#include "BoundingBox.hpp" #include "MotionPlanner.hpp" #include // for numeric_limits #include "boost/polygon/voronoi.hpp" using boost::polygon::voronoi_builder; using boost::polygon::voronoi_diagram; namespace Slic3r { MotionPlanner::MotionPlanner(const ExPolygons &islands) : islands(islands), initialized(false) {} MotionPlanner::~MotionPlanner() { for (std::vector::iterator graph = this->graphs.begin(); graph != this->graphs.end(); ++graph) delete *graph; } size_t MotionPlanner::islands_count() const { return this->islands.size(); } void MotionPlanner::initialize() { if (this->initialized) return; if (this->islands.empty()) return; // prevent initialization of empty BoundingBox ExPolygons expp; for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) { island->simplify(SCALED_EPSILON, expp); } this->islands = expp; // loop through islands in order to create inner expolygons and collect their contours this->inner.reserve(this->islands.size()); Polygons outer_holes; for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) { this->inner.push_back(ExPolygonCollection()); offset_ex(*island, this->inner.back(), -MP_INNER_MARGIN); outer_holes.push_back(island->contour); } // grow island contours in order to prepare holes of the outer environment // This is actually wrong because it might merge contours that are close, // thus confusing the island check in shortest_path() below //offset(outer_holes, outer_holes, +MP_OUTER_MARGIN); // generate outer contour as bounding box of everything Points points; for (Polygons::const_iterator contour = outer_holes.begin(); contour != outer_holes.end(); ++contour) points.insert(points.end(), contour->points.begin(), contour->points.end()); BoundingBox bb(points); // grow outer contour Polygons contour; offset(bb.polygon(), contour, +MP_OUTER_MARGIN); assert(contour.size() == 1); // make expolygon for outer environment ExPolygons outer; diff(contour, outer_holes, outer); assert(outer.size() == 1); this->outer = outer.front(); this->graphs.resize(this->islands.size() + 1, NULL); this->initialized = true; } void MotionPlanner::shortest_path(const Point &from, const Point &to, Polyline* polyline) { if (!this->initialized) this->initialize(); if (this->islands.empty()) { polyline->points.push_back(from); polyline->points.push_back(to); return; } // Are both points in the same island? int island_idx = -1; for (ExPolygons::const_iterator island = this->islands.begin(); island != this->islands.end(); ++island) { if (island->contains_point(from) && island->contains_point(to)) { // since both points are in the same island, is a direct move possible? // if so, we avoid generating the visibility environment if (island->contains_line(Line(from, to))) { polyline->points.push_back(from); polyline->points.push_back(to); return; } island_idx = island - this->islands.begin(); break; } } // Now check whether points are inside the environment. Point inner_from = from; Point inner_to = to; bool from_is_inside, to_is_inside; if (island_idx == -1) { if (!(from_is_inside = this->outer.contains_point(from))) { // Find the closest inner point to start from. from.nearest_point(this->outer, &inner_from); } if (!(to_is_inside = this->outer.contains_point(to))) { // Find the closest inner point to start from. to.nearest_point(this->outer, &inner_to); } } else { if (!(from_is_inside = this->inner[island_idx].contains_point(from))) { // Find the closest inner point to start from. from.nearest_point(this->inner[island_idx], &inner_from); } if (!(to_is_inside = this->inner[island_idx].contains_point(to))) { // Find the closest inner point to start from. to.nearest_point(this->inner[island_idx], &inner_to); } } // perform actual path search MotionPlannerGraph* graph = this->init_graph(island_idx); graph->shortest_path(graph->find_node(inner_from), graph->find_node(inner_to), polyline); polyline->points.insert(polyline->points.begin(), from); polyline->points.push_back(to); } MotionPlannerGraph* MotionPlanner::init_graph(int island_idx) { if (this->graphs[island_idx + 1] == NULL) { Polygons pp; if (island_idx == -1) { pp = this->outer; } else { pp = this->inner[island_idx]; } MotionPlannerGraph* graph = this->graphs[island_idx + 1] = new MotionPlannerGraph(); // add polygon boundaries as edges size_t node_idx = 0; Lines lines; for (Polygons::const_iterator polygon = pp.begin(); polygon != pp.end(); ++polygon) { graph->nodes.push_back(polygon->points.back()); node_idx++; for (Points::const_iterator p = polygon->points.begin(); p != polygon->points.end(); ++p) { graph->nodes.push_back(*p); double dist = graph->nodes[node_idx-1].distance_to(*p); graph->add_edge(node_idx-1, node_idx, dist); graph->add_edge(node_idx, node_idx-1, dist); node_idx++; } polygon->lines(&lines); } // add Voronoi edges as internal edges { typedef voronoi_diagram VD; typedef std::map t_vd_vertices; VD vd; t_vd_vertices vd_vertices; boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd); for (VD::const_edge_iterator edge = vd.edges().begin(); edge != vd.edges().end(); ++edge) { if (edge->is_infinite()) continue; const VD::vertex_type* v0 = edge->vertex0(); const VD::vertex_type* v1 = edge->vertex1(); Point p0 = Point(v0->x(), v0->y()); Point p1 = Point(v1->x(), v1->y()); // contains_point() should probably be faster than contains_line(), // and should it fail on any boundary points it's not a big problem if (island_idx == -1) { if (!this->outer.contains_point(p0) || !this->outer.contains_point(p1)) continue; } else { if (!this->inner[island_idx].contains_point(p0) || !this->inner[island_idx].contains_point(p1)) continue; } t_vd_vertices::const_iterator i_v0 = vd_vertices.find(v0); size_t v0_idx; if (i_v0 == vd_vertices.end()) { graph->nodes.push_back(p0); v0_idx = node_idx; vd_vertices[v0] = node_idx; node_idx++; } else { v0_idx = i_v0->second; } t_vd_vertices::const_iterator i_v1 = vd_vertices.find(v1); size_t v1_idx; if (i_v1 == vd_vertices.end()) { graph->nodes.push_back(p1); v1_idx = node_idx; vd_vertices[v1] = node_idx; node_idx++; } else { v1_idx = i_v1->second; } double dist = graph->nodes[v0_idx].distance_to(graph->nodes[v1_idx]); graph->add_edge(v0_idx, v1_idx, dist); } } return graph; } return this->graphs[island_idx + 1]; } void MotionPlannerGraph::add_edge(size_t from, size_t to, double weight) { // extend adjacency list until this start node if (this->adjacency_list.size() < from+1) this->adjacency_list.resize(from+1); this->adjacency_list[from].push_back(neighbor(to, weight)); } size_t MotionPlannerGraph::find_node(const Point &point) const { /* for (Points::const_iterator p = this->nodes.begin(); p != this->nodes.end(); ++p) { if (p->coincides_with(point)) return p - this->nodes.begin(); } */ return point.nearest_point_index(this->nodes); } void MotionPlannerGraph::shortest_path(size_t from, size_t to, Polyline* polyline) { // this prevents a crash in case for some reason we got here with an empty adjacency list if (this->adjacency_list.empty()) return; const weight_t max_weight = std::numeric_limits::infinity(); std::vector min_distance; std::vector previous; { int n = this->adjacency_list.size(); min_distance.clear(); min_distance.resize(n, max_weight); min_distance[from] = 0; previous.clear(); previous.resize(n, -1); std::set > vertex_queue; vertex_queue.insert(std::make_pair(min_distance[from], from)); while (!vertex_queue.empty()) { weight_t dist = vertex_queue.begin()->first; node_t u = vertex_queue.begin()->second; vertex_queue.erase(vertex_queue.begin()); // Visit each edge exiting u const std::vector &neighbors = this->adjacency_list[u]; for (std::vector::const_iterator neighbor_iter = neighbors.begin(); neighbor_iter != neighbors.end(); neighbor_iter++) { node_t v = neighbor_iter->target; weight_t weight = neighbor_iter->weight; weight_t distance_through_u = dist + weight; if (distance_through_u < min_distance[v]) { vertex_queue.erase(std::make_pair(min_distance[v], v)); min_distance[v] = distance_through_u; previous[v] = u; vertex_queue.insert(std::make_pair(min_distance[v], v)); } } } } for (node_t vertex = to; vertex != -1; vertex = previous[vertex]) polyline->points.push_back(this->nodes[vertex]); polyline->reverse(); } #ifdef SLIC3RXS REGISTER_CLASS(MotionPlanner, "MotionPlanner"); #endif }