package Slic3r::Print::Object; use Moo; use List::Util qw(min max sum first); use Slic3r::ExtrusionPath ':roles'; use Slic3r::Geometry qw(Z PI scale unscale deg2rad rad2deg scaled_epsilon chained_path_points); use Slic3r::Geometry::Clipper qw(diff diff_ex intersection intersection_ex union union_ex offset offset_ex offset2); use Slic3r::Surface ':types'; has 'print' => (is => 'ro', weak_ref => 1, required => 1); has 'input_file' => (is => 'rw', required => 0); has 'meshes' => (is => 'rw', default => sub { [] }); # by region_id has 'size' => (is => 'rw', required => 1); # XYZ in scaled coordinates has 'copies' => (is => 'rw', trigger => 1); # in scaled coordinates has 'layers' => (is => 'rw', default => sub { [] }); has 'support_layers' => (is => 'rw', default => sub { [] }); has 'layer_height_ranges' => (is => 'rw', default => sub { [] }); # [ z_min, z_max, layer_height ] has 'fill_maker' => (is => 'lazy'); has '_slice_z_table' => (is => 'lazy'); sub BUILD { my $self = shift; # make layers taking custom heights into account my $print_z = my $slice_z = my $height = 0; # add raft layers for my $id (0 .. $Slic3r::Config->raft_layers-1) { $height = ($id == 0) ? $Slic3r::Config->get_value('first_layer_height') : $Slic3r::Config->layer_height; $print_z += $height; push @{$self->layers}, Slic3r::Layer->new( object => $self, id => $id, height => $height, print_z => $print_z, slice_z => -1, ); } # loop until we have at least one layer and the max slice_z reaches the object height my $max_z = unscale $self->size->[Z]; while (!@{$self->layers} || ($slice_z - $height) <= $max_z) { my $id = $#{$self->layers} + 1; # assign the default height to the layer according to the general settings $height = ($id == 0) ? $Slic3r::Config->get_value('first_layer_height') : $Slic3r::Config->layer_height; # look for an applicable custom range if (my $range = first { $_->[0] <= $slice_z && $_->[1] > $slice_z } @{$self->layer_height_ranges}) { $height = $range->[2]; # if user set custom height to zero we should just skip the range and resume slicing over it if ($height == 0) { $slice_z += $range->[1] - $range->[0]; next; } } $print_z += $height; $slice_z += $height/2; ### Slic3r::debugf "Layer %d: height = %s; slice_z = %s; print_z = %s\n", $id, $height, $slice_z, $print_z; push @{$self->layers}, Slic3r::Layer->new( object => $self, id => $id, height => $height, print_z => $print_z, slice_z => scale $slice_z, ); $slice_z += $height/2; # add the other half layer } } sub _build_fill_maker { my $self = shift; return Slic3r::Fill->new(object => $self); } sub _build__slice_z_table { my $self = shift; return Slic3r::Object::XS::ZTable->new([ map $_->slice_z, @{$self->layers} ]); } # This should be probably moved in Print.pm at the point where we sort Layer objects sub _trigger_copies { my $self = shift; return unless @{$self->copies} > 1; # order copies with a nearest neighbor search @{$self->copies} = @{chained_path_points($self->copies)} } sub layer_count { my $self = shift; return scalar @{ $self->layers }; } sub get_layer_range { my $self = shift; my ($min_z, $max_z) = @_; my $min_layer = $self->_slice_z_table->lower_bound($min_z); # first layer whose slice_z is >= $min_z return ( $min_layer, $self->_slice_z_table->upper_bound($max_z, $min_layer)-1, # last layer whose slice_z is <= $max_z ); } sub bounding_box { my $self = shift; # since the object is aligned to origin, bounding box coincides with size return Slic3r::Geometry::BoundingBox->new_from_points([ [0,0], $self->size ]); } sub slice { my $self = shift; my %params = @_; # make sure all layers contain layer region objects for all regions my $regions_count = $self->print->regions_count; foreach my $layer (@{ $self->layers }) { $layer->region($_) for 0 .. ($regions_count-1); } # process facets for my $region_id (0 .. $#{$self->meshes}) { my $mesh = $self->meshes->[$region_id]; # ignore undef meshes my %lines = (); # layer_id => [ lines ] my $apply_lines = sub { my $lines = shift; foreach my $layer_id (keys %$lines) { $lines{$layer_id} ||= []; push @{$lines{$layer_id}}, @{$lines->{$layer_id}}; } }; Slic3r::parallelize( disable => ($#{$mesh->facets} < 500), # don't parallelize when too few facets items => [ 0..$#{$mesh->facets} ], thread_cb => sub { my $q = shift; my $result_lines = {}; while (defined (my $facet_id = $q->dequeue)) { my $lines = $mesh->slice_facet($self, $facet_id); foreach my $layer_id (keys %$lines) { $result_lines->{$layer_id} ||= []; push @{ $result_lines->{$layer_id} }, @{ $lines->{$layer_id} }; } } return $result_lines; }, collect_cb => sub { $apply_lines->($_[0]); }, no_threads_cb => sub { for (0..$#{$mesh->facets}) { my $lines = $mesh->slice_facet($self, $_); $apply_lines->($lines); } }, ); # free memory undef $mesh; undef $self->meshes->[$region_id]; foreach my $layer (@{ $self->layers }) { Slic3r::debugf "Making surfaces for layer %d (slice z = %f):\n", $layer->id, unscale $layer->slice_z if $Slic3r::debug; my $layerm = $layer->regions->[$region_id]; my ($slicing_errors, $loops) = Slic3r::TriangleMesh::make_loops($lines{$layer->id}); $layer->slicing_errors(1) if $slicing_errors; $layerm->make_surfaces($loops); # free memory delete $lines{$layer->id}; } } # free memory $self->meshes(undef); # remove last layer(s) if empty pop @{$self->layers} while @{$self->layers} && (!map @{$_->slices}, @{$self->layers->[-1]->regions}); foreach my $layer (@{ $self->layers }) { # merge all regions' slices to get islands $layer->make_slices; } # detect slicing errors my $warning_thrown = 0; for my $i (0 .. $#{$self->layers}) { my $layer = $self->layers->[$i]; next unless $layer->slicing_errors; if (!$warning_thrown) { warn "The model has overlapping or self-intersecting facets. I tried to repair it, " . "however you might want to check the results or repair the input file and retry.\n"; $warning_thrown = 1; } # try to repair the layer surfaces by merging all contours and all holes from # neighbor layers Slic3r::debugf "Attempting to repair layer %d\n", $i; foreach my $region_id (0 .. $#{$layer->regions}) { my $layerm = $layer->region($region_id); my (@upper_surfaces, @lower_surfaces); for (my $j = $i+1; $j <= $#{$self->layers}; $j++) { if (!$self->layers->[$j]->slicing_errors) { @upper_surfaces = @{$self->layers->[$j]->region($region_id)->slices}; last; } } for (my $j = $i-1; $j >= 0; $j--) { if (!$self->layers->[$j]->slicing_errors) { @lower_surfaces = @{$self->layers->[$j]->region($region_id)->slices}; last; } } my $union = union_ex([ map $_->expolygon->contour, @upper_surfaces, @lower_surfaces, ]); my $diff = diff_ex( [ map @$_, @$union ], [ map $_->expolygon->holes, @upper_surfaces, @lower_surfaces, ], ); @{$layerm->slices} = map Slic3r::Surface->new (expolygon => $_, surface_type => S_TYPE_INTERNAL), @$diff; } # update layer slices after repairing the single regions $layer->make_slices; } # remove empty layers from bottom my $first_object_layer_id = $Slic3r::Config->raft_layers; while (@{$self->layers} && !@{$self->layers->[$first_object_layer_id]->slices} && !map @{$_->thin_walls}, @{$self->layers->[$first_object_layer_id]->regions}) { splice @{$self->layers}, $first_object_layer_id, 1; for (my $i = $first_object_layer_id; $i <= $#{$self->layers}; $i++) { $self->layers->[$i]->id($i); } } } sub make_perimeters { my $self = shift; # compare each layer to the one below, and mark those slices needing # one additional inner perimeter, like the top of domed objects- # this algorithm makes sure that at least one perimeter is overlapping # but we don't generate any extra perimeter if fill density is zero, as they would be floating # inside the object - infill_only_where_needed should be the method of choice for printing # hollow objects if ($Slic3r::Config->extra_perimeters && $Slic3r::Config->perimeters > 0 && $Slic3r::Config->fill_density > 0) { for my $region_id (0 .. ($self->print->regions_count-1)) { for my $layer_id (0 .. $self->layer_count-2) { my $layerm = $self->layers->[$layer_id]->regions->[$region_id]; my $upper_layerm = $self->layers->[$layer_id+1]->regions->[$region_id]; my $perimeter_spacing = $layerm->perimeter_flow->scaled_spacing; my $overlap = $perimeter_spacing; # one perimeter my $diff = diff( [ offset([ map @{$_->expolygon}, @{$layerm->slices} ], -($Slic3r::Config->perimeters * $perimeter_spacing)) ], [ offset([ map @{$_->expolygon}, @{$upper_layerm->slices} ], -$overlap) ], ); next if !@$diff; # if we need more perimeters, $diff should contain a narrow region that we can collapse $diff = diff( $diff, [ offset2($diff, -$perimeter_spacing, +$perimeter_spacing) ], 1, ); next if !@$diff; # diff contains the collapsed area foreach my $slice (@{$layerm->slices}) { my $extra_perimeters = 0; CYCLE: while (1) { # compute polygons representing the thickness of the hypotetical new internal perimeter # of our slice $extra_perimeters++; my $hypothetical_perimeter = diff( [ offset($slice->expolygon, -($perimeter_spacing * ($Slic3r::Config->perimeters + $extra_perimeters-1))) ], [ offset($slice->expolygon, -($perimeter_spacing * ($Slic3r::Config->perimeters + $extra_perimeters))) ], ); last CYCLE if !@$hypothetical_perimeter; # no extra perimeter is possible # only add the perimeter if there's an intersection with the collapsed area last CYCLE if !@{ intersection($diff, $hypothetical_perimeter) }; Slic3r::debugf " adding one more perimeter at layer %d\n", $layer_id; $slice->extra_perimeters($extra_perimeters); } } } } } Slic3r::parallelize( items => sub { 0 .. ($self->layer_count-1) }, thread_cb => sub { my $q = shift; $Slic3r::Geometry::Clipper::clipper = Math::Clipper->new; my $result = {}; while (defined (my $layer_id = $q->dequeue)) { my $layer = $self->layers->[$layer_id]; $layer->make_perimeters; $result->{$layer_id} ||= {}; foreach my $region_id (0 .. $#{$layer->regions}) { my $layerm = $layer->regions->[$region_id]; $result->{$layer_id}{$region_id} = { perimeters => $layerm->perimeters, fill_surfaces => $layerm->fill_surfaces, thin_fills => $layerm->thin_fills, }; } } return $result; }, collect_cb => sub { my $result = shift; foreach my $layer_id (keys %$result) { foreach my $region_id (keys %{$result->{$layer_id}}) { $self->layers->[$layer_id]->regions->[$region_id]->$_($result->{$layer_id}{$region_id}{$_}) for qw(perimeters fill_surfaces thin_fills); } } }, no_threads_cb => sub { $_->make_perimeters for @{$self->layers}; }, ); } sub detect_surfaces_type { my $self = shift; Slic3r::debugf "Detecting solid surfaces...\n"; # prepare a reusable subroutine to make surface differences my $surface_difference = sub { my ($subject_surfaces, $clip_surfaces, $result_type, $layerm) = @_; my $expolygons = diff_ex( [ map @$_, @$subject_surfaces ], [ map @$_, @$clip_surfaces ], 1, ); return map Slic3r::Surface->new(expolygon => $_, surface_type => $result_type), @$expolygons; }; for my $region_id (0 .. ($self->print->regions_count-1)) { for my $i (0 .. ($self->layer_count-1)) { my $layerm = $self->layers->[$i]->regions->[$region_id]; # comparison happens against the *full* slices (considering all regions) my $upper_layer = $self->layers->[$i+1]; my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef; my (@bottom, @top, @internal) = (); # find top surfaces (difference between current surfaces # of current layer and upper one) if ($upper_layer) { @top = $surface_difference->( [ map $_->expolygon, @{$layerm->slices} ], $upper_layer->slices, S_TYPE_TOP, $layerm, ); } else { # if no upper layer, all surfaces of this one are solid @top = @{$layerm->slices}; $_->surface_type(S_TYPE_TOP) for @top; } # find bottom surfaces (difference between current surfaces # of current layer and lower one) if ($lower_layer) { # lower layer's slices are already Surface objects @bottom = $surface_difference->( [ map $_->expolygon, @{$layerm->slices} ], $lower_layer->slices, S_TYPE_BOTTOM, $layerm, ); } else { # if no lower layer, all surfaces of this one are solid @bottom = @{$layerm->slices}; $_->surface_type(S_TYPE_BOTTOM) for @bottom; } # now, if the object contained a thin membrane, we could have overlapping bottom # and top surfaces; let's do an intersection to discover them and consider them # as bottom surfaces (to allow for bridge detection) if (@top && @bottom) { my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]); Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->id, scalar(@$overlapping); @top = $surface_difference->([map $_->expolygon, @top], $overlapping, S_TYPE_TOP, $layerm); } # find internal surfaces (difference between top/bottom surfaces and others) @internal = $surface_difference->( [ map $_->expolygon, @{$layerm->slices} ], [ map $_->expolygon, @top, @bottom ], S_TYPE_INTERNAL, $layerm, ); # save surfaces to layer @{$layerm->slices} = (@bottom, @top, @internal); Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n", $layerm->id, scalar(@bottom), scalar(@top), scalar(@internal); } # clip surfaces to the fill boundaries foreach my $layer (@{$self->layers}) { my $layerm = $layer->regions->[$region_id]; my $fill_boundaries = [ map @$_, @{$layerm->fill_surfaces} ]; @{$layerm->fill_surfaces} = (); foreach my $surface (@{$layerm->slices}) { my $intersection = intersection_ex( [ $surface->p ], $fill_boundaries, ); push @{$layerm->fill_surfaces}, map Slic3r::Surface->new (expolygon => $_, surface_type => $surface->surface_type), @$intersection; } } } } sub clip_fill_surfaces { my $self = shift; return unless $Slic3r::Config->infill_only_where_needed; # We only want infill under ceilings; this is almost like an # internal support material. my $additional_margin = scale 3; my @overhangs = (); for my $layer_id (reverse 0..$#{$self->layers}) { my $layer = $self->layers->[$layer_id]; # clip this layer's internal surfaces to @overhangs foreach my $layerm (@{$layer->regions}) { my @new_internal = map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNAL, ), @{intersection_ex( [ map @$_, @overhangs ], [ map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNAL, @{$layerm->fill_surfaces} ], )}; @{$layerm->fill_surfaces} = ( @new_internal, (grep $_->surface_type != S_TYPE_INTERNAL, @{$layerm->fill_surfaces}), ); } # get this layer's overhangs if ($layer_id > 0) { my $lower_layer = $self->layers->[$layer_id-1]; # loop through layer regions so that we can use each region's # specific overhang width foreach my $layerm (@{$layer->regions}) { my $overhang_width = $layerm->overhang_width; # we want to support any solid surface, not just tops # (internal solids might have been generated) push @overhangs, map $_->offset_ex($additional_margin), @{intersection_ex( [ map @{$_->expolygon}, grep $_->surface_type != S_TYPE_INTERNAL, @{$layerm->fill_surfaces} ], [ map @$_, map $_->offset_ex(-$overhang_width), @{$lower_layer->slices} ], )}; } } } } sub bridge_over_infill { my $self = shift; return if $Slic3r::Config->fill_density == 1; for my $layer_id (1..$#{$self->layers}) { my $layer = $self->layers->[$layer_id]; my $lower_layer = $self->layers->[$layer_id-1]; foreach my $layerm (@{$layer->regions}) { # compute the areas needing bridge math my @internal_solid = grep $_->surface_type == S_TYPE_INTERNALSOLID, @{$layerm->fill_surfaces}; my @lower_internal = grep $_->surface_type == S_TYPE_INTERNAL, map @{$_->fill_surfaces}, @{$lower_layer->regions}; my $to_bridge = intersection_ex( [ map $_->p, @internal_solid ], [ map $_->p, @lower_internal ], ); next unless @$to_bridge; Slic3r::debugf "Bridging %d internal areas at layer %d\n", scalar(@$to_bridge), $layer_id; # build the new collection of fill_surfaces { my @new_surfaces = grep $_->surface_type != S_TYPE_INTERNALSOLID, @{$layerm->fill_surfaces}; push @new_surfaces, map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNALBRIDGE, ), @$to_bridge; push @new_surfaces, map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNALSOLID, ), @{diff_ex( [ map $_->p, @internal_solid ], [ map @$_, @$to_bridge ], 1, )}; @{$layerm->fill_surfaces} = @new_surfaces; } # exclude infill from the layers below if needed # see discussion at https://github.com/alexrj/Slic3r/issues/240 # Update: do not exclude any infill. Sparse infill is able to absorb the excess material. if (0) { my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height; for (my $i = $layer_id-1; $excess >= $self->layers->[$i]->height; $i--) { Slic3r::debugf " skipping infill below those areas at layer %d\n", $i; foreach my $lower_layerm (@{$self->layers->[$i]->regions}) { my @new_surfaces = (); # subtract the area from all types of surfaces foreach my $group (Slic3r::Surface->group(@{$lower_layerm->fill_surfaces})) { push @new_surfaces, map $group->[0]->clone(expolygon => $_), @{diff_ex( [ map $_->p, @$group ], [ map @$_, @$to_bridge ], )}; push @new_surfaces, map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNALVOID, ), @{intersection_ex( [ map $_->p, @$group ], [ map @$_, @$to_bridge ], )}; } @{$lower_layerm->fill_surfaces} = @new_surfaces; } $excess -= $self->layers->[$i]->height; } } } } } sub discover_horizontal_shells { my $self = shift; Slic3r::debugf "==> DISCOVERING HORIZONTAL SHELLS\n"; for my $region_id (0 .. ($self->print->regions_count-1)) { for (my $i = 0; $i < $self->layer_count; $i++) { my $layerm = $self->layers->[$i]->regions->[$region_id]; if ($Slic3r::Config->solid_infill_every_layers && $Slic3r::Config->fill_density > 0 && ($i % $Slic3r::Config->solid_infill_every_layers) == 0) { $_->surface_type(S_TYPE_INTERNALSOLID) for grep $_->surface_type == S_TYPE_INTERNAL, @{$layerm->fill_surfaces}; } EXTERNAL: foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM) { # find slices of current type for current layer # get both slices and fill_surfaces before the former contains the perimeters area # and the latter contains the enlarged external surfaces my $solid = [ map $_->expolygon, grep $_->surface_type == $type, @{$layerm->slices}, @{$layerm->fill_surfaces} ]; next if !@$solid; Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == S_TYPE_TOP ? 'top' : 'bottom'); my $solid_layers = ($type == S_TYPE_TOP) ? $Slic3r::Config->top_solid_layers : $Slic3r::Config->bottom_solid_layers; NEIGHBOR: for (my $n = $type == S_TYPE_TOP ? $i-1 : $i+1; abs($n - $i) <= $solid_layers-1; $type == S_TYPE_TOP ? $n-- : $n++) { next if $n < 0 || $n >= $self->layer_count; Slic3r::debugf " looking for neighbors on layer %d...\n", $n; my @neighbor_fill_surfaces = @{$self->layers->[$n]->regions->[$region_id]->fill_surfaces}; # find intersection between neighbor and current layer's surfaces # intersections have contours and holes # we update $solid so that we limit the next neighbor layer to the areas that were # found on this one - in other words, solid shells on one layer (for a given external surface) # are always a subset of the shells found on the previous shell layer # this approach allows for DWIM in hollow sloping vases, where we want bottom # shells to be generated in the base but not in the walls (where there are many # narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the # upper perimeter as an obstacle and shell will not be propagated to more upper layers my $new_internal_solid = $solid = intersection_ex( [ map @$_, @$solid ], [ map $_->p, grep { $_->surface_type == S_TYPE_INTERNAL || $_->surface_type == S_TYPE_INTERNALSOLID } @neighbor_fill_surfaces ], undef, 1, ); next EXTERNAL if !@$new_internal_solid; # make sure the new internal solid is wide enough, as it might get collapsed when # spacing is added in Fill.pm { my $margin = 3 * $layerm->solid_infill_flow->scaled_width; # require at least this size my $too_narrow = diff_ex( [ map @$_, @$new_internal_solid ], [ offset2([ map @$_, @$new_internal_solid ], -$margin, +$margin) ], 1, ); # if some parts are going to collapse, use a different strategy according to fill density if (@$too_narrow) { if ($Slic3r::Config->fill_density > 0) { # if we have internal infill, grow the collapsing parts and add the extra area to # the neighbor layer as well as to our original surfaces so that we support this # additional area in the next shell too # make sure our grown surfaces don't exceed the fill area my @grown = map @$_, @{intersection_ex( [ offset([ map @$_, @$too_narrow ], +$margin) ], [ map $_->p, @neighbor_fill_surfaces ], )}; $new_internal_solid = $solid = union_ex([ @grown, (map @$_, @$new_internal_solid) ]); } else { # if we're printing a hollow object, we discard such small parts $new_internal_solid = $solid = diff_ex( [ map @$_, @$new_internal_solid ], [ map @$_, @$too_narrow ], ); } } } # internal-solid are the union of the existing internal-solid surfaces # and new ones my $internal_solid = union_ex([ ( map $_->p, grep $_->surface_type == S_TYPE_INTERNALSOLID, @neighbor_fill_surfaces ), ( map @$_, @$new_internal_solid ), ]); # subtract intersections from layer surfaces to get resulting internal surfaces my $internal = diff_ex( [ map $_->p, grep $_->surface_type == S_TYPE_INTERNAL, @neighbor_fill_surfaces ], [ map @$_, @$internal_solid ], 1, ); Slic3r::debugf " %d internal-solid and %d internal surfaces found\n", scalar(@$internal_solid), scalar(@$internal); # assign resulting internal surfaces to layer my $neighbor_fill_surfaces = $self->layers->[$n]->regions->[$region_id]->fill_surfaces; @$neighbor_fill_surfaces = (); push @$neighbor_fill_surfaces, Slic3r::Surface->new (expolygon => $_, surface_type => S_TYPE_INTERNAL) for @$internal; # assign new internal-solid surfaces to layer push @$neighbor_fill_surfaces, Slic3r::Surface->new (expolygon => $_, surface_type => S_TYPE_INTERNALSOLID) for @$internal_solid; # assign top and bottom surfaces to layer foreach my $s (Slic3r::Surface->group(grep { $_->surface_type == S_TYPE_TOP || $_->surface_type == S_TYPE_BOTTOM } @neighbor_fill_surfaces)) { my $solid_surfaces = diff_ex( [ map $_->p, @$s ], [ map @$_, @$internal_solid, @$internal ], 1, ); push @$neighbor_fill_surfaces, $s->[0]->clone(expolygon => $_) for @$solid_surfaces; } } } } } } # combine fill surfaces across layers sub combine_infill { my $self = shift; return unless $Slic3r::Config->infill_every_layers > 1 && $Slic3r::Config->fill_density > 0; my $every = $Slic3r::Config->infill_every_layers; my $layer_count = $self->layer_count; my @layer_heights = map $self->layers->[$_]->height, 0 .. $layer_count-1; for my $region_id (0 .. ($self->print->regions_count-1)) { # limit the number of combined layers to the maximum height allowed by this regions' nozzle my $nozzle_diameter = $self->print->regions->[$region_id]->extruders->{infill}->nozzle_diameter; # define the combinations my @combine = (); # layer_id => thickness in layers { my $current_height = my $layers = 0; for my $layer_id (1 .. $#layer_heights) { my $height = $self->layers->[$layer_id]->height; if ($current_height + $height >= $nozzle_diameter || $layers >= $every) { $combine[$layer_id-1] = $layers; $current_height = $layers = 0; } $current_height += $height; $layers++; } } # skip bottom layer for my $layer_id (1 .. $#combine) { next unless ($combine[$layer_id] // 1) > 1; my @layerms = map $self->layers->[$_]->regions->[$region_id], ($layer_id - ($combine[$layer_id]-1) .. $layer_id); # only combine internal infill for my $type (S_TYPE_INTERNAL) { # we need to perform a multi-layer intersection, so let's split it in pairs # initialize the intersection with the candidates of the lowest layer my $intersection = [ map $_->expolygon, grep $_->surface_type == $type, @{$layerms[0]->fill_surfaces} ]; # start looping from the second layer and intersect the current intersection with it for my $layerm (@layerms[1 .. $#layerms]) { $intersection = intersection_ex( [ map @$_, @$intersection ], [ map @{$_->expolygon}, grep $_->surface_type == $type, @{$layerm->fill_surfaces} ], ); } my $area_threshold = $layerms[0]->infill_area_threshold; @$intersection = grep $_->area > $area_threshold, @$intersection; next if !@$intersection; Slic3r::debugf " combining %d %s regions from layers %d-%d\n", scalar(@$intersection), ($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'), $layer_id-($every-1), $layer_id; # $intersection now contains the regions that can be combined across the full amount of layers # so let's remove those areas from all layers my @intersection_with_clearance = map $_->offset( $layerms[-1]->solid_infill_flow->scaled_width / 2 + $layerms[-1]->perimeter_flow->scaled_width / 2 # Because fill areas for rectilinear and honeycomb are grown # later to overlap perimeters, we need to counteract that too. + (($type == S_TYPE_INTERNALSOLID || $Slic3r::Config->fill_pattern =~ /(rectilinear|honeycomb)/) ? $layerms[-1]->solid_infill_flow->scaled_width * &Slic3r::INFILL_OVERLAP_OVER_SPACING : 0) ), @$intersection; foreach my $layerm (@layerms) { my @this_type = grep $_->surface_type == $type, @{$layerm->fill_surfaces}; my @other_types = grep $_->surface_type != $type, @{$layerm->fill_surfaces}; my @new_this_type = map Slic3r::Surface->new(expolygon => $_, surface_type => $type), @{diff_ex( [ map @{$_->expolygon}, @this_type ], [ @intersection_with_clearance ], )}; # apply surfaces back with adjusted depth to the uppermost layer if ($layerm->id == $layer_id) { push @new_this_type, map Slic3r::Surface->new( expolygon => $_, surface_type => $type, thickness => sum(map $_->height, @layerms), thickness_layers => scalar(@layerms), ), @$intersection; } else { # save void surfaces push @this_type, map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNALVOID), @{intersection_ex( [ map @{$_->expolygon}, @this_type ], [ @intersection_with_clearance ], )}; } @{$layerm->fill_surfaces} = (@new_this_type, @other_types); } } } } } sub generate_support_material { my $self = shift; return if $self->layer_count < 2; my $flow = $self->print->support_material_flow; # how much we extend support around the actual contact area #my $margin = $flow->scaled_width / 2; my $margin = scale 3; # increment used to reach $margin in steps to avoid trespassing thin objects my $margin_step = $margin/3; # if user specified a custom angle threshold, convert it to radians my $threshold_rad; if ($Slic3r::Config->support_material_threshold) { $threshold_rad = deg2rad($Slic3r::Config->support_material_threshold + 1); # +1 makes the threshold inclusive Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad); } # shape of contact area my $contact_loops = 1; my $circle_distance = 3 * $flow->scaled_width; my $circle; { # TODO: make sure teeth between circles are compatible with support material flow my $r = 1.5 * $flow->scaled_width; $circle = Slic3r::Polygon->new(map [ $r * cos $_, $r * sin $_ ], (5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0)); } # determine contact areas my %contact = (); # contact_z => [ polygons ] my %overhang = (); # contact_z => [ expolygons ] - this stores the actual overhang supported by each contact layer for my $layer_id (1 .. $#{$self->layers}) { my $layer = $self->layers->[$layer_id]; my $lower_layer = $self->layers->[$layer_id-1]; # detect overhangs and contact areas needed to support them my (@overhang, @contact) = (); foreach my $layerm (@{$layer->regions}) { my $fw = $layerm->perimeter_flow->scaled_width; my $diff; # If a threshold angle was specified, use a different logic for detecting overhangs. if (defined $threshold_rad || $layer_id <= $Slic3r::Config->support_material_enforce_layers) { my $d = defined $threshold_rad ? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad)) : 0; $diff = diff( [ offset([ map $_->p, @{$layerm->slices} ], -$d) ], [ map @$_, @{$lower_layer->slices} ], ); # only enforce spacing from the object ($fw/2) if the threshold angle # is not too high: in that case, $d will be very small (as we need to catch # very short overhangs), and such contact area would be eaten by the # enforced spacing, resulting in high threshold angles to be almost ignored $diff = diff( [ offset($diff, $d - $fw/2) ], [ map @$_, @{$lower_layer->slices} ], ) if $d > $fw/2; } else { $diff = diff( [ offset([ map $_->p, @{$layerm->slices} ], -$fw/2) ], [ map @$_, @{$lower_layer->slices} ], ); # $diff now contains the ring or stripe comprised between the boundary of # lower slices and the centerline of the last perimeter in this overhanging layer. # Void $diff means that there's no upper perimeter whose centerline is # outside the lower slice boundary, thus no overhang } next if !@$diff; push @overhang, @{union_ex($diff)}; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width! # Let's define the required contact area by using a max gap of half the upper # extrusion width and extending the area according to the configured margin. # We increment the area in steps because we don't want our support to overflow # on the other side of the object (if it's very thin). { my @slices_margin = offset([ map @$_, @{$lower_layer->slices} ], $fw/2); for ($fw/2, map {$margin_step} 1..($margin / $margin_step)) { $diff = diff( [ offset($diff, $_) ], \@slices_margin, ); } } push @contact, @$diff; } next if !@contact; # now apply the contact areas to the layer were they need to be made { # get the average nozzle diameter used on this layer my @nozzle_diameters = map $_->nozzle_diameter, map { $_->perimeter_flow, $_->solid_infill_flow } @{$layer->regions}; my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters; my $contact_z = $layer->print_z - $nozzle_diameter * 1.5; ###$contact_z = $layer->print_z - $layer->height; $contact{$contact_z} = [ @contact ]; $overhang{$contact_z} = [ @overhang ]; } } my @contact_z = sort keys %contact; # find object top surfaces # we'll use them to clip our support and detect where does it stick my %top = (); # print_z => [ expolygons ] { my $projection = []; foreach my $layer (reverse @{$self->layers}) { if (my @top = grep $_->surface_type == S_TYPE_TOP, map @{$_->slices}, @{$layer->regions}) { # compute projection of the contact areas above this top layer # first add all the 'new' contact areas to the current projection # ('new' means all the areas that are lower than the last top layer # we considered) my $min_top = min(keys %top) // max(keys %contact); push @$projection, map @{$contact{$_}}, grep { $_ > $layer->print_z && $_ < $min_top } keys %contact; # now find whether any projection falls onto this top surface my $touching = intersection($projection, [ map $_->p, @top ]); if (@$touching) { $top{ $layer->print_z } = $touching; } # remove the areas that touched from the projection that will continue on # next, lower, top surfaces $projection = diff($projection, $touching); } } } my @top_z = sort keys %top; # we now know the upper and lower boundaries for our support material object # (@contact_z and @top_z), so we can generate intermediate layers my @support_layers = _compute_support_layers(\@contact_z, \@top_z, $Slic3r::Config, $flow); # if we wanted to apply some special logic to the first support layers lying on # object's top surfaces this is the place to detect them # Let's now determine shells (interface layers) and normal support below them. # Let's now fill each support layer by generating shells (interface layers) and # clipping support area to the actual object boundaries. my %interface = (); # layer_id => [ polygons ] my %support = (); # layer_id => [ polygons ] my $interface_layers = $Slic3r::Config->support_material_interface_layers; for my $layer_id (0 .. $#support_layers) { my $z = $support_layers[$layer_id]; my $this = $contact{$z} // next; # count contact layer as interface layer for (my $i = $layer_id; $i >= 0 && $i > $layer_id-$interface_layers; $i--) { $z = $support_layers[$i]; # Compute interface area on this layer as diff of upper contact area # (or upper interface area) and layer slices. # This diff is responsible of the contact between support material and # the top surfaces of the object. We should probably offset the top # surfaces before performing the diff, but this needs investigation. $this = $interface{$i} = diff( [ @$this, @{ $interface{$i} || [] }, ], [ @{ $top{$z} || [] }, ], 1, ); } # determine what layers does our support belong to for (my $i = $layer_id-$interface_layers; $i >= 0; $i--) { $z = $support_layers[$i]; # Compute support area on this layer as diff of upper support area # and layer slices. $this = $support{$i} = diff( [ @$this, @{ $support{$i} || [] }, ], [ @{ $top{$z} || [] }, @{ $interface{$i} || [] }, ], 1, ); } } push @{$self->support_layers}, map Slic3r::Layer::Support->new( object => $self, id => $_, height => ($_ == 0) ? $support_layers[$_] : ($support_layers[$_] - $support_layers[$_-1]), print_z => $support_layers[$_], slice_z => -1, slices => [], ), 0 .. $#support_layers; Slic3r::debugf "Generating patterns\n"; # prepare fillers my $pattern = $Slic3r::Config->support_material_pattern; my @angles = ($Slic3r::Config->support_material_angle); if ($pattern eq 'rectilinear-grid') { $pattern = 'rectilinear'; push @angles, $angles[0] + 90; } my %fillers = ( interface => $self->fill_maker->filler('rectilinear'), support => $self->fill_maker->filler($pattern), ); my $interface_angle = $Slic3r::Config->support_material_angle + 90; my $interface_spacing = $Slic3r::Config->support_material_interface_spacing + $flow->spacing; my $interface_density = $interface_spacing == 0 ? 1 : $flow->spacing / $interface_spacing; my $support_spacing = $Slic3r::Config->support_material_spacing + $flow->spacing; my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing; my $process_layer = sub { my ($layer_id) = @_; my $result = { contact => [], interface => [], support => [] }; $contact{$layer_id} ||= []; $interface{$layer_id} ||= []; $support{$layer_id} ||= []; # contact if ((my $contact = $contact{$support_layers[$layer_id]}) && $contact_loops > 0) { my $overhang = $overhang{$support_layers[$layer_id]}; $contact = [ grep $_->is_counter_clockwise, @$contact ]; # generate the outermost loop my @loops0; { # find centerline of the external loop of the contours my @external_loops = offset($contact, -$flow->scaled_width/2); # apply a pattern to the loop my @positions = map Slic3r::Polygon->new(@$_)->split_at_first_point->regular_points($circle_distance), @external_loops; @loops0 = @{diff( [ @external_loops ], [ map $circle->clone->translate(@$_), @positions ], )}; } # make more loops my @loops = @loops0; for my $i (2..$contact_loops) { my $d = ($i-1) * $flow->scaled_spacing; push @loops, offset2(\@loops0, -$d -0.5*$flow->scaled_spacing, +0.5*$flow->scaled_spacing); } # clip such loops to the side oriented towards the object @loops = map Slic3r::Polyline->new(@$_), @{ Boost::Geometry::Utils::multi_polygon_multi_linestring_intersection( [ offset_ex([ map @$_, @$overhang ], +scale 3) ], [ map Slic3r::Polygon->new(@$_)->split_at_first_point, @loops ], ) }; # subtract loops from the contact area to detect the remaining part $interface{$layer_id} = intersection( $interface{$layer_id}, [ offset2(\@loops0, -($contact_loops) * $flow->scaled_spacing, +0.5*$flow->scaled_spacing) ], ); # transform loops into ExtrusionPath objects @loops = map Slic3r::ExtrusionPath->pack( polyline => $_, role => EXTR_ROLE_SUPPORTMATERIAL, flow_spacing => $flow->spacing, ), @loops; $result->{contact} = [ @loops ]; } # interface if (@{$interface{$layer_id}}) { $fillers{interface}->angle($interface_angle); # steal some space from support $interface{$layer_id} = intersection( [ offset($interface{$layer_id}, scale 3) ], [ @{$interface{$layer_id}}, @{$support{$layer_id}} ], ); $support{$layer_id} = diff( $support{$layer_id}, $interface{$layer_id}, ); my @paths = (); foreach my $expolygon (offset_ex($interface{$layer_id}, -$flow->scaled_width/2)) { my @p = $fillers{interface}->fill_surface( Slic3r::Surface->new(expolygon => $expolygon), density => $interface_density, flow_spacing => $flow->spacing, complete => 1, ); my $params = shift @p; push @paths, map Slic3r::ExtrusionPath->pack( polyline => Slic3r::Polyline->new(@$_), role => EXTR_ROLE_SUPPORTMATERIAL, height => undef, flow_spacing => $params->{flow_spacing}, ), @p; } $result->{interface} = [ @paths ]; } # support or flange if (@{$support{$layer_id}}) { my $filler = $fillers{support}; $filler->angle($angles[ ($layer_id) % @angles ]); my $density = $support_density; my $flow_spacing = $flow->spacing; # TODO: use offset2_ex() my $to_infill = [ offset_ex(union($support{$layer_id}), -$flow->scaled_width/2) ]; my @paths = (); # base flange if ($layer_id == 0) { $filler = $fillers{interface}; $filler->angle($Slic3r::Config->support_material_angle + 90); $density = 0.5; $flow_spacing = $self->print->first_layer_support_material_flow->spacing; } else { # draw a perimeter all around support infill # TODO: use brim ordering algorithm push @paths, map Slic3r::ExtrusionPath->pack( polyline => $_->split_at_first_point, role => EXTR_ROLE_SUPPORTMATERIAL, height => undef, flow_spacing => $flow->spacing, ), map @$_, @$to_infill; # TODO: use offset2_ex() $to_infill = [ offset_ex([ map @$_, @$to_infill ], -$flow->scaled_spacing) ]; } foreach my $expolygon (@$to_infill) { my @p = $filler->fill_surface( Slic3r::Surface->new(expolygon => $expolygon), density => $density, flow_spacing => $flow_spacing, complete => 1, ); my $params = shift @p; push @paths, map Slic3r::ExtrusionPath->pack( polyline => Slic3r::Polyline->new(@$_), role => EXTR_ROLE_SUPPORTMATERIAL, height => undef, flow_spacing => $params->{flow_spacing}, ), @p; } $result->{support} = [ @paths ]; } # islands $result->{islands} = union_ex([ @{$interface{$layer_id} || []}, @{$support{$layer_id} || []}, ]); return $result; }; my $apply = sub { my ($layer_id, $result) = @_; my $layer = $self->support_layers->[$layer_id]; my $interface_collection = Slic3r::ExtrusionPath::Collection->new(paths => [ @{$result->{contact}}, @{$result->{interface}} ]); $layer->support_interface_fills($interface_collection) if @{$interface_collection->paths} > 0; my $support_collection = Slic3r::ExtrusionPath::Collection->new(paths => $result->{support}); $layer->support_fills($support_collection) if @{$support_collection->paths} > 0; $layer->support_islands($result->{islands}); }; Slic3r::parallelize( items => [ 0 .. $#{$self->support_layers} ], thread_cb => sub { my $q = shift; $Slic3r::Geometry::Clipper::clipper = Math::Clipper->new; my $result = {}; while (defined (my $layer_id = $q->dequeue)) { $result->{$layer_id} = $process_layer->($layer_id); } return $result; }, collect_cb => sub { my $result = shift; $apply->($_, $result->{$_}) for keys %$result; }, no_threads_cb => sub { $apply->($_, $process_layer->($_)) for 0 .. $#{$self->support_layers}; }, ); } sub _compute_support_layers { my ($contact_z, $top_z, $config, $flow) = @_; # quick table to check whether a given Z is a top surface my %top = map { $_ => 1 } @$top_z; # determine layer height for any non-contact layer # we use max() to prevent many ultra-thin layers to be inserted in case # layer_height > nozzle_diameter * 0.75 my $support_material_height = max($config->layer_height, $flow->nozzle_diameter * 0.75); my @support_layers = sort { $a <=> $b } @$contact_z, @$top_z, (map { $_ + $flow->nozzle_diameter } @$top_z); # enforce first layer height my $first_layer_height = $config->get_value('first_layer_height'); shift @support_layers while @support_layers && $support_layers[0] < $first_layer_height; unshift @support_layers, $first_layer_height; for (my $i = $#support_layers; $i >= 0; $i--) { my $target_height = $support_material_height; if ($i > 0 && $top{ $support_layers[$i-1] }) { $target_height = $flow->nozzle_diameter; } # enforce first layer height if (($i == 0 && $support_layers[$i] > $target_height + $first_layer_height) || ($support_layers[$i] - $support_layers[$i-1] > $target_height + Slic3r::Geometry::epsilon)) { splice @support_layers, $i, 0, ($support_layers[$i] - $target_height); $i++; } } # remove duplicates { my %sl = map { $_ => 1 } @support_layers; @support_layers = sort { $a <=> $b } keys %sl; } return @support_layers; } 1;