#include #include "3DScene.hpp" #include "libslic3r/ExtrusionEntity.hpp" #include "libslic3r/ExtrusionEntityCollection.hpp" #include "libslic3r/Geometry.hpp" #include "libslic3r/GCode/PreviewData.hpp" #include "libslic3r/Print.hpp" #include "libslic3r/SLAPrint.hpp" #include "libslic3r/Slicing.hpp" #include "libslic3r/GCode/Analyzer.hpp" #include "slic3r/GUI/PresetBundle.hpp" #include #include #include #include #include #include #include #include #include #include "GUI.hpp" namespace Slic3r { void GLIndexedVertexArray::load_mesh_flat_shading(const TriangleMesh &mesh) { assert(triangle_indices.empty() && vertices_and_normals_interleaved_size == 0); assert(quad_indices.empty() && triangle_indices_size == 0); assert(vertices_and_normals_interleaved.size() % 6 == 0 && quad_indices_size == vertices_and_normals_interleaved.size()); this->vertices_and_normals_interleaved.reserve(this->vertices_and_normals_interleaved.size() + 3 * 3 * 2 * mesh.facets_count()); for (int i = 0; i < (int)mesh.stl.stats.number_of_facets; ++i) { const stl_facet &facet = mesh.stl.facet_start[i]; for (int j = 0; j < 3; ++ j) this->push_geometry(facet.vertex[j](0), facet.vertex[j](1), facet.vertex[j](2), facet.normal(0), facet.normal(1), facet.normal(2)); } } void GLIndexedVertexArray::load_mesh_full_shading(const TriangleMesh &mesh) { assert(triangle_indices.empty() && vertices_and_normals_interleaved_size == 0); assert(quad_indices.empty() && triangle_indices_size == 0); assert(vertices_and_normals_interleaved.size() % 6 == 0 && quad_indices_size == vertices_and_normals_interleaved.size()); this->vertices_and_normals_interleaved.reserve(this->vertices_and_normals_interleaved.size() + 3 * 3 * 2 * mesh.facets_count()); unsigned int vertices_count = 0; for (int i = 0; i < (int)mesh.stl.stats.number_of_facets; ++i) { const stl_facet &facet = mesh.stl.facet_start[i]; for (int j = 0; j < 3; ++j) this->push_geometry(facet.vertex[j](0), facet.vertex[j](1), facet.vertex[j](2), facet.normal(0), facet.normal(1), facet.normal(2)); this->push_triangle(vertices_count, vertices_count + 1, vertices_count + 2); vertices_count += 3; } } void GLIndexedVertexArray::finalize_geometry(bool use_VBOs) { assert(this->vertices_and_normals_interleaved_VBO_id == 0); assert(this->triangle_indices_VBO_id == 0); assert(this->quad_indices_VBO_id == 0); this->setup_sizes(); if (use_VBOs) { if (! empty()) { glGenBuffers(1, &this->vertices_and_normals_interleaved_VBO_id); glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id); glBufferData(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved.size() * 4, this->vertices_and_normals_interleaved.data(), GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); this->vertices_and_normals_interleaved.clear(); } if (! this->triangle_indices.empty()) { glGenBuffers(1, &this->triangle_indices_VBO_id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices.size() * 4, this->triangle_indices.data(), GL_STATIC_DRAW); this->triangle_indices.clear(); } if (! this->quad_indices.empty()) { glGenBuffers(1, &this->quad_indices_VBO_id); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id); glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices.size() * 4, this->quad_indices.data(), GL_STATIC_DRAW); this->quad_indices.clear(); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } this->shrink_to_fit(); } void GLIndexedVertexArray::release_geometry() { if (this->vertices_and_normals_interleaved_VBO_id) { glDeleteBuffers(1, &this->vertices_and_normals_interleaved_VBO_id); this->vertices_and_normals_interleaved_VBO_id = 0; } if (this->triangle_indices_VBO_id) { glDeleteBuffers(1, &this->triangle_indices_VBO_id); this->triangle_indices_VBO_id = 0; } if (this->quad_indices_VBO_id) { glDeleteBuffers(1, &this->quad_indices_VBO_id); this->quad_indices_VBO_id = 0; } this->clear(); this->shrink_to_fit(); } void GLIndexedVertexArray::render() const { if (this->vertices_and_normals_interleaved_VBO_id) { glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float))); glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr); } else { glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data() + 3); glNormalPointer(GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data()); } glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); if (this->indexed()) { if (this->vertices_and_normals_interleaved_VBO_id) { // Render using the Vertex Buffer Objects. if (this->triangle_indices_size > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id); glDrawElements(GL_TRIANGLES, GLsizei(this->triangle_indices_size), GL_UNSIGNED_INT, nullptr); } if (this->quad_indices_size > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id); glDrawElements(GL_QUADS, GLsizei(this->quad_indices_size), GL_UNSIGNED_INT, nullptr); } glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } else { // Render in an immediate mode. if (! this->triangle_indices.empty()) glDrawElements(GL_TRIANGLES, GLsizei(this->triangle_indices_size), GL_UNSIGNED_INT, this->triangle_indices.data()); if (! this->quad_indices.empty()) glDrawElements(GL_QUADS, GLsizei(this->quad_indices_size), GL_UNSIGNED_INT, this->quad_indices.data()); } } else glDrawArrays(GL_TRIANGLES, 0, GLsizei(this->vertices_and_normals_interleaved_size / 6)); if (this->vertices_and_normals_interleaved_VBO_id) glBindBuffer(GL_ARRAY_BUFFER, 0); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); } void GLIndexedVertexArray::render( const std::pair &tverts_range, const std::pair &qverts_range) const { assert(this->indexed()); if (! this->indexed()) return; if (this->vertices_and_normals_interleaved_VBO_id) { // Render using the Vertex Buffer Objects. glBindBuffer(GL_ARRAY_BUFFER, this->vertices_and_normals_interleaved_VBO_id); glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float))); glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); if (this->triangle_indices_size > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->triangle_indices_VBO_id); glDrawElements(GL_TRIANGLES, GLsizei(std::min(this->triangle_indices_size, tverts_range.second - tverts_range.first)), GL_UNSIGNED_INT, (const void*)(tverts_range.first * 4)); } if (this->quad_indices_size > 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->quad_indices_VBO_id); glDrawElements(GL_QUADS, GLsizei(std::min(this->quad_indices_size, qverts_range.second - qverts_range.first)), GL_UNSIGNED_INT, (const void*)(qverts_range.first * 4)); } glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } else { // Render in an immediate mode. glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data() + 3); glNormalPointer(GL_FLOAT, 6 * sizeof(float), this->vertices_and_normals_interleaved.data()); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); if (! this->triangle_indices.empty()) glDrawElements(GL_TRIANGLES, GLsizei(std::min(this->triangle_indices_size, tverts_range.second - tverts_range.first)), GL_UNSIGNED_INT, (const void*)(this->triangle_indices.data() + tverts_range.first)); if (! this->quad_indices.empty()) glDrawElements(GL_QUADS, GLsizei(std::min(this->quad_indices_size, qverts_range.second - qverts_range.first)), GL_UNSIGNED_INT, (const void*)(this->quad_indices.data() + qverts_range.first)); } glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); } const float GLVolume::SELECTED_COLOR[4] = { 0.0f, 1.0f, 0.0f, 1.0f }; const float GLVolume::HOVER_COLOR[4] = { 0.4f, 0.9f, 0.1f, 1.0f }; const float GLVolume::OUTSIDE_COLOR[4] = { 0.0f, 0.38f, 0.8f, 1.0f }; const float GLVolume::SELECTED_OUTSIDE_COLOR[4] = { 0.19f, 0.58f, 1.0f, 1.0f }; const float GLVolume::DISABLED_COLOR[4] = { 0.25f, 0.25f, 0.25f, 1.0f }; const float GLVolume::SLA_SUPPORT_COLOR[4] = { 0.75f, 0.75f, 0.75f, 1.0f }; const float GLVolume::SLA_PAD_COLOR[4] = { 0.0f, 0.2f, 0.0f, 1.0f }; GLVolume::GLVolume(float r, float g, float b, float a) #if ENABLE_MODELVOLUME_TRANSFORM : m_transformed_bounding_box_dirty(true) #else : m_offset(Vec3d::Zero()) , m_rotation(Vec3d::Zero()) , m_scaling_factor(Vec3d::Ones()) , m_mirror(Vec3d::Ones()) , m_world_matrix(Transform3f::Identity()) , m_world_matrix_dirty(true) , m_transformed_bounding_box_dirty(true) #endif // ENABLE_MODELVOLUME_TRANSFORM , m_sla_shift_z(0.0) , m_transformed_convex_hull_bounding_box_dirty(true) , m_convex_hull(nullptr) , m_convex_hull_owned(false) // geometry_id == 0 -> invalid , geometry_id(std::pair(0, 0)) , extruder_id(0) , selected(false) , disabled(false) , is_active(true) , zoom_to_volumes(true) , shader_outside_printer_detection_enabled(false) , is_outside(false) , hover(false) , is_modifier(false) , is_wipe_tower(false) , is_extrusion_path(false) , tverts_range(0, size_t(-1)) , qverts_range(0, size_t(-1)) { color[0] = r; color[1] = g; color[2] = b; color[3] = a; set_render_color(r, g, b, a); } GLVolume::~GLVolume() { if (m_convex_hull_owned) delete m_convex_hull; } void GLVolume::set_render_color(float r, float g, float b, float a) { render_color[0] = r; render_color[1] = g; render_color[2] = b; render_color[3] = a; } void GLVolume::set_render_color(const float* rgba, unsigned int size) { size = std::min((unsigned int)4, size); for (unsigned int i = 0; i < size; ++i) { render_color[i] = rgba[i]; } } void GLVolume::set_render_color() { if (selected) set_render_color(is_outside ? SELECTED_OUTSIDE_COLOR : SELECTED_COLOR, 4); else if (hover) set_render_color(HOVER_COLOR, 4); else if (disabled) set_render_color(DISABLED_COLOR, 4); else if (is_outside && shader_outside_printer_detection_enabled) set_render_color(OUTSIDE_COLOR, 4); else set_render_color(color, 4); } #if !ENABLE_MODELVOLUME_TRANSFORM const Vec3d& GLVolume::get_rotation() const { return m_rotation; } void GLVolume::set_rotation(const Vec3d& rotation) { static const double TWO_PI = 2.0 * (double)PI; if (m_rotation != rotation) { m_rotation = rotation; for (int i = 0; i < 3; ++i) { while (m_rotation(i) < 0.0) { m_rotation(i) += TWO_PI; } while (TWO_PI < m_rotation(i)) { m_rotation(i) -= TWO_PI; } } m_world_matrix_dirty = true; m_transformed_bounding_box_dirty = true; m_transformed_convex_hull_bounding_box_dirty = true; } } const Vec3d& GLVolume::get_offset() const { return m_offset; } void GLVolume::set_offset(const Vec3d& offset) { if (m_offset != offset) { m_offset = offset; m_world_matrix_dirty = true; m_transformed_bounding_box_dirty = true; m_transformed_convex_hull_bounding_box_dirty = true; } } const Vec3d& GLVolume::get_scaling_factor() const { return m_scaling_factor; } void GLVolume::set_scaling_factor(const Vec3d& scaling_factor) { if (m_scaling_factor != scaling_factor) { m_scaling_factor = scaling_factor; m_world_matrix_dirty = true; m_transformed_bounding_box_dirty = true; m_transformed_convex_hull_bounding_box_dirty = true; } } const Vec3d& GLVolume::get_mirror() const { return m_mirror; } double GLVolume::get_mirror(Axis axis) const { return m_mirror(axis); } void GLVolume::set_mirror(const Vec3d& mirror) { if (m_mirror != mirror) { m_mirror = mirror; m_world_matrix_dirty = true; m_transformed_bounding_box_dirty = true; m_transformed_convex_hull_bounding_box_dirty = true; } } void GLVolume::set_mirror(Axis axis, double mirror) { if (m_mirror(axis) != mirror) { m_mirror(axis) = mirror; m_world_matrix_dirty = true; m_transformed_bounding_box_dirty = true; m_transformed_convex_hull_bounding_box_dirty = true; } } #endif // !ENABLE_MODELVOLUME_TRANSFORM void GLVolume::set_convex_hull(const TriangleMesh *convex_hull, bool owned) { m_convex_hull = convex_hull; m_convex_hull_owned = owned; } #if ENABLE_MODELVOLUME_TRANSFORM Transform3d GLVolume::world_matrix() const { Transform3d m = m_instance_transformation.get_matrix() * m_volume_transformation.get_matrix(); m.translation()(2) += m_sla_shift_z; return m; } #else const Transform3f& GLVolume::world_matrix() const { if (m_world_matrix_dirty) { m_world_matrix = Geometry::assemble_transform(m_offset, m_rotation, m_scaling_factor, m_mirror).cast(); m_world_matrix_dirty = false; } return m_world_matrix; } #endif // ENABLE_MODELVOLUME_TRANSFORM const BoundingBoxf3& GLVolume::transformed_bounding_box() const { if (m_transformed_bounding_box_dirty) { #if ENABLE_MODELVOLUME_TRANSFORM m_transformed_bounding_box = bounding_box.transformed(world_matrix()); #else m_transformed_bounding_box = bounding_box.transformed(world_matrix().cast()); #endif // ENABLE_MODELVOLUME_TRANSFORM m_transformed_bounding_box_dirty = false; } return m_transformed_bounding_box; } const BoundingBoxf3& GLVolume::transformed_convex_hull_bounding_box() const { if (m_transformed_convex_hull_bounding_box_dirty) { #if ENABLE_MODELVOLUME_TRANSFORM if ((m_convex_hull != nullptr) && (m_convex_hull->stl.stats.number_of_facets > 0)) m_transformed_convex_hull_bounding_box = m_convex_hull->transformed_bounding_box(world_matrix()); else m_transformed_convex_hull_bounding_box = bounding_box.transformed(world_matrix()); #else if ((m_convex_hull != nullptr) && (m_convex_hull->stl.stats.number_of_facets > 0)) m_transformed_convex_hull_bounding_box = m_convex_hull->transformed_bounding_box(world_matrix().cast()); else m_transformed_convex_hull_bounding_box = bounding_box.transformed(world_matrix().cast()); #endif // ENABLE_MODELVOLUME_TRANSFORM m_transformed_convex_hull_bounding_box_dirty = false; } return m_transformed_convex_hull_bounding_box; } void GLVolume::set_range(double min_z, double max_z) { this->qverts_range.first = 0; this->qverts_range.second = this->indexed_vertex_array.quad_indices_size; this->tverts_range.first = 0; this->tverts_range.second = this->indexed_vertex_array.triangle_indices_size; if (! this->print_zs.empty()) { // The Z layer range is specified. // First test whether the Z span of this object is not out of (min_z, max_z) completely. if (this->print_zs.front() > max_z || this->print_zs.back() < min_z) { this->qverts_range.second = 0; this->tverts_range.second = 0; } else { // Then find the lowest layer to be displayed. size_t i = 0; for (; i < this->print_zs.size() && this->print_zs[i] < min_z; ++ i); if (i == this->print_zs.size()) { // This shall not happen. this->qverts_range.second = 0; this->tverts_range.second = 0; } else { // Remember start of the layer. this->qverts_range.first = this->offsets[i * 2]; this->tverts_range.first = this->offsets[i * 2 + 1]; // Some layers are above $min_z. Which? for (; i < this->print_zs.size() && this->print_zs[i] <= max_z; ++ i); if (i < this->print_zs.size()) { this->qverts_range.second = this->offsets[i * 2]; this->tverts_range.second = this->offsets[i * 2 + 1]; } } } } } void GLVolume::render() const { if (!is_active) return; ::glCullFace(GL_BACK); ::glPushMatrix(); #if ENABLE_MODELVOLUME_TRANSFORM ::glMultMatrixd(world_matrix().data()); #else ::glMultMatrixf(world_matrix().data()); #endif // ENABLE_MODELVOLUME_TRANSFORM if (this->indexed_vertex_array.indexed()) this->indexed_vertex_array.render(this->tverts_range, this->qverts_range); else this->indexed_vertex_array.render(); ::glPopMatrix(); } void GLVolume::render_using_layer_height() const { if (!is_active) return; GLint current_program_id; glGetIntegerv(GL_CURRENT_PROGRAM, ¤t_program_id); if ((layer_height_texture_data.shader_id > 0) && (layer_height_texture_data.shader_id != current_program_id)) glUseProgram(layer_height_texture_data.shader_id); GLint z_to_texture_row_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "z_to_texture_row") : -1; GLint z_texture_row_to_normalized_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "z_texture_row_to_normalized") : -1; GLint z_cursor_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "z_cursor") : -1; GLint z_cursor_band_width_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "z_cursor_band_width") : -1; GLint world_matrix_id = (layer_height_texture_data.shader_id > 0) ? glGetUniformLocation(layer_height_texture_data.shader_id, "volume_world_matrix") : -1; if (z_to_texture_row_id >= 0) glUniform1f(z_to_texture_row_id, (GLfloat)layer_height_texture_z_to_row_id()); if (z_texture_row_to_normalized_id >= 0) glUniform1f(z_texture_row_to_normalized_id, (GLfloat)(1.0f / layer_height_texture_height())); if (z_cursor_id >= 0) glUniform1f(z_cursor_id, (GLfloat)(layer_height_texture_data.print_object->model_object()->bounding_box().max(2) * layer_height_texture_data.z_cursor_relative)); if (z_cursor_band_width_id >= 0) glUniform1f(z_cursor_band_width_id, (GLfloat)layer_height_texture_data.edit_band_width); if (world_matrix_id >= 0) #if ENABLE_MODELVOLUME_TRANSFORM ::glUniformMatrix4fv(world_matrix_id, 1, GL_FALSE, (const GLfloat*)world_matrix().cast().data()); #else ::glUniformMatrix4fv(world_matrix_id, 1, GL_FALSE, (const GLfloat*)world_matrix().data()); #endif // ENABLE_MODELVOLUME_TRANSFORM GLsizei w = (GLsizei)layer_height_texture_width(); GLsizei h = (GLsizei)layer_height_texture_height(); GLsizei half_w = w / 2; GLsizei half_h = h / 2; ::glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glBindTexture(GL_TEXTURE_2D, layer_height_texture_data.texture_id); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA, half_w, half_h, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, layer_height_texture_data_ptr_level0()); glTexSubImage2D(GL_TEXTURE_2D, 1, 0, 0, half_w, half_h, GL_RGBA, GL_UNSIGNED_BYTE, layer_height_texture_data_ptr_level1()); render(); glBindTexture(GL_TEXTURE_2D, 0); if ((current_program_id > 0) && (layer_height_texture_data.shader_id != current_program_id)) glUseProgram(current_program_id); } void GLVolume::render_VBOs(int color_id, int detection_id, int worldmatrix_id) const { if (!is_active) return; if (!indexed_vertex_array.vertices_and_normals_interleaved_VBO_id) return; if (layer_height_texture_data.can_use()) { ::glDisableClientState(GL_VERTEX_ARRAY); ::glDisableClientState(GL_NORMAL_ARRAY); render_using_layer_height(); ::glEnableClientState(GL_VERTEX_ARRAY); ::glEnableClientState(GL_NORMAL_ARRAY); return; } GLsizei n_triangles = GLsizei(std::min(indexed_vertex_array.triangle_indices_size, tverts_range.second - tverts_range.first)); GLsizei n_quads = GLsizei(std::min(indexed_vertex_array.quad_indices_size, qverts_range.second - qverts_range.first)); if (n_triangles + n_quads == 0) { ::glDisableClientState(GL_VERTEX_ARRAY); ::glDisableClientState(GL_NORMAL_ARRAY); if (color_id >= 0) { float color[4]; ::memcpy((void*)color, (const void*)render_color, 4 * sizeof(float)); ::glUniform4fv(color_id, 1, (const GLfloat*)color); } else ::glColor4fv(render_color); if (detection_id != -1) ::glUniform1i(detection_id, shader_outside_printer_detection_enabled ? 1 : 0); if (worldmatrix_id != -1) #if ENABLE_MODELVOLUME_TRANSFORM ::glUniformMatrix4fv(worldmatrix_id, 1, GL_FALSE, (const GLfloat*)world_matrix().cast().data()); #else ::glUniformMatrix4fv(worldmatrix_id, 1, GL_FALSE, (const GLfloat*)world_matrix().data()); #endif // ENABLE_MODELVOLUME_TRANSFORM render(); ::glEnableClientState(GL_VERTEX_ARRAY); ::glEnableClientState(GL_NORMAL_ARRAY); return; } if (color_id >= 0) ::glUniform4fv(color_id, 1, (const GLfloat*)render_color); else ::glColor4fv(render_color); if (detection_id != -1) ::glUniform1i(detection_id, shader_outside_printer_detection_enabled ? 1 : 0); if (worldmatrix_id != -1) #if ENABLE_MODELVOLUME_TRANSFORM ::glUniformMatrix4fv(worldmatrix_id, 1, GL_FALSE, (const GLfloat*)world_matrix().cast().data()); #else ::glUniformMatrix4fv(worldmatrix_id, 1, GL_FALSE, (const GLfloat*)world_matrix().data()); #endif // ENABLE_MODELVOLUME_TRANSFORM ::glBindBuffer(GL_ARRAY_BUFFER, indexed_vertex_array.vertices_and_normals_interleaved_VBO_id); ::glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float))); ::glNormalPointer(GL_FLOAT, 6 * sizeof(float), nullptr); ::glPushMatrix(); #if ENABLE_MODELVOLUME_TRANSFORM ::glMultMatrixd(world_matrix().data()); #else ::glMultMatrixf(world_matrix().data()); #endif // ENABLE_MODELVOLUME_TRANSFORM if (n_triangles > 0) { ::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexed_vertex_array.triangle_indices_VBO_id); ::glDrawElements(GL_TRIANGLES, n_triangles, GL_UNSIGNED_INT, (const void*)(tverts_range.first * 4)); } if (n_quads > 0) { ::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexed_vertex_array.quad_indices_VBO_id); ::glDrawElements(GL_QUADS, n_quads, GL_UNSIGNED_INT, (const void*)(qverts_range.first * 4)); } ::glPopMatrix(); } void GLVolume::render_legacy() const { assert(!indexed_vertex_array.vertices_and_normals_interleaved_VBO_id); if (!is_active) return; GLsizei n_triangles = GLsizei(std::min(indexed_vertex_array.triangle_indices_size, tverts_range.second - tverts_range.first)); GLsizei n_quads = GLsizei(std::min(indexed_vertex_array.quad_indices_size, qverts_range.second - qverts_range.first)); if (n_triangles + n_quads == 0) { ::glDisableClientState(GL_VERTEX_ARRAY); ::glDisableClientState(GL_NORMAL_ARRAY); ::glColor4fv(render_color); render(); ::glEnableClientState(GL_VERTEX_ARRAY); ::glEnableClientState(GL_NORMAL_ARRAY); return; } ::glColor4fv(render_color); ::glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), indexed_vertex_array.vertices_and_normals_interleaved.data() + 3); ::glNormalPointer(GL_FLOAT, 6 * sizeof(float), indexed_vertex_array.vertices_and_normals_interleaved.data()); ::glPushMatrix(); #if ENABLE_MODELVOLUME_TRANSFORM ::glMultMatrixd(world_matrix().data()); #else ::glMultMatrixf(world_matrix().data()); #endif // ENABLE_MODELVOLUME_TRANSFORM if (n_triangles > 0) ::glDrawElements(GL_TRIANGLES, n_triangles, GL_UNSIGNED_INT, indexed_vertex_array.triangle_indices.data() + tverts_range.first); if (n_quads > 0) ::glDrawElements(GL_QUADS, n_quads, GL_UNSIGNED_INT, indexed_vertex_array.quad_indices.data() + qverts_range.first); ::glPopMatrix(); } double GLVolume::layer_height_texture_z_to_row_id() const { return (this->layer_height_texture.get() == nullptr) ? 0.0 : double(this->layer_height_texture->cells - 1) / (double(this->layer_height_texture->width) * this->layer_height_texture_data.print_object->model_object()->bounding_box().max(2)); } void GLVolume::generate_layer_height_texture(const PrintObject *print_object, bool force) { LayersTexture *tex = this->layer_height_texture.get(); if (tex == nullptr) // No layer_height_texture is assigned to this GLVolume, therefore the layer height texture cannot be filled. return; // Always try to update the layer height profile. bool update = print_object->update_layer_height_profile(const_cast(print_object->model_object())->layer_height_profile) || force; // Update if the layer height profile was changed, or when the texture is not valid. if (! update && ! tex->data.empty() && tex->cells > 0) // Texture is valid, don't update. return; if (tex->data.empty()) { tex->width = 1024; tex->height = 1024; tex->levels = 2; tex->data.assign(tex->width * tex->height * 5, 0); } SlicingParameters slicing_params = print_object->slicing_parameters(); bool level_of_detail_2nd_level = true; tex->cells = Slic3r::generate_layer_height_texture( slicing_params, Slic3r::generate_object_layers(slicing_params, print_object->model_object()->layer_height_profile), tex->data.data(), tex->height, tex->width, level_of_detail_2nd_level); } // 512x512 bitmaps are supported everywhere, but that may not be sufficent for super large print volumes. #define LAYER_HEIGHT_TEXTURE_WIDTH 1024 #define LAYER_HEIGHT_TEXTURE_HEIGHT 1024 std::vector GLVolumeCollection::load_object( const ModelObject *model_object, int obj_idx, const std::vector &instance_idxs, const std::string &color_by, bool use_VBOs) { // Object will share a single common layer height texture between all printable volumes. std::shared_ptr layer_height_texture = std::make_shared(); std::vector volumes_idx; for (int volume_idx = 0; volume_idx < int(model_object->volumes.size()); ++ volume_idx) for (int instance_idx : instance_idxs) volumes_idx.emplace_back(this->GLVolumeCollection::load_object_volume(model_object, layer_height_texture, obj_idx, volume_idx, instance_idx, color_by, use_VBOs)); return volumes_idx; } int GLVolumeCollection::load_object_volume( const ModelObject *model_object, // Layer height texture is shared between all printable volumes of a single ModelObject. std::shared_ptr &layer_height_texture, int obj_idx, int volume_idx, int instance_idx, const std::string &color_by, bool use_VBOs) { static float colors[4][4] = { { 1.0f, 1.0f, 0.0f, 1.f }, { 1.0f, 0.5f, 0.5f, 1.f }, { 0.5f, 1.0f, 0.5f, 1.f }, { 0.5f, 0.5f, 1.0f, 1.f } }; const ModelVolume *model_volume = model_object->volumes[volume_idx]; const int extruder_id = model_volume->extruder_id(); const ModelInstance *instance = model_object->instances[instance_idx]; #if ENABLE_MODELVOLUME_TRANSFORM const TriangleMesh& mesh = model_volume->mesh; #else TriangleMesh mesh = model_volume->mesh; #endif // ENABLE_MODELVOLUME_TRANSFORM float color[4]; memcpy(color, colors[((color_by == "volume") ? volume_idx : obj_idx) % 4], sizeof(float) * 3); if (model_volume->is_support_blocker()) { color[0] = 1.0f; color[1] = 0.2f; color[2] = 0.2f; } else if (model_volume->is_support_enforcer()) { color[0] = 0.2f; color[1] = 0.2f; color[2] = 1.0f; } color[3] = model_volume->is_model_part() ? 1.f : 0.5f; this->volumes.emplace_back(new GLVolume(color)); GLVolume &v = *this->volumes.back(); if (use_VBOs) v.indexed_vertex_array.load_mesh_full_shading(mesh); else v.indexed_vertex_array.load_mesh_flat_shading(mesh); // finalize_geometry() clears the vertex arrays, therefore the bounding box has to be computed before finalize_geometry(). v.bounding_box = v.indexed_vertex_array.bounding_box(); v.indexed_vertex_array.finalize_geometry(use_VBOs); v.composite_id = GLVolume::CompositeID(obj_idx, volume_idx, instance_idx); if (model_volume->is_model_part()) { // GLVolume will reference a convex hull from model_volume! v.set_convex_hull(&model_volume->get_convex_hull(), false); if (extruder_id != -1) v.extruder_id = extruder_id; v.layer_height_texture = layer_height_texture; } v.is_modifier = ! model_volume->is_model_part(); v.shader_outside_printer_detection_enabled = model_volume->is_model_part(); #if ENABLE_MODELVOLUME_TRANSFORM v.set_instance_transformation(instance->get_transformation()); v.set_volume_transformation(model_volume->get_transformation()); #else v.set_offset(instance->get_offset()); v.set_rotation(instance->get_rotation()); v.set_scaling_factor(instance->get_scaling_factor()); v.set_mirror(instance->get_mirror()); #endif // ENABLE_MODELVOLUME_TRANSFORM return int(this->volumes.size() - 1); } // Load SLA auxiliary GLVolumes (for support trees or pad). // This function produces volumes for multiple instances in a single shot, // as some object specific mesh conversions may be expensive. void GLVolumeCollection::load_object_auxiliary( const SLAPrintObject *print_object, int obj_idx, // pairs of const std::vector> &instances, SLAPrintObjectStep milestone, // Timestamp of the last change of the milestone size_t timestamp, bool use_VBOs) { assert(print_object->is_step_done(milestone)); Transform3d mesh_trafo_inv = print_object->trafo().inverse(); // Get the support mesh. TriangleMesh mesh = print_object->get_mesh(milestone); mesh.transform(mesh_trafo_inv); // Convex hull is required for out of print bed detection. TriangleMesh convex_hull = mesh.convex_hull_3d(); convex_hull.transform(mesh_trafo_inv); for (const std::pair &instance_idx : instances) { const ModelInstance &model_instance = *print_object->model_object()->instances[instance_idx.first]; const SLAPrintObject::Instance &print_instance = print_object->instances()[instance_idx.second]; this->volumes.emplace_back(new GLVolume((milestone == slaposBasePool) ? GLVolume::SLA_PAD_COLOR : GLVolume::SLA_SUPPORT_COLOR)); GLVolume &v = *this->volumes.back(); if (use_VBOs) v.indexed_vertex_array.load_mesh_full_shading(mesh); else v.indexed_vertex_array.load_mesh_flat_shading(mesh); // finalize_geometry() clears the vertex arrays, therefore the bounding box has to be computed before finalize_geometry(). v.bounding_box = v.indexed_vertex_array.bounding_box(); v.indexed_vertex_array.finalize_geometry(use_VBOs); v.composite_id = GLVolume::CompositeID(obj_idx, - int(milestone), (int)instance_idx.first); v.geometry_id = std::pair(timestamp, model_instance.id().id); // Create a copy of the convex hull mesh for each instance. Use a move operator on the last instance. v.set_convex_hull((&instance_idx == &instances.back()) ? new TriangleMesh(std::move(convex_hull)) : new TriangleMesh(convex_hull), true); v.is_modifier = false; v.shader_outside_printer_detection_enabled = true; v.set_instance_transformation(model_instance.get_transformation()); // Leave the volume transformation at identity. // v.set_volume_transformation(model_volume->get_transformation()); } } int GLVolumeCollection::load_wipe_tower_preview( int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool use_VBOs, bool size_unknown, float brim_width) { if (depth < 0.01f) return int(this->volumes.size() - 1); if (height == 0.0f) height = 0.1f; Point origin_of_rotation(0.f, 0.f); TriangleMesh mesh; float color[4] = { 0.5f, 0.5f, 0.0f, 1.f }; // In case we don't know precise dimensions of the wipe tower yet, we'll draw the box with different color with one side jagged: if (size_unknown) { color[0] = 0.9f; color[1] = 0.6f; depth = std::max(depth, 10.f); // Too narrow tower would interfere with the teeth. The estimate is not precise anyway. float min_width = 30.f; // We'll now create the box with jagged edge. y-coordinates of the pre-generated model are shifted so that the front // edge has y=0 and centerline of the back edge has y=depth: Pointf3s points; std::vector facets; float out_points_idx[][3] = { { 0, -depth, 0 }, { 0, 0, 0 }, { 38.453f, 0, 0 }, { 61.547f, 0, 0 }, { 100.0f, 0, 0 }, { 100.0f, -depth, 0 }, { 55.7735f, -10.0f, 0 }, { 44.2265f, 10.0f, 0 }, { 38.453f, 0, 1 }, { 0, 0, 1 }, { 0, -depth, 1 }, { 100.0f, -depth, 1 }, { 100.0f, 0, 1 }, { 61.547f, 0, 1 }, { 55.7735f, -10.0f, 1 }, { 44.2265f, 10.0f, 1 } }; int out_facets_idx[][3] = { { 0, 1, 2 }, { 3, 4, 5 }, { 6, 5, 0 }, { 3, 5, 6 }, { 6, 2, 7 }, { 6, 0, 2 }, { 8, 9, 10 }, { 11, 12, 13 }, { 10, 11, 14 }, { 14, 11, 13 }, { 15, 8, 14 }, {8, 10, 14}, {3, 12, 4}, {3, 13, 12}, {6, 13, 3}, {6, 14, 13}, {7, 14, 6}, {7, 15, 14}, {2, 15, 7}, {2, 8, 15}, {1, 8, 2}, {1, 9, 8}, {0, 9, 1}, {0, 10, 9}, {5, 10, 0}, {5, 11, 10}, {4, 11, 5}, {4, 12, 11}}; for (int i=0;i<16;++i) points.push_back(Vec3d(out_points_idx[i][0] / (100.f/min_width), out_points_idx[i][1] + depth, out_points_idx[i][2])); for (int i=0;i<28;++i) facets.push_back(Vec3crd(out_facets_idx[i][0], out_facets_idx[i][1], out_facets_idx[i][2])); TriangleMesh tooth_mesh(points, facets); // We have the mesh ready. It has one tooth and width of min_width. We will now append several of these together until we are close to // the required width of the block. Than we can scale it precisely. size_t n = std::max(1, int(width/min_width)); // How many shall be merged? for (size_t i=0;ivolumes.emplace_back(new GLVolume(color)); GLVolume &v = *this->volumes.back(); if (use_VBOs) v.indexed_vertex_array.load_mesh_full_shading(mesh); else v.indexed_vertex_array.load_mesh_flat_shading(mesh); #if ENABLE_MODELVOLUME_TRANSFORM v.set_volume_offset(Vec3d(pos_x, pos_y, 0.0)); #else v.set_offset(Vec3d(pos_x, pos_y, 0.0)); #endif // ENABLE_MODELVOLUME_TRANSFORM // finalize_geometry() clears the vertex arrays, therefore the bounding box has to be computed before finalize_geometry(). v.bounding_box = v.indexed_vertex_array.bounding_box(); v.indexed_vertex_array.finalize_geometry(use_VBOs); v.composite_id = GLVolume::CompositeID(obj_idx, 0, 0); v.is_wipe_tower = true; v.shader_outside_printer_detection_enabled = ! size_unknown; return int(this->volumes.size() - 1); } void GLVolumeCollection::render_VBOs() const { ::glEnable(GL_BLEND); ::glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); ::glCullFace(GL_BACK); ::glEnableClientState(GL_VERTEX_ARRAY); ::glEnableClientState(GL_NORMAL_ARRAY); GLint current_program_id; ::glGetIntegerv(GL_CURRENT_PROGRAM, ¤t_program_id); GLint color_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "uniform_color") : -1; GLint print_box_min_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "print_box.min") : -1; GLint print_box_max_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "print_box.max") : -1; GLint print_box_detection_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "print_box.volume_detection") : -1; GLint print_box_worldmatrix_id = (current_program_id > 0) ? glGetUniformLocation(current_program_id, "print_box.volume_world_matrix") : -1; if (print_box_min_id != -1) ::glUniform3fv(print_box_min_id, 1, (const GLfloat*)print_box_min); if (print_box_max_id != -1) ::glUniform3fv(print_box_max_id, 1, (const GLfloat*)print_box_max); for (GLVolume *volume : this->volumes) { if (volume->layer_height_texture_data.can_use()) volume->generate_layer_height_texture(volume->layer_height_texture_data.print_object, false); else volume->set_render_color(); volume->render_VBOs(color_id, print_box_detection_id, print_box_worldmatrix_id); } ::glBindBuffer(GL_ARRAY_BUFFER, 0); ::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); ::glDisableClientState(GL_VERTEX_ARRAY); ::glDisableClientState(GL_NORMAL_ARRAY); ::glDisable(GL_BLEND); } void GLVolumeCollection::render_legacy() const { glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glCullFace(GL_BACK); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); for (GLVolume *volume : this->volumes) { volume->set_render_color(); volume->render_legacy(); } glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisable(GL_BLEND); } bool GLVolumeCollection::check_outside_state(const DynamicPrintConfig* config, ModelInstance::EPrintVolumeState* out_state) { if (config == nullptr) return false; const ConfigOptionPoints* opt = dynamic_cast(config->option("bed_shape")); if (opt == nullptr) return false; BoundingBox bed_box_2D = get_extents(Polygon::new_scale(opt->values)); BoundingBoxf3 print_volume(Vec3d(unscale(bed_box_2D.min(0)), unscale(bed_box_2D.min(1)), 0.0), Vec3d(unscale(bed_box_2D.max(0)), unscale(bed_box_2D.max(1)), config->opt_float("max_print_height"))); // Allow the objects to protrude below the print bed print_volume.min(2) = -1e10; ModelInstance::EPrintVolumeState state = ModelInstance::PVS_Inside; bool all_contained = true; for (GLVolume* volume : this->volumes) { if ((volume != nullptr) && !volume->is_modifier && (!volume->is_wipe_tower || (volume->is_wipe_tower && volume->shader_outside_printer_detection_enabled))) { const BoundingBoxf3& bb = volume->transformed_convex_hull_bounding_box(); bool contained = print_volume.contains(bb); all_contained &= contained; volume->is_outside = !contained; if ((state == ModelInstance::PVS_Inside) && volume->is_outside) state = ModelInstance::PVS_Fully_Outside; if ((state == ModelInstance::PVS_Fully_Outside) && volume->is_outside && print_volume.intersects(bb)) state = ModelInstance::PVS_Partly_Outside; } } if (out_state != nullptr) *out_state = state; return all_contained; } void GLVolumeCollection::reset_outside_state() { for (GLVolume* volume : this->volumes) { if (volume != nullptr) volume->is_outside = false; } } void GLVolumeCollection::update_colors_by_extruder(const DynamicPrintConfig* config) { static const float inv_255 = 1.0f / 255.0f; struct Color { std::string text; unsigned char rgb[3]; Color() : text("") { rgb[0] = 255; rgb[1] = 255; rgb[2] = 255; } void set(const std::string& text, unsigned char* rgb) { this->text = text; ::memcpy((void*)this->rgb, (const void*)rgb, 3 * sizeof(unsigned char)); } }; if (config == nullptr) return; const ConfigOptionStrings* extruders_opt = dynamic_cast(config->option("extruder_colour")); if (extruders_opt == nullptr) return; const ConfigOptionStrings* filamemts_opt = dynamic_cast(config->option("filament_colour")); if (filamemts_opt == nullptr) return; unsigned int colors_count = std::max((unsigned int)extruders_opt->values.size(), (unsigned int)filamemts_opt->values.size()); if (colors_count == 0) return; std::vector colors(colors_count); unsigned char rgb[3]; for (unsigned int i = 0; i < colors_count; ++i) { const std::string& txt_color = config->opt_string("extruder_colour", i); if (PresetBundle::parse_color(txt_color, rgb)) { colors[i].set(txt_color, rgb); } else { const std::string& txt_color = config->opt_string("filament_colour", i); if (PresetBundle::parse_color(txt_color, rgb)) colors[i].set(txt_color, rgb); } } for (GLVolume* volume : volumes) { if ((volume == nullptr) || volume->is_modifier || volume->is_wipe_tower || (volume->volume_idx() < 0)) continue; int extruder_id = volume->extruder_id - 1; if ((extruder_id < 0) || ((int)colors.size() <= extruder_id)) extruder_id = 0; const Color& color = colors[extruder_id]; if (!color.text.empty()) { for (int i = 0; i < 3; ++i) { volume->color[i] = (float)color.rgb[i] * inv_255; } } } } std::vector GLVolumeCollection::get_current_print_zs(bool active_only) const { // Collect layer top positions of all volumes. std::vector print_zs; for (GLVolume *vol : this->volumes) { if (!active_only || vol->is_active) append(print_zs, vol->print_zs); } std::sort(print_zs.begin(), print_zs.end()); // Replace intervals of layers with similar top positions with their average value. int n = int(print_zs.size()); int k = 0; for (int i = 0; i < n;) { int j = i + 1; coordf_t zmax = print_zs[i] + EPSILON; for (; j < n && print_zs[j] <= zmax; ++ j) ; print_zs[k ++] = (j > i + 1) ? (0.5 * (print_zs[i] + print_zs[j - 1])) : print_zs[i]; i = j; } if (k < n) print_zs.erase(print_zs.begin() + k, print_zs.end()); return print_zs; } // caller is responsible for supplying NO lines with zero length static void thick_lines_to_indexed_vertex_array( const Lines &lines, const std::vector &widths, const std::vector &heights, bool closed, double top_z, GLIndexedVertexArray &volume) { assert(! lines.empty()); if (lines.empty()) return; #define LEFT 0 #define RIGHT 1 #define TOP 2 #define BOTTOM 3 // right, left, top, bottom int idx_prev[4] = { -1, -1, -1, -1 }; double bottom_z_prev = 0.; Vec2d b1_prev(Vec2d::Zero()); Vec2d v_prev(Vec2d::Zero()); int idx_initial[4] = { -1, -1, -1, -1 }; double width_initial = 0.; double bottom_z_initial = 0.0; // loop once more in case of closed loops size_t lines_end = closed ? (lines.size() + 1) : lines.size(); for (size_t ii = 0; ii < lines_end; ++ ii) { size_t i = (ii == lines.size()) ? 0 : ii; const Line &line = lines[i]; double len = unscale(line.length()); double inv_len = 1.0 / len; double bottom_z = top_z - heights[i]; double middle_z = 0.5 * (top_z + bottom_z); double width = widths[i]; bool is_first = (ii == 0); bool is_last = (ii == lines_end - 1); bool is_closing = closed && is_last; Vec2d v = unscale(line.vector()); v *= inv_len; Vec2d a = unscale(line.a); Vec2d b = unscale(line.b); Vec2d a1 = a; Vec2d a2 = a; Vec2d b1 = b; Vec2d b2 = b; { double dist = 0.5 * width; // scaled double dx = dist * v(0); double dy = dist * v(1); a1 += Vec2d(+dy, -dx); a2 += Vec2d(-dy, +dx); b1 += Vec2d(+dy, -dx); b2 += Vec2d(-dy, +dx); } // calculate new XY normals Vector n = line.normal(); Vec3d xy_right_normal = unscale(n(0), n(1), 0); xy_right_normal *= inv_len; int idx_a[4]; int idx_b[4]; int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6); bool bottom_z_different = bottom_z_prev != bottom_z; bottom_z_prev = bottom_z; if (!is_first && bottom_z_different) { // Found a change of the layer thickness -> Add a cap at the end of the previous segment. volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]); } // Share top / bottom vertices if possible. if (is_first) { idx_a[TOP] = idx_last++; volume.push_geometry(a(0), a(1), top_z , 0., 0., 1.); } else { idx_a[TOP] = idx_prev[TOP]; } if (is_first || bottom_z_different) { // Start of the 1st line segment or a change of the layer thickness while maintaining the print_z. idx_a[BOTTOM] = idx_last ++; volume.push_geometry(a(0), a(1), bottom_z, 0., 0., -1.); idx_a[LEFT ] = idx_last ++; volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), -xy_right_normal(2)); idx_a[RIGHT] = idx_last ++; volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), xy_right_normal(2)); } else { idx_a[BOTTOM] = idx_prev[BOTTOM]; } if (is_first) { // Start of the 1st line segment. width_initial = width; bottom_z_initial = bottom_z; memcpy(idx_initial, idx_a, sizeof(int) * 4); } else { // Continuing a previous segment. // Share left / right vertices if possible. double v_dot = v_prev.dot(v); bool sharp = v_dot < 0.707; // sin(45 degrees) if (sharp) { if (!bottom_z_different) { // Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn. idx_a[RIGHT] = idx_last++; volume.push_geometry(a1(0), a1(1), middle_z, xy_right_normal(0), xy_right_normal(1), xy_right_normal(2)); idx_a[LEFT] = idx_last++; volume.push_geometry(a2(0), a2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), -xy_right_normal(2)); } } if (v_dot > 0.9) { if (!bottom_z_different) { // The two successive segments are nearly collinear. idx_a[LEFT ] = idx_prev[LEFT]; idx_a[RIGHT] = idx_prev[RIGHT]; } } else if (!sharp) { if (!bottom_z_different) { // Create a sharp corner with an overshot and average the left / right normals. // At the crease angle of 45 degrees, the overshot at the corner will be less than (1-1/cos(PI/8)) = 8.2% over an arc. Vec2d intersection(Vec2d::Zero()); Geometry::ray_ray_intersection(b1_prev, v_prev, a1, v, intersection); a1 = intersection; a2 = 2. * a - intersection; assert((a - a1).norm() < width); assert((a - a2).norm() < width); float *n_left_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6; float *p_left_prev = n_left_prev + 3; float *n_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6; float *p_right_prev = n_right_prev + 3; p_left_prev [0] = float(a2(0)); p_left_prev [1] = float(a2(1)); p_right_prev[0] = float(a1(0)); p_right_prev[1] = float(a1(1)); xy_right_normal(0) += n_right_prev[0]; xy_right_normal(1) += n_right_prev[1]; xy_right_normal *= 1. / xy_right_normal.norm(); n_left_prev [0] = float(-xy_right_normal(0)); n_left_prev [1] = float(-xy_right_normal(1)); n_right_prev[0] = float( xy_right_normal(0)); n_right_prev[1] = float( xy_right_normal(1)); idx_a[LEFT ] = idx_prev[LEFT ]; idx_a[RIGHT] = idx_prev[RIGHT]; } } else if (cross2(v_prev, v) > 0.) { // Right turn. Fill in the right turn wedge. volume.push_triangle(idx_prev[RIGHT], idx_a [RIGHT], idx_prev[TOP] ); volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a [RIGHT] ); } else { // Left turn. Fill in the left turn wedge. volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a [LEFT] ); volume.push_triangle(idx_prev[LEFT], idx_a [LEFT], idx_prev[BOTTOM]); } if (is_closing) { if (!sharp) { if (!bottom_z_different) { // Closing a loop with smooth transition. Unify the closing left / right vertices. memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT ] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT ] * 6, sizeof(float) * 6); memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6); volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end()); // Replace the left / right vertex indices to point to the start of the loop. for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++ u) { if (volume.quad_indices[u] == idx_prev[LEFT]) volume.quad_indices[u] = idx_initial[LEFT]; else if (volume.quad_indices[u] == idx_prev[RIGHT]) volume.quad_indices[u] = idx_initial[RIGHT]; } } } // This is the last iteration, only required to solve the transition. break; } } // Only new allocate top / bottom vertices, if not closing a loop. if (is_closing) { idx_b[TOP] = idx_initial[TOP]; } else { idx_b[TOP] = idx_last ++; volume.push_geometry(b(0), b(1), top_z , 0., 0., 1.); } if (is_closing && (width == width_initial) && (bottom_z == bottom_z_initial)) { idx_b[BOTTOM] = idx_initial[BOTTOM]; } else { idx_b[BOTTOM] = idx_last ++; volume.push_geometry(b(0), b(1), bottom_z, 0., 0., -1.); } // Generate new vertices for the end of this line segment. idx_b[LEFT ] = idx_last ++; volume.push_geometry(b2(0), b2(1), middle_z, -xy_right_normal(0), -xy_right_normal(1), -xy_right_normal(2)); idx_b[RIGHT ] = idx_last ++; volume.push_geometry(b1(0), b1(1), middle_z, xy_right_normal(0), xy_right_normal(1), xy_right_normal(2)); memcpy(idx_prev, idx_b, 4 * sizeof(int)); bottom_z_prev = bottom_z; b1_prev = b1; v_prev = v; if (bottom_z_different && (closed || (!is_first && !is_last))) { // Found a change of the layer thickness -> Add a cap at the beginning of this segment. volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]); } if (! closed) { // Terminate open paths with caps. if (is_first) volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]); // We don't use 'else' because both cases are true if we have only one line. if (is_last) volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]); } // Add quads for a straight hollow tube-like segment. // bottom-right face volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]); // top-right face volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]); // top-left face volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]); // bottom-left face volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]); } #undef LEFT #undef RIGHT #undef TOP #undef BOTTOM } // caller is responsible for supplying NO lines with zero length static void thick_lines_to_indexed_vertex_array(const Lines3& lines, const std::vector& widths, const std::vector& heights, bool closed, GLIndexedVertexArray& volume) { assert(!lines.empty()); if (lines.empty()) return; #define LEFT 0 #define RIGHT 1 #define TOP 2 #define BOTTOM 3 // left, right, top, bottom int idx_initial[4] = { -1, -1, -1, -1 }; int idx_prev[4] = { -1, -1, -1, -1 }; double z_prev = 0.0; Vec3d n_right_prev = Vec3d::Zero(); Vec3d n_top_prev = Vec3d::Zero(); Vec3d unit_v_prev = Vec3d::Zero(); double width_initial = 0.0; // new vertices around the line endpoints // left, right, top, bottom Vec3d a[4] = { Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero() }; Vec3d b[4] = { Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero(), Vec3d::Zero() }; // loop once more in case of closed loops size_t lines_end = closed ? (lines.size() + 1) : lines.size(); for (size_t ii = 0; ii < lines_end; ++ii) { size_t i = (ii == lines.size()) ? 0 : ii; const Line3& line = lines[i]; double height = heights[i]; double width = widths[i]; Vec3d unit_v = unscale(line.vector()).normalized(); Vec3d n_top = Vec3d::Zero(); Vec3d n_right = Vec3d::Zero(); Vec3d unit_positive_z(0.0, 0.0, 1.0); if ((line.a(0) == line.b(0)) && (line.a(1) == line.b(1))) { // vertical segment n_right = (line.a(2) < line.b(2)) ? Vec3d(-1.0, 0.0, 0.0) : Vec3d(1.0, 0.0, 0.0); n_top = Vec3d(0.0, 1.0, 0.0); } else { // generic segment n_right = unit_v.cross(unit_positive_z).normalized(); n_top = n_right.cross(unit_v).normalized(); } Vec3d rl_displacement = 0.5 * width * n_right; Vec3d tb_displacement = 0.5 * height * n_top; Vec3d l_a = unscale(line.a); Vec3d l_b = unscale(line.b); a[RIGHT] = l_a + rl_displacement; a[LEFT] = l_a - rl_displacement; a[TOP] = l_a + tb_displacement; a[BOTTOM] = l_a - tb_displacement; b[RIGHT] = l_b + rl_displacement; b[LEFT] = l_b - rl_displacement; b[TOP] = l_b + tb_displacement; b[BOTTOM] = l_b - tb_displacement; Vec3d n_bottom = -n_top; Vec3d n_left = -n_right; int idx_a[4]; int idx_b[4]; int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6); bool z_different = (z_prev != l_a(2)); z_prev = l_b(2); // Share top / bottom vertices if possible. if (ii == 0) { idx_a[TOP] = idx_last++; volume.push_geometry(a[TOP], n_top); } else idx_a[TOP] = idx_prev[TOP]; if ((ii == 0) || z_different) { // Start of the 1st line segment or a change of the layer thickness while maintaining the print_z. idx_a[BOTTOM] = idx_last++; volume.push_geometry(a[BOTTOM], n_bottom); idx_a[LEFT] = idx_last++; volume.push_geometry(a[LEFT], n_left); idx_a[RIGHT] = idx_last++; volume.push_geometry(a[RIGHT], n_right); } else idx_a[BOTTOM] = idx_prev[BOTTOM]; if (ii == 0) { // Start of the 1st line segment. width_initial = width; ::memcpy(idx_initial, idx_a, sizeof(int) * 4); } else { // Continuing a previous segment. // Share left / right vertices if possible. double v_dot = unit_v_prev.dot(unit_v); bool is_sharp = v_dot < 0.707; // sin(45 degrees) bool is_right_turn = n_top_prev.dot(unit_v_prev.cross(unit_v)) > 0.0; if (is_sharp) { // Allocate new left / right points for the start of this segment as these points will receive their own normals to indicate a sharp turn. idx_a[RIGHT] = idx_last++; volume.push_geometry(a[RIGHT], n_right); idx_a[LEFT] = idx_last++; volume.push_geometry(a[LEFT], n_left); } if (v_dot > 0.9) { // The two successive segments are nearly collinear. idx_a[LEFT] = idx_prev[LEFT]; idx_a[RIGHT] = idx_prev[RIGHT]; } else if (!is_sharp) { // Create a sharp corner with an overshot and average the left / right normals. // At the crease angle of 45 degrees, the overshot at the corner will be less than (1-1/cos(PI/8)) = 8.2% over an arc. // averages normals Vec3d average_n_right = 0.5 * (n_right + n_right_prev).normalized(); Vec3d average_n_left = -average_n_right; Vec3d average_rl_displacement = 0.5 * width * average_n_right; // updates vertices around a a[RIGHT] = l_a + average_rl_displacement; a[LEFT] = l_a - average_rl_displacement; // updates previous line normals float* normal_left_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6; normal_left_prev[0] = float(average_n_left(0)); normal_left_prev[1] = float(average_n_left(1)); normal_left_prev[2] = float(average_n_left(2)); float* normal_right_prev = volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6; normal_right_prev[0] = float(average_n_right(0)); normal_right_prev[1] = float(average_n_right(1)); normal_right_prev[2] = float(average_n_right(2)); // updates previous line's vertices around b float* b_left_prev = normal_left_prev + 3; b_left_prev[0] = float(a[LEFT](0)); b_left_prev[1] = float(a[LEFT](1)); b_left_prev[2] = float(a[LEFT](2)); float* b_right_prev = normal_right_prev + 3; b_right_prev[0] = float(a[RIGHT](0)); b_right_prev[1] = float(a[RIGHT](1)); b_right_prev[2] = float(a[RIGHT](2)); idx_a[LEFT] = idx_prev[LEFT]; idx_a[RIGHT] = idx_prev[RIGHT]; } else if (is_right_turn) { // Right turn. Fill in the right turn wedge. volume.push_triangle(idx_prev[RIGHT], idx_a[RIGHT], idx_prev[TOP]); volume.push_triangle(idx_prev[RIGHT], idx_prev[BOTTOM], idx_a[RIGHT]); } else { // Left turn. Fill in the left turn wedge. volume.push_triangle(idx_prev[LEFT], idx_prev[TOP], idx_a[LEFT]); volume.push_triangle(idx_prev[LEFT], idx_a[LEFT], idx_prev[BOTTOM]); } if (ii == lines.size()) { if (!is_sharp) { // Closing a loop with smooth transition. Unify the closing left / right vertices. ::memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[LEFT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[LEFT] * 6, sizeof(float) * 6); ::memcpy(volume.vertices_and_normals_interleaved.data() + idx_initial[RIGHT] * 6, volume.vertices_and_normals_interleaved.data() + idx_prev[RIGHT] * 6, sizeof(float) * 6); volume.vertices_and_normals_interleaved.erase(volume.vertices_and_normals_interleaved.end() - 12, volume.vertices_and_normals_interleaved.end()); // Replace the left / right vertex indices to point to the start of the loop. for (size_t u = volume.quad_indices.size() - 16; u < volume.quad_indices.size(); ++u) { if (volume.quad_indices[u] == idx_prev[LEFT]) volume.quad_indices[u] = idx_initial[LEFT]; else if (volume.quad_indices[u] == idx_prev[RIGHT]) volume.quad_indices[u] = idx_initial[RIGHT]; } } // This is the last iteration, only required to solve the transition. break; } } // Only new allocate top / bottom vertices, if not closing a loop. if (closed && (ii + 1 == lines.size())) idx_b[TOP] = idx_initial[TOP]; else { idx_b[TOP] = idx_last++; volume.push_geometry(b[TOP], n_top); } if (closed && (ii + 1 == lines.size()) && (width == width_initial)) idx_b[BOTTOM] = idx_initial[BOTTOM]; else { idx_b[BOTTOM] = idx_last++; volume.push_geometry(b[BOTTOM], n_bottom); } // Generate new vertices for the end of this line segment. idx_b[LEFT] = idx_last++; volume.push_geometry(b[LEFT], n_left); idx_b[RIGHT] = idx_last++; volume.push_geometry(b[RIGHT], n_right); ::memcpy(idx_prev, idx_b, 4 * sizeof(int)); n_right_prev = n_right; n_top_prev = n_top; unit_v_prev = unit_v; if (!closed) { // Terminate open paths with caps. if (i == 0) volume.push_quad(idx_a[BOTTOM], idx_a[RIGHT], idx_a[TOP], idx_a[LEFT]); // We don't use 'else' because both cases are true if we have only one line. if (i + 1 == lines.size()) volume.push_quad(idx_b[BOTTOM], idx_b[LEFT], idx_b[TOP], idx_b[RIGHT]); } // Add quads for a straight hollow tube-like segment. // bottom-right face volume.push_quad(idx_a[BOTTOM], idx_b[BOTTOM], idx_b[RIGHT], idx_a[RIGHT]); // top-right face volume.push_quad(idx_a[RIGHT], idx_b[RIGHT], idx_b[TOP], idx_a[TOP]); // top-left face volume.push_quad(idx_a[TOP], idx_b[TOP], idx_b[LEFT], idx_a[LEFT]); // bottom-left face volume.push_quad(idx_a[LEFT], idx_b[LEFT], idx_b[BOTTOM], idx_a[BOTTOM]); } #undef LEFT #undef RIGHT #undef TOP #undef BOTTOM } static void point_to_indexed_vertex_array(const Vec3crd& point, double width, double height, GLIndexedVertexArray& volume) { // builds a double piramid, with vertices on the local axes, around the point Vec3d center = unscale(point); double scale_factor = 1.0; double w = scale_factor * width; double h = scale_factor * height; // new vertices ids int idx_last = int(volume.vertices_and_normals_interleaved.size() / 6); int idxs[6]; for (int i = 0; i < 6; ++i) { idxs[i] = idx_last + i; } Vec3d displacement_x(w, 0.0, 0.0); Vec3d displacement_y(0.0, w, 0.0); Vec3d displacement_z(0.0, 0.0, h); Vec3d unit_x(1.0, 0.0, 0.0); Vec3d unit_y(0.0, 1.0, 0.0); Vec3d unit_z(0.0, 0.0, 1.0); // vertices volume.push_geometry(center - displacement_x, -unit_x); // idxs[0] volume.push_geometry(center + displacement_x, unit_x); // idxs[1] volume.push_geometry(center - displacement_y, -unit_y); // idxs[2] volume.push_geometry(center + displacement_y, unit_y); // idxs[3] volume.push_geometry(center - displacement_z, -unit_z); // idxs[4] volume.push_geometry(center + displacement_z, unit_z); // idxs[5] // top piramid faces volume.push_triangle(idxs[0], idxs[2], idxs[5]); volume.push_triangle(idxs[2], idxs[1], idxs[5]); volume.push_triangle(idxs[1], idxs[3], idxs[5]); volume.push_triangle(idxs[3], idxs[0], idxs[5]); // bottom piramid faces volume.push_triangle(idxs[2], idxs[0], idxs[4]); volume.push_triangle(idxs[1], idxs[2], idxs[4]); volume.push_triangle(idxs[3], idxs[1], idxs[4]); volume.push_triangle(idxs[0], idxs[3], idxs[4]); } void _3DScene::thick_lines_to_verts( const Lines &lines, const std::vector &widths, const std::vector &heights, bool closed, double top_z, GLVolume &volume) { thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, top_z, volume.indexed_vertex_array); } void _3DScene::thick_lines_to_verts(const Lines3& lines, const std::vector& widths, const std::vector& heights, bool closed, GLVolume& volume) { thick_lines_to_indexed_vertex_array(lines, widths, heights, closed, volume.indexed_vertex_array); } static void thick_point_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume) { point_to_indexed_vertex_array(point, width, height, volume.indexed_vertex_array); } // Fill in the qverts and tverts with quads and triangles for the extrusion_path. void _3DScene::extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, GLVolume &volume) { Lines lines = extrusion_path.polyline.lines(); std::vector widths(lines.size(), extrusion_path.width); std::vector heights(lines.size(), extrusion_path.height); thick_lines_to_verts(lines, widths, heights, false, print_z, volume); } // Fill in the qverts and tverts with quads and triangles for the extrusion_path. void _3DScene::extrusionentity_to_verts(const ExtrusionPath &extrusion_path, float print_z, const Point ©, GLVolume &volume) { Polyline polyline = extrusion_path.polyline; polyline.remove_duplicate_points(); polyline.translate(copy); Lines lines = polyline.lines(); std::vector widths(lines.size(), extrusion_path.width); std::vector heights(lines.size(), extrusion_path.height); thick_lines_to_verts(lines, widths, heights, false, print_z, volume); } // Fill in the qverts and tverts with quads and triangles for the extrusion_loop. void _3DScene::extrusionentity_to_verts(const ExtrusionLoop &extrusion_loop, float print_z, const Point ©, GLVolume &volume) { Lines lines; std::vector widths; std::vector heights; for (const ExtrusionPath &extrusion_path : extrusion_loop.paths) { Polyline polyline = extrusion_path.polyline; polyline.remove_duplicate_points(); polyline.translate(copy); Lines lines_this = polyline.lines(); append(lines, lines_this); widths.insert(widths.end(), lines_this.size(), extrusion_path.width); heights.insert(heights.end(), lines_this.size(), extrusion_path.height); } thick_lines_to_verts(lines, widths, heights, true, print_z, volume); } // Fill in the qverts and tverts with quads and triangles for the extrusion_multi_path. void _3DScene::extrusionentity_to_verts(const ExtrusionMultiPath &extrusion_multi_path, float print_z, const Point ©, GLVolume &volume) { Lines lines; std::vector widths; std::vector heights; for (const ExtrusionPath &extrusion_path : extrusion_multi_path.paths) { Polyline polyline = extrusion_path.polyline; polyline.remove_duplicate_points(); polyline.translate(copy); Lines lines_this = polyline.lines(); append(lines, lines_this); widths.insert(widths.end(), lines_this.size(), extrusion_path.width); heights.insert(heights.end(), lines_this.size(), extrusion_path.height); } thick_lines_to_verts(lines, widths, heights, false, print_z, volume); } void _3DScene::extrusionentity_to_verts(const ExtrusionEntityCollection &extrusion_entity_collection, float print_z, const Point ©, GLVolume &volume) { for (const ExtrusionEntity *extrusion_entity : extrusion_entity_collection.entities) extrusionentity_to_verts(extrusion_entity, print_z, copy, volume); } void _3DScene::extrusionentity_to_verts(const ExtrusionEntity *extrusion_entity, float print_z, const Point ©, GLVolume &volume) { if (extrusion_entity != nullptr) { auto *extrusion_path = dynamic_cast(extrusion_entity); if (extrusion_path != nullptr) extrusionentity_to_verts(*extrusion_path, print_z, copy, volume); else { auto *extrusion_loop = dynamic_cast(extrusion_entity); if (extrusion_loop != nullptr) extrusionentity_to_verts(*extrusion_loop, print_z, copy, volume); else { auto *extrusion_multi_path = dynamic_cast(extrusion_entity); if (extrusion_multi_path != nullptr) extrusionentity_to_verts(*extrusion_multi_path, print_z, copy, volume); else { auto *extrusion_entity_collection = dynamic_cast(extrusion_entity); if (extrusion_entity_collection != nullptr) extrusionentity_to_verts(*extrusion_entity_collection, print_z, copy, volume); else { throw std::runtime_error("Unexpected extrusion_entity type in to_verts()"); } } } } } } void _3DScene::polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume) { Lines3 lines = polyline.lines(); std::vector widths(lines.size(), width); std::vector heights(lines.size(), height); thick_lines_to_verts(lines, widths, heights, false, volume); } void _3DScene::point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume) { thick_point_to_verts(point, width, height, volume); } GUI::GLCanvas3DManager _3DScene::s_canvas_mgr; std::string _3DScene::get_gl_info(bool format_as_html, bool extensions) { return s_canvas_mgr.get_gl_info(format_as_html, extensions); } bool _3DScene::add_canvas(wxGLCanvas* canvas) { return s_canvas_mgr.add(canvas); } bool _3DScene::remove_canvas(wxGLCanvas* canvas) { return s_canvas_mgr.remove(canvas); } void _3DScene::remove_all_canvases() { s_canvas_mgr.remove_all(); } bool _3DScene::init(wxGLCanvas* canvas) { return s_canvas_mgr.init(canvas); } GUI::GLCanvas3D* _3DScene::get_canvas(wxGLCanvas* canvas) { return s_canvas_mgr.get_canvas(canvas); } } // namespace Slic3r