#include #include #include // Debug #include #include #include "libslic3r/libslic3r.h" #include "libslic3r/Format/OBJ.hpp" #include "libslic3r/SLAPrint.hpp" #include "libslic3r/TriangleMesh.hpp" #include "libslic3r/SLA/SLAPad.hpp" #include "libslic3r/SLA/SLASupportTreeBuilder.hpp" #include "libslic3r/SLA/SLASupportTreeBuildsteps.hpp" #include "libslic3r/SLA/SLAAutoSupports.hpp" #include "libslic3r/SLA/SLARaster.hpp" #include "libslic3r/MTUtils.hpp" #include "libslic3r/SVG.hpp" #if defined(WIN32) || defined(_WIN32) #define PATH_SEPARATOR R"(\)" #else #define PATH_SEPARATOR R"(/)" #endif namespace { using namespace Slic3r; TriangleMesh load_model(const std::string &obj_filename) { TriangleMesh mesh; auto fpath = TEST_DATA_DIR PATH_SEPARATOR + obj_filename; load_obj(fpath.c_str(), &mesh); return mesh; } enum e_validity { ASSUME_NO_EMPTY = 1, ASSUME_MANIFOLD = 2, ASSUME_NO_REPAIR = 4 }; void check_validity(const TriangleMesh &input_mesh, int flags = ASSUME_NO_EMPTY | ASSUME_MANIFOLD | ASSUME_NO_REPAIR) { TriangleMesh mesh{input_mesh}; if (flags & ASSUME_NO_EMPTY) { ASSERT_FALSE(mesh.empty()); } else if (mesh.empty()) return; // If it can be empty and it is, there is nothing left to do. ASSERT_TRUE(stl_validate(&mesh.stl)); bool do_update_shared_vertices = false; mesh.repair(do_update_shared_vertices); if (flags & ASSUME_NO_REPAIR) { ASSERT_FALSE(mesh.needed_repair()); } if (flags & ASSUME_MANIFOLD) { mesh.require_shared_vertices(); if (!mesh.is_manifold()) mesh.WriteOBJFile("non_manifold.obj"); ASSERT_TRUE(mesh.is_manifold()); } } struct PadByproducts { ExPolygons model_contours; ExPolygons support_contours; TriangleMesh mesh; }; void test_pad(const std::string & obj_filename, const sla::PadConfig &padcfg, PadByproducts & out) { ASSERT_TRUE(padcfg.validate().empty()); TriangleMesh mesh = load_model(obj_filename); ASSERT_FALSE(mesh.empty()); // Create pad skeleton only from the model Slic3r::sla::pad_blueprint(mesh, out.model_contours); ASSERT_FALSE(out.model_contours.empty()); // Create the pad geometry for the model contours only Slic3r::sla::create_pad({}, out.model_contours, out.mesh, padcfg); check_validity(out.mesh); auto bb = out.mesh.bounding_box(); ASSERT_DOUBLE_EQ(bb.max.z() - bb.min.z(), padcfg.full_height()); } void test_pad(const std::string & obj_filename, const sla::PadConfig &padcfg = {}) { PadByproducts byproducts; test_pad(obj_filename, padcfg, byproducts); } struct SupportByproducts { std::vector slicegrid; std::vector model_slices; sla::SupportTreeBuilder supporttree; }; const constexpr float CLOSING_RADIUS = 0.005f; void check_support_tree_integrity(const sla::SupportTreeBuilder &stree, const sla::SupportConfig &cfg) { double gnd = stree.ground_level; double H1 = cfg.max_solo_pillar_height_mm; double H2 = cfg.max_dual_pillar_height_mm; for (const sla::Head &head : stree.heads()) { ASSERT_TRUE(!head.is_valid() || head.pillar_id != sla::ID_UNSET || head.bridge_id != sla::ID_UNSET); } for (const sla::Pillar &pillar : stree.pillars()) { if (std::abs(pillar.endpoint().z() - gnd) < EPSILON) { double h = pillar.height; if (h > H1) ASSERT_GE(pillar.links, 1); else if(h > H2) { ASSERT_GE(pillar.links, 2); } } ASSERT_LE(pillar.links, cfg.pillar_cascade_neighbors); ASSERT_LE(pillar.bridges, cfg.max_bridges_on_pillar); } double max_bridgelen = 0.; auto chck_bridge = [&cfg](const sla::Bridge &bridge, double &max_brlen) { Vec3d n = bridge.endp - bridge.startp; double d = sla::distance(n); max_brlen = std::max(d, max_brlen); double z = n.z(); double polar = std::acos(z / d); double slope = -polar + PI / 2.; ASSERT_GE(std::abs(slope), cfg.bridge_slope - EPSILON); }; for (auto &bridge : stree.bridges()) chck_bridge(bridge, max_bridgelen); ASSERT_LE(max_bridgelen, cfg.max_bridge_length_mm); max_bridgelen = 0; for (auto &bridge : stree.crossbridges()) chck_bridge(bridge, max_bridgelen); double md = cfg.max_pillar_link_distance_mm / std::cos(-cfg.bridge_slope); ASSERT_LE(max_bridgelen, md); } void test_supports(const std::string & obj_filename, const sla::SupportConfig &supportcfg, SupportByproducts & out) { using namespace Slic3r; TriangleMesh mesh = load_model(obj_filename); ASSERT_FALSE(mesh.empty()); TriangleMeshSlicer slicer{&mesh}; auto bb = mesh.bounding_box(); double zmin = bb.min.z(); double zmax = bb.max.z(); double gnd = zmin - supportcfg.object_elevation_mm; auto layer_h = 0.05f; out.slicegrid = grid(float(gnd), float(zmax), layer_h); slicer.slice(out.slicegrid , CLOSING_RADIUS, &out.model_slices, []{}); // Create the special index-triangle mesh with spatial indexing which // is the input of the support point and support mesh generators sla::EigenMesh3D emesh{mesh}; // Create the support point generator sla::SLAAutoSupports::Config autogencfg; autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm); sla::SLAAutoSupports point_gen{emesh, out.model_slices, out.slicegrid, autogencfg, [] {}, [](int) {}}; // Get the calculated support points. std::vector support_points = point_gen.output(); int validityflags = ASSUME_NO_REPAIR; // If there is no elevation, support points shall be removed from the // bottom of the object. if (supportcfg.object_elevation_mm < EPSILON) { sla::remove_bottom_points(support_points, zmin, supportcfg.base_height_mm); } else { // Should be support points at least on the bottom of the model ASSERT_FALSE(support_points.empty()); // Also the support mesh should not be empty. validityflags |= ASSUME_NO_EMPTY; } // Generate the actual support tree sla::SupportTreeBuilder treebuilder; treebuilder.build(sla::SupportableMesh{emesh, support_points, supportcfg}); check_support_tree_integrity(treebuilder, supportcfg); const TriangleMesh &output_mesh = treebuilder.retrieve_mesh(); check_validity(output_mesh, validityflags); // Quick check if the dimensions and placement of supports are correct auto obb = output_mesh.bounding_box(); ASSERT_DOUBLE_EQ(obb.min.z(), zmin - supportcfg.object_elevation_mm); ASSERT_LE(obb.max.z(), zmax); // Move out the support tree into the byproducts, we can examine it further // in various tests. out.supporttree = std::move(treebuilder); } void test_supports(const std::string & obj_filename, const sla::SupportConfig &supportcfg = {}) { SupportByproducts byproducts; test_supports(obj_filename, supportcfg, byproducts); } void test_support_model_collision( const std::string & obj_filename, const sla::SupportConfig &input_supportcfg = {}) { SupportByproducts byproducts; sla::SupportConfig supportcfg = input_supportcfg; // Set head penetration to a small negative value which should ensure that // the supports will not touch the model body. supportcfg.head_penetration_mm = -input_supportcfg.head_front_radius_mm; test_supports(obj_filename, supportcfg, byproducts); // Slice the support mesh given the slice grid of the model. std::vector support_slices = byproducts.supporttree.slice(byproducts.slicegrid, CLOSING_RADIUS); // The slices originate from the same slice grid so the numbers must match ASSERT_EQ(support_slices.size(), byproducts.model_slices.size()); bool notouch = true; for (size_t n = 0; notouch && n < support_slices.size(); ++n) { const ExPolygons &sup_slice = support_slices[n]; const ExPolygons &mod_slice = byproducts.model_slices[n]; Polygons intersections = intersection(sup_slice, mod_slice); notouch = notouch && intersections.empty(); } ASSERT_TRUE(notouch); } const char * const BELOW_PAD_TEST_OBJECTS[] = { "20mm_cube.obj", "V.obj", }; const char * const AROUND_PAD_TEST_OBJECTS[] = { "20mm_cube.obj", "V.obj", "frog_legs.obj", "cube_with_concave_hole_enlarged.obj", }; const char *const SUPPORT_TEST_MODELS[] = { "cube_with_concave_hole_enlarged_standing.obj" }; } // namespace // Test pair hash for 'nums' random number pairs. template void test_pairhash() { const constexpr size_t nums = 1000; I A[nums] = {0}, B[nums] = {0}; std::unordered_set CH; std::unordered_map> ints; std::random_device rd; std::mt19937 gen(rd()); const I Ibits = int(sizeof(I) * CHAR_BIT); const II IIbits = int(sizeof(II) * CHAR_BIT); const int bits = IIbits / 2 < Ibits ? Ibits / 2 : Ibits; const I Imax = I(std::pow(2., bits) - 1); std::uniform_int_distribution dis(0, Imax); for (size_t i = 0; i < nums;) { I a = dis(gen); if (CH.find(a) == CH.end()) { CH.insert(a); A[i] = a; ++i; } } for (size_t i = 0; i < nums;) { I b = dis(gen); if (CH.find(b) == CH.end()) { CH.insert(b); B[i] = b; ++i; } } for (size_t i = 0; i < nums; ++i) { I a = A[i], b = B[i]; ASSERT_TRUE(a != b); II hash_ab = sla::pairhash(a, b); II hash_ba = sla::pairhash(b, a); ASSERT_EQ(hash_ab, hash_ba); auto it = ints.find(hash_ab); if (it != ints.end()) { ASSERT_TRUE( (it->second.first == a && it->second.second == b) || (it->second.first == b && it->second.second == a)); } else ints[hash_ab] = std::make_pair(a, b); } } TEST(SLASupportGeneration, PillarPairHashShouldBeUnique) { test_pairhash(); test_pairhash(); test_pairhash(); } TEST(SLASupportGeneration, FlatPadGeometryIsValid) { sla::PadConfig padcfg; // Disable wings padcfg.wall_height_mm = .0; for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST(SLASupportGeneration, WingedPadGeometryIsValid) { sla::PadConfig padcfg; // Add some wings to the pad to test the cavity padcfg.wall_height_mm = 1.; for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST(SLASupportGeneration, FlatPadAroundObjectIsValid) { sla::PadConfig padcfg; // Add some wings to the pad to test the cavity padcfg.wall_height_mm = 0.; // padcfg.embed_object.stick_stride_mm = 0.; padcfg.embed_object.enabled = true; padcfg.embed_object.everywhere = true; for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST(SLASupportGeneration, WingedPadAroundObjectIsValid) { sla::PadConfig padcfg; // Add some wings to the pad to test the cavity padcfg.wall_height_mm = 1.; padcfg.embed_object.enabled = true; padcfg.embed_object.everywhere = true; for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST(SLASupportGeneration, ElevatedSupportGeometryIsValid) { sla::SupportConfig supportcfg; supportcfg.object_elevation_mm = 5.; for (auto fname : SUPPORT_TEST_MODELS) test_supports(fname); } TEST(SLASupportGeneration, FloorSupportGeometryIsValid) { sla::SupportConfig supportcfg; supportcfg.object_elevation_mm = 0; for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg); } TEST(SLASupportGeneration, SupportsDoNotPierceModel) { sla::SupportConfig supportcfg; for (auto fname : SUPPORT_TEST_MODELS) test_support_model_collision(fname, supportcfg); } TEST(SLARasterOutput, DefaultRasterShouldBeEmpty) { sla::Raster raster; ASSERT_TRUE(raster.empty()); } TEST(SLARasterOutput, InitializedRasterShouldBeNONEmpty) { // Default Prusa SL1 display parameters sla::Raster::Resolution res{2560, 1440}; sla::Raster::PixelDim pixdim{120. / res.width_px, 68. / res.height_px}; sla::Raster raster; raster.reset(res, pixdim); ASSERT_FALSE(raster.empty()); ASSERT_EQ(raster.resolution().width_px, res.width_px); ASSERT_EQ(raster.resolution().height_px, res.height_px); ASSERT_DOUBLE_EQ(raster.pixel_dimensions().w_mm, pixdim.w_mm); ASSERT_DOUBLE_EQ(raster.pixel_dimensions().h_mm, pixdim.h_mm); } using TPixel = uint8_t; static constexpr const TPixel FullWhite = 255; static constexpr const TPixel FullBlack = 0; template constexpr int arraysize(const A (&)[N]) { return N; } static void check_raster_transformations(sla::Raster::Orientation o, sla::Raster::TMirroring mirroring) { double disp_w = 120., disp_h = 68.; sla::Raster::Resolution res{2560, 1440}; sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px}; auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)}); sla::Raster::Trafo trafo{o, mirroring}; trafo.origin_x = bb.center().x(); trafo.origin_y = bb.center().y(); sla::Raster raster{res, pixdim, trafo}; // create box of size 32x32 pixels (not 1x1 to avoid antialiasing errors) coord_t pw = 32 * coord_t(std::ceil(scaled(pixdim.w_mm))); coord_t ph = 32 * coord_t(std::ceil(scaled(pixdim.h_mm))); ExPolygon box; box.contour.points = {{-pw, -ph}, {pw, -ph}, {pw, ph}, {-pw, ph}}; double tr_x = scaled(20.), tr_y = tr_x; box.translate(tr_x, tr_y); ExPolygon expected_box = box; // Now calculate the position of the translated box according to output // trafo. if (o == sla::Raster::Orientation::roPortrait) expected_box.rotate(PI / 2.); if (mirroring[X]) for (auto &p : expected_box.contour.points) p.x() = -p.x(); if (mirroring[Y]) for (auto &p : expected_box.contour.points) p.y() = -p.y(); raster.draw(box); Point expected_coords = expected_box.contour.bounding_box().center(); double rx = unscaled(expected_coords.x() + bb.center().x()) / pixdim.w_mm; double ry = unscaled(expected_coords.y() + bb.center().y()) / pixdim.h_mm; auto w = size_t(std::floor(rx)); auto h = res.height_px - size_t(std::floor(ry)); ASSERT_TRUE(w < res.width_px && h < res.height_px); auto px = raster.read_pixel(w, h); if (px != FullWhite) { sla::PNGImage img; std::fstream outf("out.png", std::ios::out); outf << img.serialize(raster); } ASSERT_EQ(px, FullWhite); } TEST(SLARasterOutput, MirroringShouldBeCorrect) { sla::Raster::TMirroring mirrorings[] = {sla::Raster::NoMirror, sla::Raster::MirrorX, sla::Raster::MirrorY, sla::Raster::MirrorXY}; sla::Raster::Orientation orientations[] = {sla::Raster::roLandscape, sla::Raster::roPortrait}; for (auto orientation : orientations) for (auto &mirror : mirrorings) check_raster_transformations(orientation, mirror); } static ExPolygon square_with_hole(double v) { ExPolygon poly; coord_t V = scaled(v / 2.); poly.contour.points = {{-V, -V}, {V, -V}, {V, V}, {-V, V}}; poly.holes.emplace_back(); V = V / 2; poly.holes.front().points = {{-V, V}, {V, V}, {V, -V}, {-V, -V}}; return poly; } static double pixel_area(TPixel px, const sla::Raster::PixelDim &pxdim) { return (pxdim.h_mm * pxdim.w_mm) * px * 1. / (FullWhite - FullBlack); } static double raster_white_area(const sla::Raster &raster) { if (raster.empty()) return std::nan(""); auto res = raster.resolution(); double a = 0; for (size_t x = 0; x < res.width_px; ++x) for (size_t y = 0; y < res.height_px; ++y) { auto px = raster.read_pixel(x, y); a += pixel_area(px, raster.pixel_dimensions()); } return a; } static double predict_error(const ExPolygon &p, const sla::Raster::PixelDim &pd) { auto lines = p.lines(); double pix_err = pixel_area(FullWhite, pd) / 2.; // Worst case is when a line is parallel to the shorter axis of one pixel, // when the line will be composed of the max number of pixels double pix_l = std::min(pd.h_mm, pd.w_mm); double error = 0.; for (auto &l : lines) error += (unscaled(l.length()) / pix_l) * pix_err; return error; } TEST(SLARasterOutput, RasterizedPolygonAreaShouldMatch) { double disp_w = 120., disp_h = 68.; sla::Raster::Resolution res{2560, 1440}; sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px}; sla::Raster raster{res, pixdim}; auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)}); ExPolygon poly = square_with_hole(10.); poly.translate(bb.center().x(), bb.center().y()); raster.draw(poly); double a = poly.area() / (scaled(1.) * scaled(1.)); double ra = raster_white_area(raster); double diff = std::abs(a - ra); ASSERT_LE(diff, predict_error(poly, pixdim)); raster.clear(); poly = square_with_hole(60.); poly.translate(bb.center().x(), bb.center().y()); raster.draw(poly); a = poly.area() / (scaled(1.) * scaled(1.)); ra = raster_white_area(raster); diff = std::abs(a - ra); ASSERT_LE(diff, predict_error(poly, pixdim)); } int main(int argc, char **argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }