#include #include #include #include #include TEST_CASE("Curves: cubic b spline fit test", "[Curves]") { using namespace Slic3r; using namespace Slic3r::Geometry; auto fx = [&](size_t index) { return float(index) / 200.0f; }; auto fy = [&](size_t index) { return 1.0f; }; std::vector> observations { }; std::vector observation_points { }; std::vector weights { }; for (size_t index = 0; index < 200; ++index) { observations.push_back(Vec<1, float> { fy(index) }); observation_points.push_back(fx(index)); weights.push_back(1); } Vec2f fmin { fx(0), fy(0) }; Vec2f fmax { fx(200), fy(200) }; auto bspline = fit_cubic_bspline(observations, observation_points, weights, 1); Approx ap(1.0f); ap.epsilon(0.1f); for (int p = 0; p < 200; ++p) { float fitted_val = bspline.get_fitted_value(fx(p))(0); float expected = fy(p); REQUIRE(fitted_val == ap(expected)); } } TEST_CASE("Curves: quadratic f cubic b spline fit test", "[Curves]") { using namespace Slic3r; using namespace Slic3r::Geometry; auto fx = [&](size_t index) { return float(index) / 100.0f; }; auto fy = [&](size_t index) { return (fx(index) - 1) * (fx(index) - 1); }; std::vector> observations { }; std::vector observation_points { }; std::vector weights { }; for (size_t index = 0; index < 200; ++index) { observations.push_back(Vec<1, float> { fy(index) }); observation_points.push_back(fx(index)); weights.push_back(1); } Vec2f fmin { fx(0), fy(0) }; Vec2f fmax { fx(200), fy(200) }; auto bspline = fit_cubic_bspline(observations, observation_points, weights, 10); for (int p = 0; p < 200; ++p) { float fitted_val = bspline.get_fitted_value(fx(p))(0); float expected = fy(p); auto check = [](float a, float b) { return abs(a - b) < 0.2f; }; //Note: checking is problematic, splines will not perfectly align REQUIRE(check(fitted_val, expected)); } } TEST_CASE("Curves: polynomial fit test", "[Curves]") { using namespace Slic3r; using namespace Slic3r::Geometry; auto fx = [&](size_t index) { return float(index) / 100.0f; }; auto fy = [&](size_t index) { return (fx(index) - 1) * (fx(index) - 1); }; std::vector> observations { }; std::vector observation_points { }; std::vector weights { }; for (size_t index = 0; index < 200; ++index) { observations.push_back(Vec<1, float> { fy(index) }); observation_points.push_back(fx(index)); weights.push_back(1); } Vec2f fmin { fx(0), fy(0) }; Vec2f fmax { fx(200), fy(200) }; Approx ap(1.0f); ap.epsilon(0.1f); auto poly = fit_polynomial(observations, observation_points, weights, 2); REQUIRE(poly.coefficients(0, 0) == ap(1)); REQUIRE(poly.coefficients(0, 1) == ap(-2)); REQUIRE(poly.coefficients(0, 2) == ap(1)); }