#include "MultiPoint.hpp" #include "BoundingBox.hpp" namespace Slic3r { MultiPoint::operator Points() const { return this->points; } void MultiPoint::scale(double factor) { for (Points::iterator it = points.begin(); it != points.end(); ++it) { (*it).scale(factor); } } void MultiPoint::translate(double x, double y) { for (Points::iterator it = points.begin(); it != points.end(); ++it) { (*it).translate(x, y); } } void MultiPoint::translate(const Point &vector) { this->translate(vector.x, vector.y); } void MultiPoint::rotate(double angle) { double s = sin(angle); double c = cos(angle); for (Points::iterator it = points.begin(); it != points.end(); ++it) { double cur_x = (double)it->x; double cur_y = (double)it->y; it->x = (coord_t)round(c * cur_x - s * cur_y); it->y = (coord_t)round(c * cur_y + s * cur_x); } } void MultiPoint::rotate(double angle, const Point ¢er) { double s = sin(angle); double c = cos(angle); for (Points::iterator it = points.begin(); it != points.end(); ++it) { double dx = double(it->x - center.x); double dy = double(it->y - center.y); it->x = (coord_t)round(double(center.x) + c * dx - s * dy); it->y = (coord_t)round(double(center.y) + c * dy + s * dx); } } void MultiPoint::reverse() { std::reverse(this->points.begin(), this->points.end()); } Point MultiPoint::first_point() const { return this->points.front(); } double MultiPoint::length() const { Lines lines = this->lines(); double len = 0; for (Lines::iterator it = lines.begin(); it != lines.end(); ++it) { len += it->length(); } return len; } int MultiPoint::find_point(const Point &point) const { for (Points::const_iterator it = this->points.begin(); it != this->points.end(); ++it) { if (it->coincides_with(point)) return it - this->points.begin(); } return -1; // not found } bool MultiPoint::has_boundary_point(const Point &point) const { double dist = point.distance_to(point.projection_onto(*this)); return dist < SCALED_EPSILON; } BoundingBox MultiPoint::bounding_box() const { return BoundingBox(this->points); } bool MultiPoint::has_duplicate_points() const { for (size_t i = 1; i < points.size(); ++i) if (points[i-1].coincides_with(points[i])) return true; return false; } bool MultiPoint::remove_duplicate_points() { size_t j = 0; for (size_t i = 1; i < points.size(); ++i) { if (points[j].coincides_with(points[i])) { // Just increase index i. } else { ++ j; if (j < i) points[j] = points[i]; } } if (++ j < points.size()) { points.erase(points.begin() + j, points.end()); return true; } return false; } bool MultiPoint::intersection(const Line& line, Point* intersection) const { Lines lines = this->lines(); for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) { if (it->intersection(line, intersection)) return true; } return false; } bool MultiPoint::first_intersection(const Line& line, Point* intersection) const { bool found = false; double dmin = 0.; for (const Line &l : this->lines()) { Point ip; if (l.intersection(line, &ip)) { if (! found) { found = true; dmin = ip.distance_to(line.a); *intersection = ip; } else { double d = ip.distance_to(line.a); if (d < dmin) { dmin = d; *intersection = ip; } } } } return found; } std::string MultiPoint::dump_perl() const { std::ostringstream ret; ret << "["; for (Points::const_iterator p = this->points.begin(); p != this->points.end(); ++p) { ret << p->dump_perl(); if (p != this->points.end()-1) ret << ","; } ret << "]"; return ret.str(); } //FIXME This is very inefficient in term of memory use. // The recursive algorithm shall run in place, not allocating temporary data in each recursion. Points MultiPoint::_douglas_peucker(const Points &points, const double tolerance) { assert(points.size() >= 2); Points results; double dmax = 0; size_t index = 0; Line full(points.front(), points.back()); for (Points::const_iterator it = points.begin() + 1; it != points.end(); ++it) { // we use shortest distance, not perpendicular distance double d = it->distance_to(full); if (d > dmax) { index = it - points.begin(); dmax = d; } } if (dmax >= tolerance) { Points dp0; dp0.reserve(index + 1); dp0.insert(dp0.end(), points.begin(), points.begin() + index + 1); // Recursive call. Points dp1 = MultiPoint::_douglas_peucker(dp0, tolerance); results.reserve(results.size() + dp1.size() - 1); results.insert(results.end(), dp1.begin(), dp1.end() - 1); dp0.clear(); dp0.reserve(points.size() - index); dp0.insert(dp0.end(), points.begin() + index, points.end()); // Recursive call. dp1 = MultiPoint::_douglas_peucker(dp0, tolerance); results.reserve(results.size() + dp1.size()); results.insert(results.end(), dp1.begin(), dp1.end()); } else { results.push_back(points.front()); results.push_back(points.back()); } return results; } BoundingBox get_extents(const MultiPoint &mp) { return BoundingBox(mp.points); } BoundingBox get_extents_rotated(const Points &points, double angle) { BoundingBox bbox; if (! points.empty()) { double s = sin(angle); double c = cos(angle); Points::const_iterator it = points.begin(); double cur_x = (double)it->x; double cur_y = (double)it->y; bbox.min.x = bbox.max.x = (coord_t)round(c * cur_x - s * cur_y); bbox.min.y = bbox.max.y = (coord_t)round(c * cur_y + s * cur_x); for (++it; it != points.end(); ++it) { double cur_x = (double)it->x; double cur_y = (double)it->y; coord_t x = (coord_t)round(c * cur_x - s * cur_y); coord_t y = (coord_t)round(c * cur_y + s * cur_x); bbox.min.x = std::min(x, bbox.min.x); bbox.min.y = std::min(y, bbox.min.y); bbox.max.x = std::max(x, bbox.max.x); bbox.max.y = std::max(y, bbox.max.y); } bbox.defined = true; } return bbox; } BoundingBox get_extents_rotated(const MultiPoint &mp, double angle) { return get_extents_rotated(mp.points, angle); } }