#include "libslic3r.h" #include "Exception.hpp" #include "Geometry.hpp" #include "ClipperUtils.hpp" #include "ExPolygon.hpp" #include "Line.hpp" #include "clipper.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SLIC3R_DEBUG #include "SVG.hpp" #endif #ifdef SLIC3R_DEBUG namespace boost { namespace polygon { // The following code for the visualization of the boost Voronoi diagram is based on: // // Boost.Polygon library voronoi_graphic_utils.hpp header file // Copyright Andrii Sydorchuk 2010-2012. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) template class voronoi_visual_utils { public: // Discretize parabolic Voronoi edge. // Parabolic Voronoi edges are always formed by one point and one segment // from the initial input set. // // Args: // point: input point. // segment: input segment. // max_dist: maximum discretization distance. // discretization: point discretization of the given Voronoi edge. // // Template arguments: // InCT: coordinate type of the input geometries (usually integer). // Point: point type, should model point concept. // Segment: segment type, should model segment concept. // // Important: // discretization should contain both edge endpoints initially. template class Point, template class Segment> static typename enable_if< typename gtl_and< typename gtl_if< typename is_point_concept< typename geometry_concept< Point >::type >::type >::type, typename gtl_if< typename is_segment_concept< typename geometry_concept< Segment >::type >::type >::type >::type, void >::type discretize( const Point& point, const Segment& segment, const CT max_dist, std::vector< Point >* discretization) { // Apply the linear transformation to move start point of the segment to // the point with coordinates (0, 0) and the direction of the segment to // coincide the positive direction of the x-axis. CT segm_vec_x = cast(x(high(segment))) - cast(x(low(segment))); CT segm_vec_y = cast(y(high(segment))) - cast(y(low(segment))); CT sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y; // Compute x-coordinates of the endpoints of the edge // in the transformed space. CT projection_start = sqr_segment_length * get_point_projection((*discretization)[0], segment); CT projection_end = sqr_segment_length * get_point_projection((*discretization)[1], segment); // Compute parabola parameters in the transformed space. // Parabola has next representation: // f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y). CT point_vec_x = cast(x(point)) - cast(x(low(segment))); CT point_vec_y = cast(y(point)) - cast(y(low(segment))); CT rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y; CT rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x; // Save the last point. Point last_point = (*discretization)[1]; discretization->pop_back(); // Use stack to avoid recursion. std::stack point_stack; point_stack.push(projection_end); CT cur_x = projection_start; CT cur_y = parabola_y(cur_x, rot_x, rot_y); // Adjust max_dist parameter in the transformed space. const CT max_dist_transformed = max_dist * max_dist * sqr_segment_length; while (!point_stack.empty()) { CT new_x = point_stack.top(); CT new_y = parabola_y(new_x, rot_x, rot_y); // Compute coordinates of the point of the parabola that is // furthest from the current line segment. CT mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x; CT mid_y = parabola_y(mid_x, rot_x, rot_y); // Compute maximum distance between the given parabolic arc // and line segment that discretize it. CT dist = (new_y - cur_y) * (mid_x - cur_x) - (new_x - cur_x) * (mid_y - cur_y); dist = dist * dist / ((new_y - cur_y) * (new_y - cur_y) + (new_x - cur_x) * (new_x - cur_x)); if (dist <= max_dist_transformed) { // Distance between parabola and line segment is less than max_dist. point_stack.pop(); CT inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) / sqr_segment_length + cast(x(low(segment))); CT inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) / sqr_segment_length + cast(y(low(segment))); discretization->push_back(Point(inter_x, inter_y)); cur_x = new_x; cur_y = new_y; } else { point_stack.push(mid_x); } } // Update last point. discretization->back() = last_point; } private: // Compute y(x) = ((x - a) * (x - a) + b * b) / (2 * b). static CT parabola_y(CT x, CT a, CT b) { return ((x - a) * (x - a) + b * b) / (b + b); } // Get normalized length of the distance between: // 1) point projection onto the segment // 2) start point of the segment // Return this length divided by the segment length. This is made to avoid // sqrt computation during transformation from the initial space to the // transformed one and vice versa. The assumption is made that projection of // the point lies between the start-point and endpoint of the segment. template class Point, template class Segment> static typename enable_if< typename gtl_and< typename gtl_if< typename is_point_concept< typename geometry_concept< Point >::type >::type >::type, typename gtl_if< typename is_segment_concept< typename geometry_concept< Segment >::type >::type >::type >::type, CT >::type get_point_projection( const Point& point, const Segment& segment) { CT segment_vec_x = cast(x(high(segment))) - cast(x(low(segment))); CT segment_vec_y = cast(y(high(segment))) - cast(y(low(segment))); CT point_vec_x = x(point) - cast(x(low(segment))); CT point_vec_y = y(point) - cast(y(low(segment))); CT sqr_segment_length = segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y; CT vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y; return vec_dot / sqr_segment_length; } template static CT cast(const InCT& value) { return static_cast(value); } }; } } // namespace boost::polygon #endif using namespace boost::polygon; // provides also high() and low() namespace Slic3r { namespace Geometry { static bool sort_points(const Point& a, const Point& b) { return (a(0) < b(0)) || (a(0) == b(0) && a(1) < b(1)); } static bool sort_pointfs(const Vec3d& a, const Vec3d& b) { return (a(0) < b(0)) || (a(0) == b(0) && a(1) < b(1)); } // This implementation is based on Andrew's monotone chain 2D convex hull algorithm Polygon convex_hull(Points points) { assert(points.size() >= 3); // sort input points std::sort(points.begin(), points.end(), sort_points); int n = points.size(), k = 0; Polygon hull; if (n >= 3) { hull.points.resize(2 * n); // Build lower hull for (int i = 0; i < n; i++) { while (k >= 2 && points[i].ccw(hull[k-2], hull[k-1]) <= 0) k--; hull[k++] = points[i]; } // Build upper hull for (int i = n-2, t = k+1; i >= 0; i--) { while (k >= t && points[i].ccw(hull[k-2], hull[k-1]) <= 0) k--; hull[k++] = points[i]; } hull.points.resize(k); assert(hull.points.front() == hull.points.back()); hull.points.pop_back(); } return hull; } Pointf3s convex_hull(Pointf3s points) { assert(points.size() >= 3); // sort input points std::sort(points.begin(), points.end(), sort_pointfs); int n = points.size(), k = 0; Pointf3s hull; if (n >= 3) { hull.resize(2 * n); // Build lower hull for (int i = 0; i < n; ++i) { Point p = Point::new_scale(points[i](0), points[i](1)); while (k >= 2) { Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1)); Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1)); if (p.ccw(k2, k1) <= 0) --k; else break; } hull[k++] = points[i]; } // Build upper hull for (int i = n - 2, t = k + 1; i >= 0; --i) { Point p = Point::new_scale(points[i](0), points[i](1)); while (k >= t) { Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1)); Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1)); if (p.ccw(k2, k1) <= 0) --k; else break; } hull[k++] = points[i]; } hull.resize(k); assert(hull.front() == hull.back()); hull.pop_back(); } return hull; } Polygon convex_hull(const Polygons &polygons) { Points pp; for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) { pp.insert(pp.end(), p->points.begin(), p->points.end()); } return convex_hull(std::move(pp)); } bool directions_parallel(double angle1, double angle2, double max_diff) { double diff = fabs(angle1 - angle2); max_diff += EPSILON; return diff < max_diff || fabs(diff - PI) < max_diff; } template bool contains(const std::vector &vector, const Point &point) { for (typename std::vector::const_iterator it = vector.begin(); it != vector.end(); ++it) { if (it->contains(point)) return true; } return false; } template bool contains(const ExPolygons &vector, const Point &point); double rad2deg_dir(double angle) { angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0); if (angle < 0) angle += PI; return rad2deg(angle); } Point circle_center_taubin_newton(const Points::const_iterator& input_begin, const Points::const_iterator& input_end, size_t cycles) { Vec2ds tmp; tmp.reserve(std::distance(input_begin, input_end)); std::transform(input_begin, input_end, std::back_inserter(tmp), [] (const Point& in) { return unscale(in); } ); Vec2d center = circle_center_taubin_newton(tmp.cbegin(), tmp.end(), cycles); return Point::new_scale(center.x(), center.y()); } /// Adapted from work in "Circular and Linear Regression: Fitting circles and lines by least squares", pg 126 /// Returns a point corresponding to the center of a circle for which all of the points from input_begin to input_end /// lie on. Vec2d circle_center_taubin_newton(const Vec2ds::const_iterator& input_begin, const Vec2ds::const_iterator& input_end, size_t cycles) { // calculate the centroid of the data set const Vec2d sum = std::accumulate(input_begin, input_end, Vec2d(0,0)); const size_t n = std::distance(input_begin, input_end); const double n_flt = static_cast(n); const Vec2d centroid { sum / n_flt }; // Compute the normalized moments of the data set. double Mxx = 0, Myy = 0, Mxy = 0, Mxz = 0, Myz = 0, Mzz = 0; for (auto it = input_begin; it < input_end; ++it) { // center/normalize the data. double Xi {it->x() - centroid.x()}; double Yi {it->y() - centroid.y()}; double Zi {Xi*Xi + Yi*Yi}; Mxy += (Xi*Yi); Mxx += (Xi*Xi); Myy += (Yi*Yi); Mxz += (Xi*Zi); Myz += (Yi*Zi); Mzz += (Zi*Zi); } // divide by number of points to get the moments Mxx /= n_flt; Myy /= n_flt; Mxy /= n_flt; Mxz /= n_flt; Myz /= n_flt; Mzz /= n_flt; // Compute the coefficients of the characteristic polynomial for the circle // eq 5.60 const double Mz {Mxx + Myy}; // xx + yy = z const double Cov_xy {Mxx*Myy - Mxy*Mxy}; // this shows up a couple times so cache it here. const double C3 {4.0*Mz}; const double C2 {-3.0*(Mz*Mz) - Mzz}; const double C1 {Mz*(Mzz - (Mz*Mz)) + 4.0*Mz*Cov_xy - (Mxz*Mxz) - (Myz*Myz)}; const double C0 {(Mxz*Mxz)*Myy + (Myz*Myz)*Mxx - 2.0*Mxz*Myz*Mxy - Cov_xy*(Mzz - (Mz*Mz))}; const double C22 = {C2 + C2}; const double C33 = {C3 + C3 + C3}; // solve the characteristic polynomial with Newton's method. double xnew = 0.0; double ynew = 1e20; for (size_t i = 0; i < cycles; ++i) { const double yold {ynew}; ynew = C0 + xnew * (C1 + xnew*(C2 + xnew * C3)); if (std::abs(ynew) > std::abs(yold)) { BOOST_LOG_TRIVIAL(error) << "Geometry: Fit is going in the wrong direction.\n"; return Vec2d(std::nan(""), std::nan("")); } const double Dy {C1 + xnew*(C22 + xnew*C33)}; const double xold {xnew}; xnew = xold - (ynew / Dy); if (std::abs((xnew-xold) / xnew) < 1e-12) i = cycles; // converged, we're done here if (xnew < 0) { // reset, we went negative xnew = 0.0; } } // compute the determinant and the circle's parameters now that we've solved. double DET = xnew*xnew - xnew*Mz + Cov_xy; Vec2d center(Mxz * (Myy - xnew) - Myz * Mxy, Myz * (Mxx - xnew) - Mxz*Mxy); center /= (DET * 2.); return center + centroid; } void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval) { Polygons pp; for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) { Polygon p = *it; p.points.push_back(p.points.front()); p.points = MultiPoint::_douglas_peucker(p.points, tolerance); p.points.pop_back(); pp.push_back(p); } *retval = Slic3r::simplify_polygons(pp); } double linint(double value, double oldmin, double oldmax, double newmin, double newmax) { return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin; } #if 0 // Point with a weight, by which the points are sorted. // If the points have the same weight, sort them lexicographically by their positions. struct ArrangeItem { ArrangeItem() {} Vec2d pos; coordf_t weight; bool operator<(const ArrangeItem &other) const { return weight < other.weight || ((weight == other.weight) && (pos(1) < other.pos(1) || (pos(1) == other.pos(1) && pos(0) < other.pos(0)))); } }; Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box) { // Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm. const Vec2d cell_size(part_size(0) + gap, part_size(1) + gap); const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ? *bed_bounding_box : // Bogus bed size, large enough not to trigger the unsufficient bed size error. BoundingBoxf( Vec2d(0, 0), Vec2d(cell_size(0) * num_parts, cell_size(1) * num_parts)); // This is how many cells we have available into which to put parts. size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0))); size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1))); if (num_parts > cellw * cellh) throw Slic3r::InvalidArgument("%zu parts won't fit in your print area!\n", num_parts); // Get a bounding box of cellw x cellh cells, centered at the center of the bed. Vec2d cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap); Vec2d cells_offset(bed_bbox.center() - 0.5 * cells_size); BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset); // List of cells, sorted by distance from center. std::vector cellsorder(cellw * cellh, ArrangeItem()); for (size_t j = 0; j < cellh; ++ j) { // Center of the jth row on the bed. coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min(1), cells_bb.max(1)); // Offset from the bed center. coordf_t yd = cells_bb.center()(1) - cy; for (size_t i = 0; i < cellw; ++ i) { // Center of the ith column on the bed. coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min(0), cells_bb.max(0)); // Offset from the bed center. coordf_t xd = cells_bb.center()(0) - cx; // Cell with a distance from the bed center. ArrangeItem &ci = cellsorder[j * cellw + i]; // Cell center ci.pos(0) = cx; ci.pos(1) = cy; // Square distance of the cell center to the bed center. ci.weight = xd * xd + yd * yd; } } // Sort the cells lexicographically by their distances to the bed center and left to right / bttom to top. std::sort(cellsorder.begin(), cellsorder.end()); cellsorder.erase(cellsorder.begin() + num_parts, cellsorder.end()); // Return the (left,top) corners of the cells. Pointfs positions; positions.reserve(num_parts); for (std::vector::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it) positions.push_back(Vec2d(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1))); return positions; } #else class ArrangeItem { public: Vec2d pos = Vec2d::Zero(); size_t index_x, index_y; coordf_t dist; }; class ArrangeItemIndex { public: coordf_t index; ArrangeItem item; ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {}; }; bool arrange(size_t total_parts, const Vec2d &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions) { positions.clear(); Vec2d part = part_size; // use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm part(0) += dist; part(1) += dist; Vec2d area(Vec2d::Zero()); if (bb != NULL && bb->defined) { area = bb->size(); } else { // bogus area size, large enough not to trigger the error below area(0) = part(0) * total_parts; area(1) = part(1) * total_parts; } // this is how many cells we have available into which to put parts size_t cellw = floor((area(0) + dist) / part(0)); size_t cellh = floor((area(1) + dist) / part(1)); if (total_parts > (cellw * cellh)) return false; // total space used by cells Vec2d cells(cellw * part(0), cellh * part(1)); // bounding box of total space used by cells BoundingBoxf cells_bb; cells_bb.merge(Vec2d(0,0)); // min cells_bb.merge(cells); // max // center bounding box to area cells_bb.translate( (area(0) - cells(0)) / 2, (area(1) - cells(1)) / 2 ); // list of cells, sorted by distance from center std::vector cellsorder; // work out distance for all cells, sort into list for (size_t i = 0; i <= cellw-1; ++i) { for (size_t j = 0; j <= cellh-1; ++j) { coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min(0), cells_bb.max(0)); coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min(1), cells_bb.max(1)); coordf_t xd = fabs((area(0) / 2) - cx); coordf_t yd = fabs((area(1) / 2) - cy); ArrangeItem c; c.pos(0) = cx; c.pos(1) = cy; c.index_x = i; c.index_y = j; c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5)); // binary insertion sort { coordf_t index = c.dist; size_t low = 0; size_t high = cellsorder.size(); while (low < high) { size_t mid = (low + ((high - low) / 2)) | 0; coordf_t midval = cellsorder[mid].index; if (midval < index) { low = mid + 1; } else if (midval > index) { high = mid; } else { cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c)); goto ENDSORT; } } cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c)); } ENDSORT: ; } } // the extents of cells actually used by objects coordf_t lx = 0; coordf_t ty = 0; coordf_t rx = 0; coordf_t by = 0; // now find cells actually used by objects, map out the extents so we can position correctly for (size_t i = 1; i <= total_parts; ++i) { ArrangeItemIndex c = cellsorder[i - 1]; coordf_t cx = c.item.index_x; coordf_t cy = c.item.index_y; if (i == 1) { lx = rx = cx; ty = by = cy; } else { if (cx > rx) rx = cx; if (cx < lx) lx = cx; if (cy > by) by = cy; if (cy < ty) ty = cy; } } // now we actually place objects into cells, positioned such that the left and bottom borders are at 0 for (size_t i = 1; i <= total_parts; ++i) { ArrangeItemIndex c = cellsorder.front(); cellsorder.erase(cellsorder.begin()); coordf_t cx = c.item.index_x - lx; coordf_t cy = c.item.index_y - ty; positions.push_back(Vec2d(cx * part(0), cy * part(1))); } if (bb != NULL && bb->defined) { for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) { p->x() += bb->min(0); p->y() += bb->min(1); } } return true; } #endif #ifdef SLIC3R_DEBUG // The following code for the visualization of the boost Voronoi diagram is based on: // // Boost.Polygon library voronoi_visualizer.cpp file // Copyright Andrii Sydorchuk 2010-2012. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) namespace Voronoi { namespace Internal { typedef double coordinate_type; typedef boost::polygon::point_data point_type; typedef boost::polygon::segment_data segment_type; typedef boost::polygon::rectangle_data rect_type; typedef boost::polygon::voronoi_diagram VD; typedef VD::cell_type cell_type; typedef VD::cell_type::source_index_type source_index_type; typedef VD::cell_type::source_category_type source_category_type; typedef VD::edge_type edge_type; typedef VD::cell_container_type cell_container_type; typedef VD::cell_container_type vertex_container_type; typedef VD::edge_container_type edge_container_type; typedef VD::const_cell_iterator const_cell_iterator; typedef VD::const_vertex_iterator const_vertex_iterator; typedef VD::const_edge_iterator const_edge_iterator; static const std::size_t EXTERNAL_COLOR = 1; inline void color_exterior(const VD::edge_type* edge) { if (edge->color() == EXTERNAL_COLOR) return; edge->color(EXTERNAL_COLOR); edge->twin()->color(EXTERNAL_COLOR); const VD::vertex_type* v = edge->vertex1(); if (v == NULL || !edge->is_primary()) return; v->color(EXTERNAL_COLOR); const VD::edge_type* e = v->incident_edge(); do { color_exterior(e); e = e->rot_next(); } while (e != v->incident_edge()); } inline point_type retrieve_point(const std::vector &segments, const cell_type& cell) { assert(cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == SOURCE_CATEGORY_SEGMENT_END_POINT); return (cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) ? low(segments[cell.source_index()]) : high(segments[cell.source_index()]); } inline void clip_infinite_edge(const std::vector &segments, const edge_type& edge, coordinate_type bbox_max_size, std::vector* clipped_edge) { const cell_type& cell1 = *edge.cell(); const cell_type& cell2 = *edge.twin()->cell(); point_type origin, direction; // Infinite edges could not be created by two segment sites. if (cell1.contains_point() && cell2.contains_point()) { point_type p1 = retrieve_point(segments, cell1); point_type p2 = retrieve_point(segments, cell2); origin.x((p1.x() + p2.x()) * 0.5); origin.y((p1.y() + p2.y()) * 0.5); direction.x(p1.y() - p2.y()); direction.y(p2.x() - p1.x()); } else { origin = cell1.contains_segment() ? retrieve_point(segments, cell2) : retrieve_point(segments, cell1); segment_type segment = cell1.contains_segment() ? segments[cell1.source_index()] : segments[cell2.source_index()]; coordinate_type dx = high(segment).x() - low(segment).x(); coordinate_type dy = high(segment).y() - low(segment).y(); if ((low(segment) == origin) ^ cell1.contains_point()) { direction.x(dy); direction.y(-dx); } else { direction.x(-dy); direction.y(dx); } } coordinate_type koef = bbox_max_size / (std::max)(fabs(direction.x()), fabs(direction.y())); if (edge.vertex0() == NULL) { clipped_edge->push_back(point_type( origin.x() - direction.x() * koef, origin.y() - direction.y() * koef)); } else { clipped_edge->push_back( point_type(edge.vertex0()->x(), edge.vertex0()->y())); } if (edge.vertex1() == NULL) { clipped_edge->push_back(point_type( origin.x() + direction.x() * koef, origin.y() + direction.y() * koef)); } else { clipped_edge->push_back( point_type(edge.vertex1()->x(), edge.vertex1()->y())); } } inline void sample_curved_edge(const std::vector &segments, const edge_type& edge, std::vector &sampled_edge, coordinate_type max_dist) { point_type point = edge.cell()->contains_point() ? retrieve_point(segments, *edge.cell()) : retrieve_point(segments, *edge.twin()->cell()); segment_type segment = edge.cell()->contains_point() ? segments[edge.twin()->cell()->source_index()] : segments[edge.cell()->source_index()]; ::boost::polygon::voronoi_visual_utils::discretize(point, segment, max_dist, &sampled_edge); } } /* namespace Internal */ } // namespace Voronoi static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ boost::polygon::voronoi_diagram &vd, const ThickPolylines *polylines, const char *path) { const double scale = 0.2; const std::string inputSegmentPointColor = "lightseagreen"; const coord_t inputSegmentPointRadius = coord_t(0.09 * scale / SCALING_FACTOR); const std::string inputSegmentColor = "lightseagreen"; const coord_t inputSegmentLineWidth = coord_t(0.03 * scale / SCALING_FACTOR); const std::string voronoiPointColor = "black"; const coord_t voronoiPointRadius = coord_t(0.06 * scale / SCALING_FACTOR); const std::string voronoiLineColorPrimary = "black"; const std::string voronoiLineColorSecondary = "green"; const std::string voronoiArcColor = "red"; const coord_t voronoiLineWidth = coord_t(0.02 * scale / SCALING_FACTOR); const bool internalEdgesOnly = false; const bool primaryEdgesOnly = false; BoundingBox bbox = BoundingBox(lines); bbox.min(0) -= coord_t(1. / SCALING_FACTOR); bbox.min(1) -= coord_t(1. / SCALING_FACTOR); bbox.max(0) += coord_t(1. / SCALING_FACTOR); bbox.max(1) += coord_t(1. / SCALING_FACTOR); ::Slic3r::SVG svg(path, bbox); if (polylines != NULL) svg.draw(*polylines, "lime", "lime", voronoiLineWidth); // bbox.scale(1.2); // For clipping of half-lines to some reasonable value. // The line will then be clipped by the SVG viewer anyway. const double bbox_dim_max = double(bbox.max(0) - bbox.min(0)) + double(bbox.max(1) - bbox.min(1)); // For the discretization of the Voronoi parabolic segments. const double discretization_step = 0.0005 * bbox_dim_max; // Make a copy of the input segments with the double type. std::vector segments; for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++ it) segments.push_back(Voronoi::Internal::segment_type( Voronoi::Internal::point_type(double(it->a(0)), double(it->a(1))), Voronoi::Internal::point_type(double(it->b(0)), double(it->b(1))))); // Color exterior edges. for (boost::polygon::voronoi_diagram::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it) if (!it->is_finite()) Voronoi::Internal::color_exterior(&(*it)); // Draw the end points of the input polygon. for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) { svg.draw(it->a, inputSegmentPointColor, inputSegmentPointRadius); svg.draw(it->b, inputSegmentPointColor, inputSegmentPointRadius); } // Draw the input polygon. for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) svg.draw(Line(Point(coord_t(it->a(0)), coord_t(it->a(1))), Point(coord_t(it->b(0)), coord_t(it->b(1)))), inputSegmentColor, inputSegmentLineWidth); #if 1 // Draw voronoi vertices. for (boost::polygon::voronoi_diagram::const_vertex_iterator it = vd.vertices().begin(); it != vd.vertices().end(); ++it) if (! internalEdgesOnly || it->color() != Voronoi::Internal::EXTERNAL_COLOR) svg.draw(Point(coord_t(it->x()), coord_t(it->y())), voronoiPointColor, voronoiPointRadius); for (boost::polygon::voronoi_diagram::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it) { if (primaryEdgesOnly && !it->is_primary()) continue; if (internalEdgesOnly && (it->color() == Voronoi::Internal::EXTERNAL_COLOR)) continue; std::vector samples; std::string color = voronoiLineColorPrimary; if (!it->is_finite()) { Voronoi::Internal::clip_infinite_edge(segments, *it, bbox_dim_max, &samples); if (! it->is_primary()) color = voronoiLineColorSecondary; } else { // Store both points of the segment into samples. sample_curved_edge will split the initial line // until the discretization_step is reached. samples.push_back(Voronoi::Internal::point_type(it->vertex0()->x(), it->vertex0()->y())); samples.push_back(Voronoi::Internal::point_type(it->vertex1()->x(), it->vertex1()->y())); if (it->is_curved()) { Voronoi::Internal::sample_curved_edge(segments, *it, samples, discretization_step); color = voronoiArcColor; } else if (! it->is_primary()) color = voronoiLineColorSecondary; } for (std::size_t i = 0; i + 1 < samples.size(); ++i) svg.draw(Line(Point(coord_t(samples[i].x()), coord_t(samples[i].y())), Point(coord_t(samples[i+1].x()), coord_t(samples[i+1].y()))), color, voronoiLineWidth); } #endif if (polylines != NULL) svg.draw(*polylines, "blue", voronoiLineWidth); svg.Close(); } #endif /* SLIC3R_DEBUG */ // Euclidian distance of two boost::polygon points. template T dist(const boost::polygon::point_data &p1,const boost::polygon::point_data &p2) { T dx = p2(0) - p1(0); T dy = p2(1) - p1(1); return sqrt(dx*dx+dy*dy); } // Find a foot point of "px" on a segment "seg". template inline point_type project_point_to_segment(segment_type &seg, point_type &px) { typedef typename point_type::coordinate_type T; const point_type &p0 = low(seg); const point_type &p1 = high(seg); const point_type dir(p1(0)-p0(0), p1(1)-p0(1)); const point_type dproj(px(0)-p0(0), px(1)-p0(1)); const T t = (dir(0)*dproj(0) + dir(1)*dproj(1)) / (dir(0)*dir(0) + dir(1)*dir(1)); assert(t >= T(-1e-6) && t <= T(1. + 1e-6)); return point_type(p0(0) + t*dir(0), p0(1) + t*dir(1)); } template inline const typename VD::point_type retrieve_cell_point(const typename VD::cell_type& cell, const SEGMENTS &segments) { assert(cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == SOURCE_CATEGORY_SEGMENT_END_POINT); return (cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) ? low(segments[cell.source_index()]) : high(segments[cell.source_index()]); } template inline std::pair measure_edge_thickness(const VD &vd, const typename VD::edge_type& edge, const SEGMENTS &segments) { typedef typename VD::coord_type T; const typename VD::point_type pa(edge.vertex0()->x(), edge.vertex0()->y()); const typename VD::point_type pb(edge.vertex1()->x(), edge.vertex1()->y()); const typename VD::cell_type &cell1 = *edge.cell(); const typename VD::cell_type &cell2 = *edge.twin()->cell(); if (cell1.contains_segment()) { if (cell2.contains_segment()) { // Both cells contain a linear segment, the left / right cells are symmetric. // Project pa, pb to the left segment. const typename VD::segment_type segment1 = segments[cell1.source_index()]; const typename VD::point_type p1a = project_point_to_segment(segment1, pa); const typename VD::point_type p1b = project_point_to_segment(segment1, pb); return std::pair(T(2.)*dist(pa, p1a), T(2.)*dist(pb, p1b)); } else { // 1st cell contains a linear segment, 2nd cell contains a point. // The medial axis between the cells is a parabolic arc. // Project pa, pb to the left segment. const typename VD::point_type p2 = retrieve_cell_point(cell2, segments); return std::pair(T(2.)*dist(pa, p2), T(2.)*dist(pb, p2)); } } else if (cell2.contains_segment()) { // 1st cell contains a point, 2nd cell contains a linear segment. // The medial axis between the cells is a parabolic arc. const typename VD::point_type p1 = retrieve_cell_point(cell1, segments); return std::pair(T(2.)*dist(pa, p1), T(2.)*dist(pb, p1)); } else { // Both cells contain a point. The left / right regions are triangular and symmetric. const typename VD::point_type p1 = retrieve_cell_point(cell1, segments); return std::pair(T(2.)*dist(pa, p1), T(2.)*dist(pb, p1)); } } // Converts the Line instances of Lines vector to VD::segment_type. template class Lines2VDSegments { public: Lines2VDSegments(const Lines &alines) : lines(alines) {} typename VD::segment_type operator[](size_t idx) const { return typename VD::segment_type( typename VD::point_type(typename VD::coord_type(lines[idx].a(0)), typename VD::coord_type(lines[idx].a(1))), typename VD::point_type(typename VD::coord_type(lines[idx].b(0)), typename VD::coord_type(lines[idx].b(1)))); } private: const Lines &lines; }; void MedialAxis::build(ThickPolylines* polylines) { construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd); /* // DEBUG: dump all Voronoi edges { for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) { if (edge->is_infinite()) continue; ThickPolyline polyline; polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() )); polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() )); polylines->push_back(polyline); } return; } */ //typedef const VD::vertex_type vert_t; typedef const VD::edge_type edge_t; // collect valid edges (i.e. prune those not belonging to MAT) // note: this keeps twins, so it inserts twice the number of the valid edges this->valid_edges.clear(); { std::set seen_edges; for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) { // if we only process segments representing closed loops, none if the // infinite edges (if any) would be part of our MAT anyway if (edge->is_secondary() || edge->is_infinite()) continue; // don't re-validate twins if (seen_edges.find(&*edge) != seen_edges.end()) continue; // TODO: is this needed? seen_edges.insert(&*edge); seen_edges.insert(edge->twin()); if (!this->validate_edge(&*edge)) continue; this->valid_edges.insert(&*edge); this->valid_edges.insert(edge->twin()); } } this->edges = this->valid_edges; // iterate through the valid edges to build polylines while (!this->edges.empty()) { const edge_t* edge = *this->edges.begin(); // start a polyline ThickPolyline polyline; polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() )); polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() )); polyline.width.push_back(this->thickness[edge].first); polyline.width.push_back(this->thickness[edge].second); // remove this edge and its twin from the available edges (void)this->edges.erase(edge); (void)this->edges.erase(edge->twin()); // get next points this->process_edge_neighbors(edge, &polyline); // get previous points { ThickPolyline rpolyline; this->process_edge_neighbors(edge->twin(), &rpolyline); polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend()); polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend()); polyline.endpoints.first = rpolyline.endpoints.second; } assert(polyline.width.size() == polyline.points.size()*2 - 2); // prevent loop endpoints from being extended if (polyline.first_point() == polyline.last_point()) { polyline.endpoints.first = false; polyline.endpoints.second = false; } // append polyline to result polylines->push_back(polyline); } #ifdef SLIC3R_DEBUG { static int iRun = 0; dump_voronoi_to_svg(this->lines, this->vd, polylines, debug_out_path("MedialAxis-%d.svg", iRun ++).c_str()); printf("Thick lines: "); for (ThickPolylines::const_iterator it = polylines->begin(); it != polylines->end(); ++ it) { ThickLines lines = it->thicklines(); for (ThickLines::const_iterator it2 = lines.begin(); it2 != lines.end(); ++ it2) { printf("%f,%f ", it2->a_width, it2->b_width); } } printf("\n"); } #endif /* SLIC3R_DEBUG */ } void MedialAxis::build(Polylines* polylines) { ThickPolylines tp; this->build(&tp); polylines->insert(polylines->end(), tp.begin(), tp.end()); } void MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline) { while (true) { // Since rot_next() works on the edge starting point but we want // to find neighbors on the ending point, we just swap edge with // its twin. const VD::edge_type* twin = edge->twin(); // count neighbors for this edge std::vector neighbors; for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin; neighbor = neighbor->rot_next()) { if (this->valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor); } // if we have a single neighbor then we can continue recursively if (neighbors.size() == 1) { const VD::edge_type* neighbor = neighbors.front(); // break if this is a closed loop if (this->edges.count(neighbor) == 0) return; Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y()); polyline->points.push_back(new_point); polyline->width.push_back(this->thickness[neighbor].first); polyline->width.push_back(this->thickness[neighbor].second); (void)this->edges.erase(neighbor); (void)this->edges.erase(neighbor->twin()); edge = neighbor; } else if (neighbors.size() == 0) { polyline->endpoints.second = true; return; } else { // T-shaped or star-shaped joint return; } } } bool MedialAxis::validate_edge(const VD::edge_type* edge) { // prevent overflows and detect almost-infinite edges if (std::abs(edge->vertex0()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) || std::abs(edge->vertex0()->y()) > double(CLIPPER_MAX_COORD_UNSCALED) || std::abs(edge->vertex1()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) || std::abs(edge->vertex1()->y()) > double(CLIPPER_MAX_COORD_UNSCALED)) return false; // construct the line representing this edge of the Voronoi diagram const Line line( Point( edge->vertex0()->x(), edge->vertex0()->y() ), Point( edge->vertex1()->x(), edge->vertex1()->y() ) ); // discard edge if it lies outside the supplied shape // this could maybe be optimized (checking inclusion of the endpoints // might give false positives as they might belong to the contour itself) if (this->expolygon != NULL) { if (line.a == line.b) { // in this case, contains(line) returns a false positive if (!this->expolygon->contains(line.a)) return false; } else { if (!this->expolygon->contains(line)) return false; } } // retrieve the original line segments which generated the edge we're checking const VD::cell_type* cell_l = edge->cell(); const VD::cell_type* cell_r = edge->twin()->cell(); const Line &segment_l = this->retrieve_segment(cell_l); const Line &segment_r = this->retrieve_segment(cell_r); /* SVG svg("edge.svg"); svg.draw(*this->expolygon); svg.draw(line); svg.draw(segment_l, "red"); svg.draw(segment_r, "blue"); svg.Close(); */ /* Calculate thickness of the cross-section at both the endpoints of this edge. Our Voronoi edge is part of a CCW sequence going around its Voronoi cell located on the left side. (segment_l). This edge's twin goes around segment_r. Thus, segment_r is oriented in the same direction as our main edge, and segment_l is oriented in the same direction as our twin edge. We used to only consider the (half-)distances to segment_r, and that works whenever segment_l and segment_r are almost specular and facing. However, at curves they are staggered and they only face for a very little length (our very short edge represents such visibility). Both w0 and w1 can be calculated either towards cell_l or cell_r with equal results by Voronoi definition. When cell_l or cell_r don't refer to the segment but only to an endpoint, we calculate the distance to that endpoint instead. */ coordf_t w0 = cell_r->contains_segment() ? segment_r.distance_to(line.a)*2 : (this->retrieve_endpoint(cell_r) - line.a).cast().norm()*2; coordf_t w1 = cell_l->contains_segment() ? segment_l.distance_to(line.b)*2 : (this->retrieve_endpoint(cell_l) - line.b).cast().norm()*2; if (cell_l->contains_segment() && cell_r->contains_segment()) { // calculate the relative angle between the two boundary segments double angle = fabs(segment_r.orientation() - segment_l.orientation()); if (angle > PI) angle = 2*PI - angle; assert(angle >= 0 && angle <= PI); // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction) // we're interested only in segments close to the second case (facing segments) // so we allow some tolerance. // this filter ensures that we're dealing with a narrow/oriented area (longer than thick) // we don't run it on edges not generated by two segments (thus generated by one segment // and the endpoint of another segment), since their orientation would not be meaningful if (PI - angle > PI/8) { // angle is not narrow enough // only apply this filter to segments that are not too short otherwise their // angle could possibly be not meaningful if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width) return false; } } else { if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON) return false; } if (w0 < this->min_width && w1 < this->min_width) return false; if (w0 > this->max_width && w1 > this->max_width) return false; this->thickness[edge] = std::make_pair(w0, w1); this->thickness[edge->twin()] = std::make_pair(w1, w0); return true; } const Line& MedialAxis::retrieve_segment(const VD::cell_type* cell) const { return this->lines[cell->source_index()]; } const Point& MedialAxis::retrieve_endpoint(const VD::cell_type* cell) const { const Line& line = this->retrieve_segment(cell); if (cell->source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) { return line.a; } else { return line.b; } } void assemble_transform(Transform3d& transform, const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror) { transform = Transform3d::Identity(); transform.translate(translation); transform.rotate(Eigen::AngleAxisd(rotation(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rotation(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rotation(0), Vec3d::UnitX())); transform.scale(scale.cwiseProduct(mirror)); } Transform3d assemble_transform(const Vec3d& translation, const Vec3d& rotation, const Vec3d& scale, const Vec3d& mirror) { Transform3d transform; assemble_transform(transform, translation, rotation, scale, mirror); return transform; } Vec3d extract_euler_angles(const Eigen::Matrix& rotation_matrix) { // reference: http://www.gregslabaugh.net/publications/euler.pdf Vec3d angles1 = Vec3d::Zero(); Vec3d angles2 = Vec3d::Zero(); if (is_approx(std::abs(rotation_matrix(2, 0)), 1.0)) { angles1(2) = 0.0; if (rotation_matrix(2, 0) < 0.0) // == -1.0 { angles1(1) = 0.5 * (double)PI; angles1(0) = angles1(2) + ::atan2(rotation_matrix(0, 1), rotation_matrix(0, 2)); } else // == 1.0 { angles1(1) = - 0.5 * (double)PI; angles1(0) = - angles1(2) + ::atan2(- rotation_matrix(0, 1), - rotation_matrix(0, 2)); } angles2 = angles1; } else { angles1(1) = -::asin(rotation_matrix(2, 0)); double inv_cos1 = 1.0 / ::cos(angles1(1)); angles1(0) = ::atan2(rotation_matrix(2, 1) * inv_cos1, rotation_matrix(2, 2) * inv_cos1); angles1(2) = ::atan2(rotation_matrix(1, 0) * inv_cos1, rotation_matrix(0, 0) * inv_cos1); angles2(1) = (double)PI - angles1(1); double inv_cos2 = 1.0 / ::cos(angles2(1)); angles2(0) = ::atan2(rotation_matrix(2, 1) * inv_cos2, rotation_matrix(2, 2) * inv_cos2); angles2(2) = ::atan2(rotation_matrix(1, 0) * inv_cos2, rotation_matrix(0, 0) * inv_cos2); } // The following euristic is the best found up to now (in the sense that it works fine with the greatest number of edge use-cases) // but there are other use-cases were it does not // We need to improve it double min_1 = angles1.cwiseAbs().minCoeff(); double min_2 = angles2.cwiseAbs().minCoeff(); bool use_1 = (min_1 < min_2) || (is_approx(min_1, min_2) && (angles1.norm() <= angles2.norm())); return use_1 ? angles1 : angles2; } Vec3d extract_euler_angles(const Transform3d& transform) { // use only the non-translational part of the transform Eigen::Matrix m = transform.matrix().block(0, 0, 3, 3); // remove scale m.col(0).normalize(); m.col(1).normalize(); m.col(2).normalize(); return extract_euler_angles(m); } Transformation::Flags::Flags() : dont_translate(true) , dont_rotate(true) , dont_scale(true) , dont_mirror(true) { } bool Transformation::Flags::needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const { return (this->dont_translate != dont_translate) || (this->dont_rotate != dont_rotate) || (this->dont_scale != dont_scale) || (this->dont_mirror != dont_mirror); } void Transformation::Flags::set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) { this->dont_translate = dont_translate; this->dont_rotate = dont_rotate; this->dont_scale = dont_scale; this->dont_mirror = dont_mirror; } Transformation::Transformation() { reset(); } Transformation::Transformation(const Transform3d& transform) { set_from_transform(transform); } void Transformation::set_offset(const Vec3d& offset) { set_offset(X, offset(0)); set_offset(Y, offset(1)); set_offset(Z, offset(2)); } void Transformation::set_offset(Axis axis, double offset) { if (m_offset(axis) != offset) { m_offset(axis) = offset; m_dirty = true; } } void Transformation::set_rotation(const Vec3d& rotation) { set_rotation(X, rotation(0)); set_rotation(Y, rotation(1)); set_rotation(Z, rotation(2)); } void Transformation::set_rotation(Axis axis, double rotation) { rotation = angle_to_0_2PI(rotation); if (is_approx(std::abs(rotation), 2.0 * (double)PI)) rotation = 0.0; if (m_rotation(axis) != rotation) { m_rotation(axis) = rotation; m_dirty = true; } } void Transformation::set_scaling_factor(const Vec3d& scaling_factor) { set_scaling_factor(X, scaling_factor(0)); set_scaling_factor(Y, scaling_factor(1)); set_scaling_factor(Z, scaling_factor(2)); } void Transformation::set_scaling_factor(Axis axis, double scaling_factor) { if (m_scaling_factor(axis) != std::abs(scaling_factor)) { m_scaling_factor(axis) = std::abs(scaling_factor); m_dirty = true; } } void Transformation::set_mirror(const Vec3d& mirror) { set_mirror(X, mirror(0)); set_mirror(Y, mirror(1)); set_mirror(Z, mirror(2)); } void Transformation::set_mirror(Axis axis, double mirror) { double abs_mirror = std::abs(mirror); if (abs_mirror == 0.0) mirror = 1.0; else if (abs_mirror != 1.0) mirror /= abs_mirror; if (m_mirror(axis) != mirror) { m_mirror(axis) = mirror; m_dirty = true; } } void Transformation::set_from_transform(const Transform3d& transform) { // offset set_offset(transform.matrix().block(0, 3, 3, 1)); Eigen::Matrix m3x3 = transform.matrix().block(0, 0, 3, 3); // mirror // it is impossible to reconstruct the original mirroring factors from a matrix, // we can only detect if the matrix contains a left handed reference system // in which case we reorient it back to right handed by mirroring the x axis Vec3d mirror = Vec3d::Ones(); if (m3x3.col(0).dot(m3x3.col(1).cross(m3x3.col(2))) < 0.0) { mirror(0) = -1.0; // remove mirror m3x3.col(0) *= -1.0; } set_mirror(mirror); // scale set_scaling_factor(Vec3d(m3x3.col(0).norm(), m3x3.col(1).norm(), m3x3.col(2).norm())); // remove scale m3x3.col(0).normalize(); m3x3.col(1).normalize(); m3x3.col(2).normalize(); // rotation set_rotation(extract_euler_angles(m3x3)); // forces matrix recalculation matrix m_matrix = get_matrix(); // // debug check // if (!m_matrix.isApprox(transform)) // std::cout << "something went wrong in extracting data from matrix" << std::endl; } void Transformation::reset() { m_offset = Vec3d::Zero(); m_rotation = Vec3d::Zero(); m_scaling_factor = Vec3d::Ones(); m_mirror = Vec3d::Ones(); m_matrix = Transform3d::Identity(); m_dirty = false; } const Transform3d& Transformation::get_matrix(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const { if (m_dirty || m_flags.needs_update(dont_translate, dont_rotate, dont_scale, dont_mirror)) { m_matrix = Geometry::assemble_transform( dont_translate ? Vec3d::Zero() : m_offset, dont_rotate ? Vec3d::Zero() : m_rotation, dont_scale ? Vec3d::Ones() : m_scaling_factor, dont_mirror ? Vec3d::Ones() : m_mirror ); m_flags.set(dont_translate, dont_rotate, dont_scale, dont_mirror); m_dirty = false; } return m_matrix; } Transformation Transformation::operator * (const Transformation& other) const { return Transformation(get_matrix() * other.get_matrix()); } Transformation Transformation::volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox) { Transformation out; if (instance_transformation.is_scaling_uniform()) { // No need to run the non-linear least squares fitting for uniform scaling. // Just set the inverse. out.set_from_transform(instance_transformation.get_matrix(true).inverse()); } else if (is_rotation_ninety_degrees(instance_transformation.get_rotation())) { // Anisotropic scaling, rotation by multiples of ninety degrees. Eigen::Matrix3d instance_rotation_trafo = (Eigen::AngleAxisd(instance_transformation.get_rotation().z(), Vec3d::UnitZ()) * Eigen::AngleAxisd(instance_transformation.get_rotation().y(), Vec3d::UnitY()) * Eigen::AngleAxisd(instance_transformation.get_rotation().x(), Vec3d::UnitX())).toRotationMatrix(); Eigen::Matrix3d volume_rotation_trafo = (Eigen::AngleAxisd(-instance_transformation.get_rotation().x(), Vec3d::UnitX()) * Eigen::AngleAxisd(-instance_transformation.get_rotation().y(), Vec3d::UnitY()) * Eigen::AngleAxisd(-instance_transformation.get_rotation().z(), Vec3d::UnitZ())).toRotationMatrix(); // 8 corners of the bounding box. auto pts = Eigen::MatrixXd(8, 3); pts(0, 0) = bbox.min.x(); pts(0, 1) = bbox.min.y(); pts(0, 2) = bbox.min.z(); pts(1, 0) = bbox.min.x(); pts(1, 1) = bbox.min.y(); pts(1, 2) = bbox.max.z(); pts(2, 0) = bbox.min.x(); pts(2, 1) = bbox.max.y(); pts(2, 2) = bbox.min.z(); pts(3, 0) = bbox.min.x(); pts(3, 1) = bbox.max.y(); pts(3, 2) = bbox.max.z(); pts(4, 0) = bbox.max.x(); pts(4, 1) = bbox.min.y(); pts(4, 2) = bbox.min.z(); pts(5, 0) = bbox.max.x(); pts(5, 1) = bbox.min.y(); pts(5, 2) = bbox.max.z(); pts(6, 0) = bbox.max.x(); pts(6, 1) = bbox.max.y(); pts(6, 2) = bbox.min.z(); pts(7, 0) = bbox.max.x(); pts(7, 1) = bbox.max.y(); pts(7, 2) = bbox.max.z(); // Corners of the bounding box transformed into the modifier mesh coordinate space, with inverse rotation applied to the modifier. auto qs = pts * (instance_rotation_trafo * Eigen::Scaling(instance_transformation.get_scaling_factor().cwiseProduct(instance_transformation.get_mirror())) * volume_rotation_trafo).inverse().transpose(); // Fill in scaling based on least squares fitting of the bounding box corners. Vec3d scale; for (int i = 0; i < 3; ++i) scale(i) = pts.col(i).dot(qs.col(i)) / pts.col(i).dot(pts.col(i)); out.set_rotation(Geometry::extract_euler_angles(volume_rotation_trafo)); out.set_scaling_factor(Vec3d(std::abs(scale(0)), std::abs(scale(1)), std::abs(scale(2)))); out.set_mirror(Vec3d(scale(0) > 0 ? 1. : -1, scale(1) > 0 ? 1. : -1, scale(2) > 0 ? 1. : -1)); } else { // General anisotropic scaling, general rotation. // Keep the modifier mesh in the instance coordinate system, so the modifier mesh will not be aligned with the world. // Scale it to get the required size. out.set_scaling_factor(instance_transformation.get_scaling_factor().cwiseInverse()); } return out; } // For parsing a transformation matrix from 3MF / AMF. Transform3d transform3d_from_string(const std::string& transform_str) { Transform3d transform = Transform3d::Identity(); if (!transform_str.empty()) { std::vector mat_elements_str; boost::split(mat_elements_str, transform_str, boost::is_any_of(" "), boost::token_compress_on); unsigned int size = (unsigned int)mat_elements_str.size(); if (size == 16) { unsigned int i = 0; for (unsigned int r = 0; r < 4; ++r) { for (unsigned int c = 0; c < 4; ++c) { transform(r, c) = ::atof(mat_elements_str[i++].c_str()); } } } } return transform; } Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to) { return // From the current coordinate system to world. Eigen::AngleAxisd(rot_xyz_to(2), Vec3d::UnitZ()) * Eigen::AngleAxisd(rot_xyz_to(1), Vec3d::UnitY()) * Eigen::AngleAxisd(rot_xyz_to(0), Vec3d::UnitX()) * // From world to the initial coordinate system. Eigen::AngleAxisd(-rot_xyz_from(0), Vec3d::UnitX()) * Eigen::AngleAxisd(-rot_xyz_from(1), Vec3d::UnitY()) * Eigen::AngleAxisd(-rot_xyz_from(2), Vec3d::UnitZ()); } // This should only be called if it is known, that the two rotations only differ in rotation around the Z axis. double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to) { Eigen::AngleAxisd angle_axis(rotation_xyz_diff(rot_xyz_from, rot_xyz_to)); Vec3d axis = angle_axis.axis(); double angle = angle_axis.angle(); #ifndef NDEBUG if (std::abs(angle) > 1e-8) { assert(std::abs(axis.x()) < 1e-8); assert(std::abs(axis.y()) < 1e-8); } #endif /* NDEBUG */ return (axis.z() < 0) ? -angle : angle; } } }