment_end + 1) % polygon.size(); for (size_t line_offset_idx = 0; line_offset_idx < polygon.size(); ++line_offset_idx) { size_t start_s = (first_different_color + line_offset_idx) % polygon.size(); size_t end_s = start_s; while (line_offset_idx + 1 < polygon.size() && polygon[start_s].color == polygon[(first_different_color + line_offset_idx + 1) % polygon.size()].color) { end_s = (first_different_color + line_offset_idx + 1) % polygon.size(); line_offset_idx++; } segments.emplace_back(start_s, end_s); } return segments; } static std::vector>> get_all_segments(const std::vector> &color_poly) { std::vector>> all_segments(color_poly.size()); for (size_t poly_idx = 0; poly_idx < color_poly.size(); ++poly_idx) { const std::vector &c_polygon = color_poly[poly_idx]; all_segments[poly_idx] = get_segments(c_polygon); } return all_segments; } static std::vector colorize_line(const Line & line_to_process, const size_t start_idx, const size_t end_idx, std::vector &painted_lines) { std::vector internal_painted; for (size_t line_idx = start_idx; line_idx <= end_idx; ++line_idx) { internal_painted.emplace_back(painted_lines[line_idx]); } const int filter_eps_value = scale_(0.1f); std::vector filtered_lines; filtered_lines.emplace_back(internal_painted.front()); for (size_t line_idx = 1; line_idx < internal_painted.size(); ++line_idx) { PaintedLine &prev = filtered_lines.back(); PaintedLine &curr = internal_painted[line_idx]; double prev_length = prev.projected_line.length(); double curr_dist_start = (curr.projected_line.a - prev.projected_line.a).cast().norm(); double dist_between_lines = curr_dist_start - prev_length; if (dist_between_lines >= 0) { if (prev.color == curr.color) { if (dist_between_lines <= filter_eps_value) { prev.projected_line.b = curr.projected_line.b; } else { filtered_lines.emplace_back(curr); } } else { filtered_lines.emplace_back(curr); } } else { double curr_dist_end = (curr.projected_line.b - prev.projected_line.a).cast().norm(); if (curr_dist_end <= prev_length) { } else { if (prev.color == curr.color) { prev.projected_line.b = curr.projected_line.b; } else { curr.projected_line.a = prev.projected_line.b; filtered_lines.emplace_back(curr); } } } } std::vector final_lines; double dist_to_start = (filtered_lines.front().projected_line.a - line_to_process.a).cast().norm(); if (dist_to_start <= filter_eps_value) { filtered_lines.front().projected_line.a = line_to_process.a; final_lines.push_back({filtered_lines.front().projected_line, filtered_lines.front().color}); } else { final_lines.push_back({Line(line_to_process.a, filtered_lines.front().projected_line.a), 0}); final_lines.push_back({filtered_lines.front().projected_line, filtered_lines.front().color}); } for (size_t line_idx = 1; line_idx < filtered_lines.size(); ++line_idx) { ColoredLine &prev = final_lines.back(); PaintedLine &curr = filtered_lines[line_idx]; double line_dist = (curr.projected_line.a - prev.line.b).cast().norm(); if (line_dist <= filter_eps_value) { if (prev.color == curr.color) { prev.line.b = curr.projected_line.b; } else { prev.line.b = curr.projected_line.a; final_lines.push_back({curr.projected_line, curr.color}); } } else { final_lines.push_back({Line(prev.line.b, curr.projected_line.a), 0}); final_lines.push_back({curr.projected_line, curr.color}); } } double dist_to_end = (final_lines.back().line.b - line_to_process.b).cast().norm(); if (dist_to_end <= filter_eps_value) final_lines.back().line.b = line_to_process.b; else final_lines.push_back({Line(final_lines.back().line.b, line_to_process.b), 0}); for (size_t line_idx = 1; line_idx < final_lines.size(); ++line_idx) assert(final_lines[line_idx - 1].line.b == final_lines[line_idx].line.a); for (size_t line_idx = 2; line_idx < final_lines.size(); ++line_idx) { const ColoredLine &line_0 = final_lines[line_idx - 2]; ColoredLine & line_1 = final_lines[line_idx - 1]; const ColoredLine &line_2 = final_lines[line_idx - 0]; if (line_0.color == line_2.color && line_0.color != line_1.color) if (line_1.line.length() <= scale_(0.2)) line_1.color = line_0.color; } std::vector colored_lines_simpl; colored_lines_simpl.emplace_back(final_lines.front()); for (size_t line_idx = 1; line_idx < final_lines.size(); ++line_idx) { const ColoredLine &line_0 = final_lines[line_idx]; if (colored_lines_simpl.back().color == line_0.color) colored_lines_simpl.back().line.b = line_0.line.b; else colored_lines_simpl.emplace_back(line_0); } final_lines = colored_lines_simpl; if (final_lines.size() > 1) { if (final_lines.front().color != final_lines[1].color && final_lines.front().line.length() <= scale_(0.2)) { final_lines[1].line.a = final_lines.front().line.a; final_lines.erase(final_lines.begin()); } } if (final_lines.size() > 1) { if (final_lines.back().color != final_lines[final_lines.size() - 2].color && final_lines.back().line.length() <= scale_(0.2)) { final_lines[final_lines.size() - 2].line.b = final_lines.back().line.b; final_lines.pop_back(); } } return final_lines; } static std::vector colorize_polygon(const Polygon &poly, const size_t start_idx, const size_t end_idx, std::vector &painted_lines) { std::vector new_lines; Lines lines = poly.lines(); for (size_t idx = 0; idx < painted_lines[start_idx].line_idx; ++idx) new_lines.emplace_back(ColoredLine{lines[idx], 0}); for (size_t first_idx = start_idx; first_idx <= end_idx; ++first_idx) { size_t second_idx = first_idx; while (second_idx <= end_idx && painted_lines[first_idx].line_idx == painted_lines[second_idx].line_idx) ++second_idx; --second_idx; assert(painted_lines[first_idx].line_idx == painted_lines[second_idx].line_idx); std::vector lines_c_line = colorize_line(lines[painted_lines[first_idx].line_idx], first_idx, second_idx, painted_lines); new_lines.insert(new_lines.end(), lines_c_line.begin(), lines_c_line.end()); if (second_idx + 1 <= end_idx) for (size_t idx = painted_lines[second_idx].line_idx + 1; idx < painted_lines[second_idx + 1].line_idx; ++idx) new_lines.emplace_back(ColoredLine{lines[idx], 0}); first_idx = second_idx; } for (size_t idx = painted_lines[end_idx].line_idx + 1; idx < poly.size(); ++idx) new_lines.emplace_back(ColoredLine{lines[idx], 0}); for (size_t line_idx = 2; line_idx < new_lines.size(); ++line_idx) { const ColoredLine &line_0 = new_lines[line_idx - 2]; ColoredLine & line_1 = new_lines[line_idx - 1]; const ColoredLine &line_2 = new_lines[line_idx - 0]; if (line_0.color == line_2.color && line_0.color != line_1.color && line_0.color >= 1) { if (line_1.line.length() <= scale_(0.5)) line_1.color = line_0.color; } } for (size_t line_idx = 3; line_idx < new_lines.size(); ++line_idx) { const ColoredLine &line_0 = new_lines[line_idx - 3]; ColoredLine & line_1 = new_lines[line_idx - 2]; ColoredLine & line_2 = new_lines[line_idx - 1]; const ColoredLine &line_3 = new_lines[line_idx - 0]; if (line_0.color == line_3.color && (line_0.color != line_1.color || line_0.color != line_2.color) && line_0.color >= 1 && line_3.color >= 1) { if ((line_1.line.length() + line_2.line.length()) <= scale_(0.5)) { line_1.color = line_0.color; line_2.color = line_0.color; } } } std::vector> segments = get_segments(new_lines); auto segment_length = [&new_lines](const std::pair &segment) { double total_length = 0; for (size_t seg_start_idx = segment.first; seg_start_idx != segment.second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0) total_length += new_lines[seg_start_idx].line.length(); total_length += new_lines[segment.second].line.length(); return total_length; }; for (size_t pair_idx = 1; pair_idx < segments.size(); ++pair_idx) { int color0 = new_lines[segments[pair_idx - 1].first].color; int color1 = new_lines[segments[pair_idx - 0].first].color; double seg0l = segment_length(segments[pair_idx - 1]); double seg1l = segment_length(segments[pair_idx - 0]); if (color0 != color1 && seg0l >= scale_(0.1) && seg1l <= scale_(0.2)) { for (size_t seg_start_idx = segments[pair_idx].first; seg_start_idx != segments[pair_idx].second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0) new_lines[seg_start_idx].color = color0; new_lines[segments[pair_idx].second].color = color0; } } segments = get_segments(new_lines); for (size_t pair_idx = 1; pair_idx < segments.size(); ++pair_idx) { int color0 = new_lines[segments[pair_idx - 1].first].color; int color1 = new_lines[segments[pair_idx - 0].first].color; double seg1l = segment_length(segments[pair_idx - 0]); if (color0 >= 1 && color0 != color1 && seg1l <= scale_(0.2)) { for (size_t seg_start_idx = segments[pair_idx].first; seg_start_idx != segments[pair_idx].second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0) new_lines[seg_start_idx].color = color0; new_lines[segments[pair_idx].second].color = color0; } } for (size_t pair_idx = 2; pair_idx < segments.size(); ++pair_idx) { int color0 = new_lines[segments[pair_idx - 2].first].color; int color1 = new_lines[segments[pair_idx - 1].first].color; int color2 = new_lines[segments[pair_idx - 0].first].color; if (color0 > 0 && color0 == color2 && color0 != color1 && segment_length(segments[pair_idx - 1]) <= scale_(0.5)) { for (size_t seg_start_idx = segments[pair_idx].first; seg_start_idx != segments[pair_idx].second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0) new_lines[seg_start_idx].color = color0; new_lines[segments[pair_idx].second].color = color0; } } return new_lines; } static std::vector> colorize_polygons(const Polygons &polygons, std::vector &painted_lines) { const size_t start_idx = 0; const size_t end_idx = painted_lines.size() - 1; std::vector> new_polygons; for (size_t idx = 0; idx < painted_lines[start_idx].contour_idx; ++idx) new_polygons.emplace_back(to_colored_lines(polygons[idx], 0)); for (size_t first_idx = start_idx; first_idx <= end_idx; ++first_idx) { size_t second_idx = first_idx; while (second_idx <= end_idx && painted_lines[first_idx].contour_idx == painted_lines[second_idx].contour_idx) ++second_idx; --second_idx; assert(painted_lines[first_idx].contour_idx == painted_lines[second_idx].contour_idx); std::vector polygon_c = colorize_polygon(polygons[painted_lines[first_idx].contour_idx], first_idx, second_idx, painted_lines); new_polygons.emplace_back(polygon_c); if (second_idx + 1 <= end_idx) for (size_t idx = painted_lines[second_idx].contour_idx + 1; idx < painted_lines[second_idx + 1].contour_idx; ++idx) new_polygons.emplace_back(to_colored_lines(polygons[idx], 0)); first_idx = second_idx; } for (size_t idx = painted_lines[end_idx].contour_idx + 1; idx < polygons.size(); ++idx) new_polygons.emplace_back(to_colored_lines(polygons[idx], 0)); return new_polygons; } using boost::polygon::voronoi_diagram; struct MMU_Graph { enum class ARC_TYPE { BORDER, NON_BORDER }; struct Arc { size_t from_idx; size_t to_idx; int color; ARC_TYPE type; bool used{false}; bool operator==(const Arc &rhs) const { return (from_idx == rhs.from_idx) && (to_idx == rhs.to_idx) && (color == rhs.color) && (type == rhs.type); } bool operator!=(const Arc &rhs) const { return !operator==(rhs); } }; struct Node { Point point; std::list neighbours; void remove_edge(const size_t to_idx) { for (auto arc_it = this->neighbours.begin(); arc_it != this->neighbours.end(); ++arc_it) { if (arc_it->to_idx == to_idx) { assert(arc_it->type != ARC_TYPE::BORDER); this->neighbours.erase(arc_it); break; } } } }; std::vector nodes; std::vector arcs; size_t all_border_points{}; std::vector polygon_idx_offset; std::vector polygon_sizes; void remove_edge(const size_t from_idx, const size_t to_idx) { nodes[from_idx].remove_edge(to_idx); nodes[to_idx].remove_edge(from_idx); } size_t get_global_index(const size_t poly_idx, const size_t point_idx) const { return polygon_idx_offset[poly_idx] + point_idx; } void append_edge(const size_t &from_idx, const size_t &to_idx, int color = -1, ARC_TYPE type = ARC_TYPE::NON_BORDER) { // Don't append duplicate edges between the same nodes. for (const MMU_Graph::Arc &arc : this->nodes[from_idx].neighbours) if (arc.to_idx == to_idx) return; for (const MMU_Graph::Arc &arc : this->nodes[to_idx].neighbours) if (arc.to_idx == to_idx) return; this->nodes[from_idx].neighbours.push_back({from_idx, to_idx, color, type}); this->nodes[to_idx].neighbours.push_back({to_idx, from_idx, color, type}); this->arcs.push_back({from_idx, to_idx, color, type}); this->arcs.push_back({to_idx, from_idx, color, type}); } // Ignoring arcs in the opposite direction MMU_Graph::Arc get_arc(size_t idx) { return this->arcs[idx * 2]; } size_t nodes_count() const { return this->nodes.size(); } void remove_nodes_with_one_arc() { std::queue update_queue; for (const MMU_Graph::Node &node : this->nodes) if (node.neighbours.size() == 1) update_queue.emplace(&node - &this->nodes.front()); while (!update_queue.empty()) { size_t node_from_idx = update_queue.front(); MMU_Graph::Node &node_from = this->nodes[update_queue.front()]; update_queue.pop(); if (node_from.neighbours.empty()) continue; assert(node_from.neighbours.size() == 1); size_t node_to_idx = node_from.neighbours.front().to_idx; MMU_Graph::Node &node_to = this->nodes[node_to_idx]; this->remove_edge(node_from_idx, node_to_idx); if (node_to.neighbours.size() == 1) update_queue.emplace(node_to_idx); } } void add_contours(const std::vector> &color_poly) { this->all_border_points = nodes.size(); this->polygon_sizes = std::vector(color_poly.size()); for (size_t polygon_idx = 0; polygon_idx < color_poly.size(); ++polygon_idx) this->polygon_sizes[polygon_idx] = color_poly[polygon_idx].size(); this->polygon_idx_offset = std::vector(color_poly.size()); this->polygon_idx_offset[0] = 0; for (size_t polygon_idx = 1; polygon_idx < color_poly.size(); ++polygon_idx) { this->polygon_idx_offset[polygon_idx] = this->polygon_idx_offset[polygon_idx - 1] + color_poly[polygon_idx - 1].size(); } size_t poly_idx = 0; for (const std::vector &color_lines : color_poly) { size_t line_idx = 0; for (const ColoredLine &color_line : color_lines) { size_t from_idx = this->get_global_index(poly_idx, line_idx); size_t to_idx = this->get_global_index(poly_idx, (line_idx + 1) % color_lines.size()); this->append_edge(from_idx, to_idx, color_line.color, ARC_TYPE::BORDER); ++line_idx; } ++poly_idx; } } // Nodes 0..all_border_points are only one with are on countour. Other vertexis are consider as not on coouter. So we check if base on attach index inline bool is_vertex_on_contour(const Voronoi::VD::vertex_type *vertex) const { assert(vertex != nullptr); return vertex->color() < this->all_border_points; } inline bool is_edge_attach_to_contour(const voronoi_diagram::const_edge_iterator &edge_iterator) const { return this->is_vertex_on_contour(edge_iterator->vertex0()) || this->is_vertex_on_contour(edge_iterator->vertex1()); } inline bool is_edge_connecting_two_contour_vertices(const voronoi_diagram::const_edge_iterator &edge_iterator) const { return this->is_vertex_on_contour(edge_iterator->vertex0()) && this->is_vertex_on_contour(edge_iterator->vertex1()); } }; namespace bg = boost::geometry; namespace bgm = boost::geometry::model; namespace bgi = boost::geometry::index; // float is needed because for coord_t bgi::intersects throws "bad numeric conversion: positive overflow" using rtree_point_t = bgm::point; using rtree_t = bgi::rtree, bgi::rstar<16, 4>>; static inline rtree_point_t mk_rtree_point(const Point &pt) { return rtree_point_t(float(pt.x()), float(pt.y())); } static inline Point mk_point(const Voronoi::VD::vertex_type *point) { return Point(coord_t(point->x()), coord_t(point->y())); } static inline Point mk_point(const Voronoi::Internal::point_type &point) { return Point(coord_t(point.x()), coord_t(point.y())); } static inline Point mk_point(const voronoi_diagram::vertex_type &point) { return Point(coord_t(point.x()), coord_t(point.y())); } static inline void mark_processed(const voronoi_diagram::const_edge_iterator &edge_iterator) { edge_iterator->color(true); edge_iterator->twin()->color(true); } // Return true, if "p" is closer to line.a, then line.b static inline bool is_point_closer_to_beginning_of_line(const Line &line, const Point &p) { return (p - line.a).cast().squaredNorm() < (p - line.b).cast().squaredNorm(); } static inline bool has_same_color(const ColoredLine &cl1, const ColoredLine &cl2) { return cl1.color == cl2.color; } // Determines if the line points from the point between two contour lines is pointing inside polygon or outside. static inline bool points_inside(const Line &contour_first, const Line &contour_second, const Point &new_point) { // Used in points_inside for decision if line leading thought the common point of two lines is pointing inside polygon or outside auto three_points_inward_normal = [](const Point &left, const Point &middle, const Point &right) -> Vec2d { assert(left != middle); assert(middle != right); return (perp(Point(middle - left)).cast().normalized() + perp(Point(right - middle)).cast().normalized()).normalized(); }; assert(contour_first.b == contour_second.a); Vec2d inward_normal = three_points_inward_normal(contour_first.a, contour_first.b, contour_second.b); Vec2d edge_norm = (new_point - contour_first.b).cast().normalized(); double side = inward_normal.dot(edge_norm); // assert(side != 0.); return side > 0.; } static inline bool line_intersection_with_epsilon(const Line &line_to_extend, const Line &other, Point *intersection) { Line extended_line = line_to_extend; extended_line.extend(15 * SCALED_EPSILON); return extended_line.intersection(other, intersection); } // For every ColoredLine in lines_colored_out, assign the index of the polygon to which belongs and also the index of this line inside of the polygon. static inline void init_polygon_indices(const MMU_Graph &graph, const std::vector> &color_poly, std::vector &lines_colored_out) { size_t poly_idx = 0; for (const std::vector &color_lines : color_poly) { size_t line_idx = 0; for (size_t color_line_idx = 0; color_line_idx < color_lines.size(); ++color_line_idx) { size_t from_idx = graph.get_global_index(poly_idx, line_idx); lines_colored_out[from_idx].poly_idx = int(poly_idx); lines_colored_out[from_idx].local_line_idx = int(line_idx); ++line_idx; } ++poly_idx; } } static MMU_Graph build_graph(size_t layer_idx, const std::vector> &color_poly) { Geometry::VoronoiDiagram vd; std::vector lines_colored = to_lines(color_poly); Polygons color_poly_tmp = colored_points_to_polygon(color_poly); const Points points = to_points(color_poly_tmp); const Lines lines = to_lines(color_poly_tmp); boost::polygon::construct_voronoi(lines_colored.begin(), lines_colored.end(), &vd); MMU_Graph graph; for (const Point &point : points) graph.nodes.push_back({point}); graph.add_contours(color_poly); init_polygon_indices(graph, color_poly, lines_colored); assert(graph.nodes.size() == lines_colored.size()); // All Voronoi vertices are post-processes to merge very close vertices to single. Witch Eliminates issues with intersection edges. // Also, Voronoi vertices outside of the bounding of input polygons are throw away by marking them. auto append_voronoi_vertices_to_graph = [&graph, &color_poly_tmp, &vd]() -> void { auto is_equal_points = [](const Point &p1, const Point &p2) { return p1 == p2 || (p1 - p2).cast().norm() <= 3 * SCALED_EPSILON; }; BoundingBox bbox = get_extents(color_poly_tmp); bbox.offset(SCALED_EPSILON); // EdgeGrid is used for vertices near to contour and rtree for other vertices // FIXME Lukas H.: Get rid of EdgeGrid and rtree. Use only one structure for both cases. EdgeGrid::Grid grid; grid.set_bbox(bbox); grid.create(color_poly_tmp, coord_t(scale_(10.))); rtree_t rtree; for (const voronoi_diagram::vertex_type &vertex : vd.vertices()) { vertex.color(-1); Point vertex_point = mk_point(vertex); const Point &first_point = graph.nodes[graph.get_arc(vertex.incident_edge()->cell()->source_index()).from_idx].point; const Point &second_point = graph.nodes[graph.get_arc(vertex.incident_edge()->twin()->cell()->source_index()).from_idx].point; if (vertex_equal_to_point(&vertex, first_point)) { assert(vertex.color() != vertex.incident_edge()->cell()->source_index()); assert(vertex.color() != vertex.incident_edge()->twin()->cell()->source_index()); vertex.color(graph.get_arc(vertex.incident_edge()->cell()->source_index()).from_idx); } else if (vertex_equal_to_point(&vertex, second_point)) { assert(vertex.color() != vertex.incident_edge()->cell()->source_index()); assert(vertex.color() != vertex.incident_edge()->twin()->cell()->source_index()); vertex.color(graph.get_arc(vertex.incident_edge()->twin()->cell()->source_index()).from_idx); } else if (bbox.contains(vertex_point)) { EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point_signed_distance(vertex_point, coord_t(3 * SCALED_EPSILON)); if (cp.valid()) { size_t global_idx = graph.get_global_index(cp.contour_idx, cp.start_point_idx); size_t global_idx_next = graph.get_global_index(cp.contour_idx, (cp.start_point_idx + 1) % color_poly_tmp[cp.contour_idx].points.size()); vertex.color(is_equal_points(vertex_point, graph.nodes[global_idx].point) ? global_idx : global_idx_next); } else { if (rtree.empty()) { rtree.insert(std::make_pair(mk_rtree_point(vertex_point), graph.nodes_count())); vertex.color(graph.nodes_count()); graph.nodes.push_back({vertex_point}); } else { std::vector> closest; rtree.query(bgi::nearest(mk_rtree_point(vertex_point), 1), std::back_inserter(closest)); assert(!closest.empty()); rtree_point_t r_point = closest.front().first; Point closest_p(bg::get<0>(r_point), bg::get<1>(r_point)); if (Line(vertex_point, closest_p).length() > 3 * SCALED_EPSILON) { rtree.insert(std::make_pair(mk_rtree_point(vertex_point), graph.nodes_count())); vertex.color(graph.nodes_count()); graph.nodes.push_back({vertex_point}); } else { vertex.color(closest.front().second); } } } } } }; append_voronoi_vertices_to_graph(); auto get_prev_contour_line = [&lines_colored, &color_poly, &graph](const voronoi_diagram::const_edge_iterator &edge_it) -> ColoredLine { size_t contour_line_local_idx = lines_colored[edge_it->cell()->source_index()].local_line_idx; size_t contour_line_size = color_poly[lines_colored[edge_it->cell()->source_index()].poly_idx].size(); size_t contour_prev_idx = graph.get_global_index(lines_colored[edge_it->cell()->source_index()].poly_idx, (contour_line_local_idx > 0) ? contour_line_local_idx - 1 : contour_line_size - 1); return lines_colored[contour_prev_idx]; }; auto get_next_contour_line = [&lines_colored, &color_poly, &graph](const voronoi_diagram::const_edge_iterator &edge_it) -> ColoredLine { size_t contour_line_local_idx = lines_colored[edge_it->cell()->source_index()].local_line_idx; size_t contour_line_size = color_poly[lines_colored[edge_it->cell()->source_index()].poly_idx].size(); size_t contour_next_idx = graph.get_global_index(lines_colored[edge_it->cell()->source_index()].poly_idx, (contour_line_local_idx + 1) % contour_line_size); return lines_colored[contour_next_idx]; }; BoundingBox bbox = get_extents(color_poly_tmp); bbox.offset(scale_(10.)); const double bbox_dim_max = double(std::max(bbox.size().x(), bbox.size().y())); // Make a copy of the input segments with the double type. std::vector segments; for (const Line &line : lines) segments.emplace_back(Voronoi::Internal::point_type(double(line.a(0)), double(line.a(1))), Voronoi::Internal::point_type(double(line.b(0)), double(line.b(1)))); for (auto edge_it = vd.edges().begin(); edge_it != vd.edges().end(); ++edge_it) { // Skip second half-edge if (edge_it->cell()->source_index() > edge_it->twin()->cell()->source_index() || edge_it->color()) continue; if (edge_it->is_infinite()) { // Infinite edge is leading through a point on the counter, but there are no Voronoi vertices. // So we could fix this case by computing the intersection between the contour line and infinity edge. std::vector samples; Voronoi::Internal::clip_infinite_edge(points, segments, *edge_it, bbox_dim_max, &samples); if (samples.empty()) continue; const Line edge_line(mk_point(samples[0]), mk_point(samples[1])); const ColoredLine &contour_line = lines_colored[edge_it->cell()->source_index()]; Point contour_intersection; if (line_intersection_with_epsilon(contour_line.line, edge_line, &contour_intersection)) { const MMU_Graph::Arc &graph_arc = graph.get_arc(edge_it->cell()->source_index()); const size_t from_idx = (edge_it->vertex1() != nullptr) ? edge_it->vertex1()->color() : edge_it->vertex0()->color(); size_t to_idx = ((contour_line.line.a - contour_intersection).cast().squaredNorm() < (contour_line.line.b - contour_intersection).cast().squaredNorm()) ? graph_arc.from_idx : graph_arc.to_idx; if (from_idx != to_idx && from_idx < graph.nodes_count() && to_idx < graph.nodes_count()) { graph.append_edge(from_idx, to_idx); mark_processed(edge_it); } } } else if (edge_it->is_finite()) { const Point v0 = mk_point(edge_it->vertex0()); const Point v1 = mk_point(edge_it->vertex1()); const size_t from_idx = edge_it->vertex0()->color(); const size_t to_idx = edge_it->vertex1()->color(); // Both points are on contour, so skip them. In cases of duplicate Voronoi vertices, skip edges between the same two points. if (graph.is_edge_connecting_two_contour_vertices(edge_it) || (edge_it->vertex0()->color() == edge_it->vertex1()->color())) continue; const Line edge_line(v0, v1); const Line contour_line = lines_colored[edge_it->cell()->source_index()].line; const ColoredLine colored_line = lines_colored[edge_it->cell()->source_index()]; const ColoredLine contour_line_prev = get_prev_contour_line(edge_it); const ColoredLine contour_line_next = get_next_contour_line(edge_it); Point intersection; if (edge_it->vertex0()->color() >= graph.nodes_count() || edge_it->vertex1()->color() >= graph.nodes_count()) { // if(edge_it->vertex0()->color() < graph.nodes_count() && !graph.is_vertex_on_contour(edge_it->vertex0())) { // // } if (edge_it->vertex1()->color() < graph.nodes_count() && !graph.is_vertex_on_contour(edge_it->vertex1())) { Line contour_line_twin = lines_colored[edge_it->twin()->cell()->source_index()].line; if (line_intersection_with_epsilon(contour_line_twin, edge_line, &intersection)) { const MMU_Graph::Arc &graph_arc = graph.get_arc(edge_it->twin()->cell()->source_index()); const size_t to_idx_l = is_point_closer_to_beginning_of_line(contour_line_twin, intersection) ? graph_arc.from_idx : graph_arc.to_idx; graph.append_edge(edge_it->vertex1()->color(), to_idx_l); } else if (line_intersection_with_epsilon(contour_line, edge_line, &intersection)) { const MMU_Graph::Arc &graph_arc = graph.get_arc(edge_it->cell()->source_index()); const size_t to_idx_l = is_point_closer_to_beginning_of_line(contour_line, intersection) ? graph_arc.from_idx : graph_arc.to_idx; graph.append_edge(edge_it->vertex1()->color(), to_idx_l); } mark_processed(edge_it); } } else if (graph.is_edge_attach_to_contour(edge_it)) { mark_processed(edge_it); // Skip edges witch connection two points on a contour if (graph.is_edge_connecting_two_contour_vertices(edge_it)) continue; if (graph.is_vertex_on_contour(edge_it->vertex0())) { if (is_point_closer_to_beginning_of_line(contour_line, v0)) { if (!has_same_color(contour_line_prev, colored_line) && points_inside(contour_line_prev.line, contour_line, v1)) { graph.append_edge(from_idx, to_idx); } } else { if (!has_same_color(contour_line_next, colored_line) && points_inside(contour_line, contour_line_next.line, v1)) { graph.append_edge(from_idx, to_idx); } } } else { assert(graph.is_vertex_on_contour(edge_it->vertex1())); if (is_point_closer_to_beginning_of_line(contour_line, v1)) { if (!has_same_color(contour_line_prev, colored_line) && points_inside(contour_line_prev.line, contour_line, v0)) { graph.append_edge(from_idx, to_idx); } } else { if (!has_same_color(contour_line_next, colored_line) && points_inside(contour_line, contour_line_next.line, v0)) { graph.append_edge(from_idx, to_idx); } } } } else if (line_intersection_with_epsilon(contour_line, edge_line, &intersection)) { mark_processed(edge_it); Point real_v0 = graph.nodes[edge_it->vertex0()->color()].point; Point real_v1 = graph.nodes[edge_it->vertex1()->color()].point; if (is_point_closer_to_beginning_of_line(contour_line, intersection)) { Line first_part(intersection, real_v0); Line second_part(intersection, real_v1); if (!has_same_color(contour_line_prev, colored_line)) { if (points_inside(contour_line_prev.line, contour_line, first_part.b)) { graph.append_edge(edge_it->vertex0()->color(), graph.get_arc(edge_it->cell()->source_index()).from_idx); } if (points_inside(contour_line_prev.line, contour_line, second_part.b)) { graph.append_edge(edge_it->vertex1()->color(), graph.get_arc(edge_it->cell()->source_index()).from_idx); } } } else { const size_t int_point_idx = graph.get_arc(edge_it->cell()->source_index()).to_idx; const Point int_point = graph.nodes[int_point_idx].point; const Line first_part(int_point, real_v0); const Line second_part(int_point, real_v1); if (!has_same_color(contour_line_next, colored_line)) { if (points_inside(contour_line, contour_line_next.line, first_part.b)) { graph.append_edge(edge_it->vertex0()->color(), int_point_idx); } if (points_inside(contour_line, contour_line_next.line, second_part.b)) { graph.append_edge(edge_it->vertex1()->color(), int_point_idx); } } } } } } for (auto edge_it = vd.edges().begin(); edge_it != vd.edges().end(); ++edge_it) { // Skip second half-edge and processed edges if (edge_it->cell()->source_index() > edge_it->twin()->cell()->source_index() || edge_it->color()) continue; if (edge_it->is_finite() && !bool(edge_it->color()) && edge_it->vertex0()->color() < graph.nodes_count() && edge_it->vertex1()->color() < graph.nodes_count()) { // Skip cases, when the edge is between two same vertices, which is in cases two near vertices were merged together. if (edge_it->vertex0()->color() == edge_it->vertex1()->color()) continue; size_t from_idx = edge_it->vertex0()->color(); size_t to_idx = edge_it->vertex1()->color(); graph.append_edge(from_idx, to_idx); } mark_processed(edge_it); } graph.remove_nodes_with_one_arc(); return graph; } static inline Polygon to_polygon(const Lines &lines) { Polygon poly_out; poly_out.points.reserve(lines.size()); for (const Line &line : lines) poly_out.points.emplace_back(line.a); return poly_out; } // Returns list of polygons and assigned colors. // It iterates through all nodes on the border between two different colors, and from this point, // start selection always left most edges for every node to construct CCW polygons. // Assumes that graph is planar (without self-intersection edges) static std::vector> extract_colored_segments(MMU_Graph &graph) { // When there is no next arc, then is returned original_arc or edge with is marked as used auto get_next = [&graph](const Line &process_line, MMU_Graph::Arc &original_arc) -> MMU_Graph::Arc & { std::vector> sorted_arcs; for (MMU_Graph::Arc &arc : graph.nodes[original_arc.to_idx].neighbours) { if (graph.nodes[arc.to_idx].point == process_line.a || arc.used) continue; assert(original_arc.to_idx == arc.from_idx); Vec2d process_line_vec_n = (process_line.a - process_line.b).cast().normalized(); Vec2d neighbour_line_vec_n = (graph.nodes[arc.to_idx].point - graph.nodes[arc.from_idx].point).cast().normalized(); double angle = ::acos(std::clamp(neighbour_line_vec_n.dot(process_line_vec_n), -1.0, 1.0)); if (Slic3r::cross2(neighbour_line_vec_n, process_line_vec_n) < 0.0) angle = 2.0 * (double) PI - angle; sorted_arcs.emplace_back(&arc, angle); } std::sort(sorted_arcs.begin(), sorted_arcs.end(), [](std::pair &l, std::pair &r) -> bool { return l.second < r.second; }); // Try to return left most edge witch is unused for (auto &sorted_arc : sorted_arcs) if (!sorted_arc.first->used) return *sorted_arc.first; if (sorted_arcs.empty()) return original_arc; return *(sorted_arcs.front().first); }; std::vector> polygons_segments; for (MMU_Graph::Node &node : graph.nodes) for (MMU_Graph::Arc &arc : node.neighbours) arc.used = false; for (size_t node_idx = 0; node_idx < graph.all_border_points; ++node_idx) { MMU_Graph::Node &node = graph.nodes[node_idx]; for (MMU_Graph::Arc &arc : node.neighbours) { if (arc.type == MMU_Graph::ARC_TYPE::NON_BORDER || arc.used) continue; Line process_line(node.point, graph.nodes[arc.to_idx].point); arc.used = true; Lines face_lines; face_lines.emplace_back(process_line); Point start_p = process_line.a; Line p_vec = process_line; MMU_Graph::Arc *p_arc = &arc; do { MMU_Graph::Arc &next = get_next(p_vec, *p_arc); face_lines.emplace_back(Line(graph.nodes[next.from_idx].point, graph.nodes[next.to_idx].point)); if (next.used) break; next.used = true; p_vec = Line(graph.nodes[next.from_idx].point, graph.nodes[next.to_idx].point); p_arc = &next; } while (graph.nodes[p_arc->to_idx].point != start_p); Polygon poly = to_polygon(face_lines); if (poly.is_counter_clockwise() && poly.is_valid()) polygons_segments.emplace_back(poly, arc.color); } } return polygons_segments; } // Used in remove_multiple_edges_in_vertices() // Returns length of edge with is connected to contour. To this length is include other edges with follows it if they are almost straight (with the // tolerance of 15) And also if node between two subsequent edges is connected only to these two edges. static inline double compute_edge_length(MMU_Graph &graph, size_t start_idx, MMU_Graph::Arc &start_edge) { for (MMU_Graph::Node &node : graph.nodes) for (MMU_Graph::Arc &arc : node.neighbours) arc.used = false; start_edge.used = true; MMU_Graph::Arc *arc = &start_edge; size_t idx = start_idx; double line_total_length = Line(graph.nodes[idx].point, graph.nodes[arc->to_idx].point).length(); while (graph.nodes[arc->to_idx].neighbours.size() == 2) { bool found = false; for (MMU_Graph::Arc &arc_n : graph.nodes[arc->to_idx].neighbours) { if (arc_n.type == MMU_Graph::ARC_TYPE::NON_BORDER && !arc_n.used && arc_n.to_idx != idx) { Line first_line(graph.nodes[idx].point, graph.nodes[arc->to_idx].point); Line second_line(graph.nodes[arc->to_idx].point, graph.nodes[arc_n.to_idx].point); Vec2d first_line_vec = (first_line.a - first_line.b).cast(); Vec2d second_line_vec = (second_line.b - second_line.a).cast(); Vec2d first_line_vec_n = first_line_vec.normalized(); Vec2d second_line_vec_n = second_line_vec.normalized(); double angle = ::acos(std::clamp(first_line_vec_n.dot(second_line_vec_n), -1.0, 1.0)); if (Slic3r::cross2(first_line_vec_n, second_line_vec_n) < 0.0) angle = 2.0 * (double) PI - angle; if (std::abs(angle - PI) >= (PI / 12)) continue; idx = arc->to_idx; arc = &arc_n; line_total_length += Line(graph.nodes[idx].point, graph.nodes[arc->to_idx].point).length(); arc_n.used = true; found = true; break; } } if (!found) break; } return line_total_length; } // Used for fixing double Voronoi edges for concave parts of the polygon. static void remove_multiple_edges_in_vertices(MMU_Graph &graph, const std::vector> &color_poly) { std::vector>> colored_segments = get_all_segments(color_poly); for (const std::vector> &colored_segment_p : colored_segments) { size_t poly_idx = &colored_segment_p - &colored_segments.front(); for (const std::pair &colored_segment : colored_segment_p) { size_t first_idx = graph.get_global_index(poly_idx, colored_segment.first); size_t second_idx = graph.get_global_index(poly_idx, (colored_segment.second + 1) % graph.polygon_sizes[poly_idx]); Line seg_line(graph.nodes[first_idx].point, graph.nodes[second_idx].point); if (graph.nodes[first_idx].neighbours.size() >= 3) { std::vector> arc_to_check; for (MMU_Graph::Arc &n_arc : graph.nodes[first_idx].neighbours) { if (n_arc.type == MMU_Graph::ARC_TYPE::NON_BORDER) { double total_len = compute_edge_length(graph, first_idx, n_arc); arc_to_check.emplace_back(&n_arc, total_len); } } std::sort(arc_to_check.begin(), arc_to_check.end(), [](std::pair &l, std::pair &r) -> bool { return l.second > r.second; }); while (arc_to_check.size() > 1) { graph.remove_edge(first_idx, arc_to_check.back().first->to_idx); arc_to_check.pop_back(); } } } } } static void cut_segmented_layers(const ConstLayerPtrsAdaptor layers, std::vector>> &segmented_regions, const float cut_width) { tbb::parallel_for(tbb::blocked_range(0, segmented_regions.size()),[&](const tbb::blocked_range& range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) { std::vector> segmented_regions_cuts; for (const std::pair &colored_expoly : segmented_regions[layer_idx]) { ExPolygons cut_colored_expoly = diff_ex({colored_expoly.first}, offset_ex(layers[layer_idx]->lslices, cut_width)); for (const ExPolygon &expoly : cut_colored_expoly) { segmented_regions_cuts.emplace_back(expoly, colored_expoly.second); } } segmented_regions[layer_idx] = segmented_regions_cuts; } }); // end of parallel_for } // Returns MMU segmentation of top and bottom layers based on painting in MMU segmentation gizmo static inline std::vector> mmu_segmentation_top_and_bottom_layers(const PrintObject &print_object) { const ConstLayerPtrsAdaptor layers = print_object.layers(); std::vector> triangles_by_color(3); triangles_by_color.assign(3, std::vector(layers.size())); for (const ModelVolume *mv : print_object.model_object()->volumes) { for (const auto ¶ms : {std::make_pair(EnforcerBlockerType::NONE, 0), std::make_pair(EnforcerBlockerType::ENFORCER, 1), std::make_pair(EnforcerBlockerType::BLOCKER, 2)}) { const indexed_triangle_set custom_facets = mv->mmu_segmentation_facets.get_facets(*mv, params.first); if (!mv->is_model_part() || custom_facets.indices.empty()) continue; const Transform3f tr = print_object.trafo().cast() * mv->get_matrix().cast(); for (size_t facet_idx = 0; facet_idx < custom_facets.indices.size(); ++facet_idx) { float min_z = std::numeric_limits::max(); float max_z = std::numeric_limits::lowest(); std::array facet; Points projected_facet(3); for (int p_idx = 0; p_idx < 3; ++p_idx) { facet[p_idx] = tr * custom_facets.vertices[custom_facets.indices[facet_idx](p_idx)]; max_z = std::max(max_z, facet[p_idx].z()); min_z = std::min(min_z, facet[p_idx].z()); } // Sort the vertices by z-axis for simplification of projected_facet on slices std::sort(facet.begin(), facet.end(), [](const Vec3f &p1, const Vec3f &p2) { return p1.z() < p2.z(); }); for (int p_idx = 0; p_idx < 3; ++p_idx) { projected_facet[p_idx] = Point(scale_(facet[p_idx].x()), scale_(facet[p_idx].y())); projected_facet[p_idx] = projected_facet[p_idx] - print_object.center_offset(); } ExPolygon triangle = ExPolygon(projected_facet); // Find lowest slice not below the triangle. auto first_layer = std::upper_bound(layers.begin(), layers.end(), float(min_z - EPSILON), [](float z, const Layer *l1) { return z < l1->slice_z + l1->height * 0.5; }); auto last_layer = std::upper_bound(layers.begin(), layers.end(), float(max_z - EPSILON), [](float z, const Layer *l1) { return z < l1->slice_z + l1->height * 0.5; }); if (last_layer == layers.end()) --last_layer; if (first_layer == layers.end() || (first_layer != layers.begin() && facet[0].z() < (*first_layer)->print_z - EPSILON)) --first_layer; for (auto layer_it = first_layer; (layer_it != (last_layer + 1) && layer_it != layers.end()); ++layer_it) { size_t layer_idx = layer_it - layers.begin(); triangles_by_color[params.second][layer_idx].emplace_back(triangle); } } } } auto get_extrusion_width = [&layers = std::as_const(layers)](const size_t layer_idx) -> float { auto extrusion_width_it = std::max_element(layers[layer_idx]->regions().begin(), layers[layer_idx]->regions().end(), [](const LayerRegion *l1, const LayerRegion *l2) { return l1->region()->config().perimeter_extrusion_width < l2->region()->config().perimeter_extrusion_width; }); assert(extrusion_width_it != layers[layer_idx]->regions().end()); return float((*extrusion_width_it)->region()->config().perimeter_extrusion_width); }; auto get_top_solid_layers = [&layers = std::as_const(layers)](const size_t layer_idx) -> int { auto top_solid_layer_it = std::max_element(layers[layer_idx]->regions().begin(), layers[layer_idx]->regions().end(), [](const LayerRegion *l1, const LayerRegion *l2) { return l1->region()->config().top_solid_layers < l2->region()->config().top_solid_layers; }); assert(top_solid_layer_it != layers[layer_idx]->regions().end()); return (*top_solid_layer_it)->region()->config().top_solid_layers; }; auto get_bottom_solid_layers = [&layers = std::as_const(layers)](const size_t layer_idx) -> int { auto top_bottom_layer_it = std::max_element(layers[layer_idx]->regions().begin(), layers[layer_idx]->regions().end(), [](const LayerRegion *l1, const LayerRegion *l2) { return l1->region()->config().bottom_solid_layers < l2->region()->config().bottom_solid_layers; }); assert(top_bottom_layer_it != layers[layer_idx]->regions().end()); return (*top_bottom_layer_it)->region()->config().bottom_solid_layers; }; std::vector top_layers(layers.size()); top_layers.back() = layers.back()->lslices; tbb::parallel_for(tbb::blocked_range(1, layers.size()), [&](const tbb::blocked_range &range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) { float extrusion_width = 0.1f * float(scale_(get_extrusion_width(layer_idx))); top_layers[layer_idx - 1] = diff_ex(layers[layer_idx - 1]->lslices, offset_ex(layers[layer_idx]->lslices, extrusion_width)); } }); // end of parallel_for std::vector bottom_layers(layers.size()); bottom_layers.front() = layers.front()->lslices; tbb::parallel_for(tbb::blocked_range(0, layers.size() - 1), [&](const tbb::blocked_range &range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) { float extrusion_width = 0.1f * float(scale_(get_extrusion_width(layer_idx))); bottom_layers[layer_idx + 1] = diff_ex(layers[layer_idx + 1]->lslices, offset_ex(layers[layer_idx]->lslices, extrusion_width)); } }); // end of parallel_for tbb::parallel_for(tbb::blocked_range(0, print_object.layers().size()), [&](const tbb::blocked_range &range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) { float extrusion_width = 0.1f * float(scale_(get_extrusion_width(layer_idx))); for (std::vector &triangles : triangles_by_color) { if (!triangles[layer_idx].empty() && (!top_layers[layer_idx].empty() || !bottom_layers[layer_idx].empty())) { ExPolygons connected = union_ex(offset_ex(triangles[layer_idx], float(10 * SCALED_EPSILON))); triangles[layer_idx] = union_ex(offset_ex(offset_ex(connected, -extrusion_width / 1), extrusion_width / 1)); } else { triangles[layer_idx].clear(); } } } }); // end of parallel_for std::vector> triangles_by_color_bottom(3); std::vector> triangles_by_color_top(3); triangles_by_color_bottom.assign(3, std::vector(layers.size())); triangles_by_color_top.assign(3, std::vector(layers.size())); for (size_t layer_idx = 0; layer_idx < print_object.layers().size(); ++layer_idx) { BOOST_LOG_TRIVIAL(debug) << "MMU segmentation of top layer: " << layer_idx; float extrusion_width = scale_(get_extrusion_width(layer_idx)); int top_solid_layers = get_top_solid_layers(layer_idx); ExPolygons top_expolygon = top_layers[layer_idx]; if (top_expolygon.empty()) continue; for (size_t color_idx = 0; color_idx < triangles_by_color.size(); ++color_idx) { if (triangles_by_color[color_idx][layer_idx].empty()) continue; ExPolygons intersection_poly = intersection_ex(triangles_by_color[color_idx][layer_idx], top_expolygon); if (!intersection_poly.empty()) { triangles_by_color_top[color_idx][layer_idx].insert(triangles_by_color_top[color_idx][layer_idx].end(), intersection_poly.begin(), intersection_poly.end()); for (int last_idx = int(layer_idx) - 1; last_idx >= std::max(int(layer_idx - top_solid_layers), int(0)); --last_idx) { float offset_value = float(layer_idx - last_idx) * (-1.0f) * extrusion_width; if (offset_ex(top_expolygon, offset_value).empty()) continue; ExPolygons layer_slices_trimmed = layers[last_idx]->lslices; for (int last_idx_1 = last_idx; last_idx_1 < int(layer_idx); ++last_idx_1) { layer_slices_trimmed = intersection_ex(layer_slices_trimmed, layers[last_idx_1 + 1]->lslices); } ExPolygons offset_e = offset_ex(layer_slices_trimmed, offset_value); ExPolygons intersection_poly_2 = intersection_ex(triangles_by_color_top[color_idx][layer_idx], offset_e); triangles_by_color_top[color_idx][last_idx].insert(triangles_by_color_top[color_idx][last_idx].end(), intersection_poly_2.begin(), intersection_poly_2.end()); } } } } for (size_t layer_idx = 0; layer_idx < print_object.layers().size(); ++layer_idx) { BOOST_LOG_TRIVIAL(debug) << "MMU segmentation of bottom layer: " << layer_idx; float extrusion_width = scale_(get_extrusion_width(layer_idx)); int bottom_solid_layers = get_bottom_solid_layers(layer_idx); const ExPolygons &bottom_expolygon = bottom_layers[layer_idx]; if (bottom_expolygon.empty()) continue; for (size_t color_idx = 0; color_idx < triangles_by_color.size(); ++color_idx) { if (triangles_by_color[color_idx][layer_idx].empty()) continue; ExPolygons intersection_poly = intersection_ex(triangles_by_color[color_idx][layer_idx], bottom_expolygon); if (!intersection_poly.empty()) { triangles_by_color_bottom[color_idx][layer_idx].insert(triangles_by_color_bottom[color_idx][layer_idx].end(), intersection_poly.begin(), intersection_poly.end()); for (size_t last_idx = layer_idx + 1; last_idx < std::min(layer_idx + bottom_solid_layers, layers.size()); ++last_idx) { float offset_value = float(last_idx - layer_idx) * (-1.0f) * extrusion_width; if (offset_ex(bottom_expolygon, offset_value).empty()) continue; ExPolygons layer_slices_trimmed = layers[last_idx]->lslices; for (int last_idx_1 = int(last_idx); last_idx_1 > int(layer_idx); --last_idx_1) { layer_slices_trimmed = intersection_ex(layer_slices_trimmed, offset_ex(layers[last_idx_1 - 1]->lslices, offset_value)); } ExPolygons offset_e = offset_ex(layer_slices_trimmed, offset_value); ExPolygons intersection_poly_2 = intersection_ex(triangles_by_color_bottom[color_idx][layer_idx], offset_e); append(triangles_by_color_bottom[color_idx][last_idx], std::move(intersection_poly_2)); } } } } std::vector> triangles_by_color_merged(3); triangles_by_color_merged.assign(3, std::vector(layers.size())); for (size_t layer_idx = 0; layer_idx < layers.size(); ++layer_idx) { for (size_t color_idx = 0; color_idx < triangles_by_color_merged.size(); ++color_idx) { auto &self = triangles_by_color_merged[color_idx][layer_idx]; append(self, std::move(triangles_by_color_bottom[color_idx][layer_idx])); append(self, std::move(triangles_by_color_top[color_idx][layer_idx])); self = union_ex(self); } // Cut all colors for cases when two colors are overlapping for (size_t color_idx = 1; color_idx < triangles_by_color_merged.size(); ++color_idx) { triangles_by_color_merged[color_idx][layer_idx] = diff_ex(triangles_by_color_merged[color_idx][layer_idx], triangles_by_color_merged[color_idx - 1][layer_idx]); } } return triangles_by_color_merged; } static std::vector>> merge_segmented_layers( const std::vector>> &segmented_regions, std::vector> &&top_and_bottom_layers) { std::vector>> segmented_regions_merged(segmented_regions.size()); tbb::parallel_for(tbb::blocked_range(0, segmented_regions.size()), [&](const tbb::blocked_range &range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) { BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - merging region: " << layer_idx; for (const std::pair &colored_expoly : segmented_regions[layer_idx]) { ExPolygons cut_colored_expoly = {colored_expoly.first}; for (const std::vector &top_and_bottom_layer : top_and_bottom_layers) cut_colored_expoly = diff_ex(cut_colored_expoly, top_and_bottom_layer[layer_idx]); for (ExPolygon &ex_poly : cut_colored_expoly) segmented_regions_merged[layer_idx].emplace_back(std::move(ex_poly), colored_expoly.second); } for (size_t color_idx = 0; color_idx < top_and_bottom_layers.size(); ++color_idx) for (ExPolygon &expoly : top_and_bottom_layers[color_idx][layer_idx]) segmented_regions_merged[layer_idx].emplace_back(std::move(expoly), color_idx); } }); // end of parallel_for return segmented_regions_merged; } std::vector>> multi_material_segmentation_by_painting(const PrintObject &print_object) { std::vector>> segmented_regions(print_object.layers().size()); std::vector> painted_lines(print_object.layers().size()); std::vector edge_grids(print_object.layers().size()); const ConstLayerPtrsAdaptor layers = print_object.layers(); for (size_t layer_idx = 0; layer_idx < layers.size(); ++layer_idx) { const Layer *layer = layers[layer_idx]; BoundingBox bbox(get_extents(layer->lslices)); bbox.offset(SCALED_EPSILON); edge_grids[layer_idx].set_bbox(bbox); edge_grids[layer_idx].create(layer->lslices, coord_t(scale_(10.))); } for (const ModelVolume *mv : print_object.model_object()->volumes) { for (const auto ¶ms : {std::make_pair(EnforcerBlockerType::ENFORCER, 1), std::make_pair(EnforcerBlockerType::BLOCKER, 2)}) { const indexed_triangle_set custom_facets = mv->mmu_segmentation_facets.get_facets(*mv, params.first); if (!mv->is_model_part() || custom_facets.indices.empty()) continue; const Transform3f tr = print_object.trafo().cast() * mv->get_matrix().cast(); for (size_t facet_idx = 0; facet_idx < custom_facets.indices.size(); ++facet_idx) { float min_z = std::numeric_limits::max(); float max_z = std::numeric_limits::lowest(); std::array facet; for (int p_idx = 0; p_idx < 3; ++p_idx) { facet[p_idx] = tr * custom_facets.vertices[custom_facets.indices[facet_idx](p_idx)]; max_z = std::max(max_z, facet[p_idx].z()); min_z = std::min(min_z, facet[p_idx].z()); } // Sort the vertices by z-axis for simplification of projected_facet on slices std::sort(facet.begin(), facet.end(), [](const Vec3f &p1, const Vec3f &p2) { return p1.z() < p2.z(); }); // Find lowest slice not below the triangle. auto first_layer = std::upper_bound(print_object.layers().begin(), print_object.layers().end(), float(min_z - EPSILON), [](float z, const Layer *l1) { return z < l1->slice_z; }); auto last_layer = std::upper_bound(print_object.layers().begin(), print_object.layers().end(), float(max_z + EPSILON), [](float z, const Layer *l1) { return z < l1->slice_z; }); --last_layer; for (auto layer_it = first_layer; layer_it != (last_layer + 1); ++layer_it) { const Layer *layer = *layer_it; size_t layer_idx = layer_it - print_object.layers().begin(); if (facet[0].z() > layer->slice_z || layer->slice_z > facet[2].z()) continue; // https://kandepet.com/3d-printing-slicing-3d-objects/ float t = (float(layer->slice_z) - facet[0].z()) / (facet[2].z() - facet[0].z()); Vec3f line_start_f = facet[0] + t * (facet[2] - facet[0]); Vec3f line_end_f; if (facet[1].z() > layer->slice_z) { // [P0, P2] a [P0, P1] float t1 = (float(layer->slice_z) - facet[0].z()) / (facet[1].z() - facet[0].z()); line_end_f = facet[0] + t1 * (facet[1] - facet[0]); } else if (facet[1].z() <= layer->slice_z) { // [P0, P2] a [P1, P2] float t2 = (float(layer->slice_z) - facet[1].z()) / (facet[2].z() - facet[1].z()); line_end_f = facet[1] + t2 * (facet[2] - facet[1]); } Point line_start(scale_(line_start_f.x()), scale_(line_start_f.y())); Point line_end(scale_(line_end_f.x()), scale_(line_end_f.y())); line_start -= print_object.center_offset(); line_end -= print_object.center_offset(); std::vector painted_line_tmp; PaintedLineVisitor visitor(edge_grids[layer_idx], painted_line_tmp); visitor.reset(); visitor.line_to_test.a = line_start; visitor.line_to_test.b = line_end; visitor.color = params.second; edge_grids[layer_idx].visit_cells_intersecting_line(line_start, line_end, visitor); append(painted_lines[layer_idx], std::move(painted_line_tmp)); } } } } tbb::parallel_for(tbb::blocked_range(0, print_object.layers().size()), [&](const tbb::blocked_range &range) { for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) { // for(size_t layer_idx = 0; layer_idx < print_object.layers().size(); ++layer_idx) { BOOST_LOG_TRIVIAL(debug) << "MMU segmentation of layer: " << layer_idx; auto comp = [&edge_grids, layer_idx](const PaintedLine &first, const PaintedLine &second) { Point first_start_p = *(edge_grids[layer_idx].contours()[first.contour_idx].begin() + first.line_idx); return first.contour_idx < second.contour_idx || (first.contour_idx == second.contour_idx && (first.line_idx < second.line_idx || (first.line_idx == second.line_idx && Line(first_start_p, first.projected_line.a).length() < Line(first_start_p, second.projected_line.a).length()))); }; std::sort(painted_lines[layer_idx].begin(), painted_lines[layer_idx].end(), comp); std::vector &painted_lines_single = painted_lines[layer_idx]; if (!painted_lines_single.empty()) { Polygons original_polygons; for (const Slic3r::EdgeGrid::Contour &contour : edge_grids[layer_idx].contours()) original_polygons.emplace_back(Points(contour.begin(), contour.end())); std::vector> color_poly = colorize_polygons(original_polygons, painted_lines_single); MMU_Graph graph = build_graph(layer_idx, color_poly); remove_multiple_edges_in_vertices(graph, color_poly); graph.remove_nodes_with_one_arc(); std::vector> segmentation = extract_colored_segments(graph); for (const std::pair ®ion : segmentation) segmented_regions[layer_idx].emplace_back(region); } } }); // end of parallel_for if (auto w = print_object.print()->config().mmu_segmented_region_max_width; w > 0.f) cut_segmented_layers(layers, segmented_regions, float(-scale_(w))); // return segmented_regions; std::vector> top_and_bottom_layers = mmu_segmentation_top_and_bottom_layers(print_object); std::vector>> segmented_regions_merged = merge_segmented_layers(segmented_regions, std::move(top_and_bottom_layers)); return segmented_regions_merged; } } // namespace Slic3r