#include <unordered_set>
#include <unordered_map>
#include <random>

#include "sla_test_utils.hpp"

namespace {

const char *const BELOW_PAD_TEST_OBJECTS[] = {
    "20mm_cube.obj",
    "V.obj",
};

const char *const AROUND_PAD_TEST_OBJECTS[] = {
    "20mm_cube.obj",
    "V.obj",
    "frog_legs.obj",
    "cube_with_concave_hole_enlarged.obj",
};

const char *const SUPPORT_TEST_MODELS[] = {
    "cube_with_concave_hole_enlarged_standing.obj",
    "A_upsidedown.obj",
    "extruder_idler.obj"
};

} // namespace

TEST_CASE("Pillar pairhash should be unique", "[SLASupportGeneration]") {
    test_pairhash<int, int>();
    test_pairhash<int, long>();
    test_pairhash<unsigned, unsigned>();
    test_pairhash<unsigned, unsigned long>();
}

TEST_CASE("Support point generator should be deterministic if seeded", 
          "[SLASupportGeneration], [SLAPointGen]") {
    TriangleMesh mesh = load_model("A_upsidedown.obj");
    
    sla::EigenMesh3D emesh{mesh};
    
    sla::SupportConfig supportcfg;
    sla::SupportPointGenerator::Config autogencfg;
    autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm);
    sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}};
    
    TriangleMeshSlicer slicer{&mesh};
    
    auto   bb      = mesh.bounding_box();
    double zmin    = bb.min.z();
    double zmax    = bb.max.z();
    double gnd     = zmin - supportcfg.object_elevation_mm;
    auto   layer_h = 0.05f;
    
    auto slicegrid = grid(float(gnd), float(zmax), layer_h);
    std::vector<ExPolygons> slices;
    slicer.slice(slicegrid, SlicingMode::Regular, CLOSING_RADIUS, &slices, []{});
    
    point_gen.seed(0);
    point_gen.execute(slices, slicegrid);
    
    auto get_chksum = [](const std::vector<sla::SupportPoint> &pts){
        long long chksum = 0;
        for (auto &pt : pts) {
            auto p = scaled(pt.pos);
            chksum += p.x() + p.y() + p.z();
        }
        
        return chksum;
    };
    
    long long checksum = get_chksum(point_gen.output());
    size_t ptnum = point_gen.output().size();
    REQUIRE(point_gen.output().size() > 0);
    
    for (int i = 0; i < 20; ++i) {
        point_gen.output().clear();
        point_gen.seed(0);
        point_gen.execute(slices, slicegrid);
        REQUIRE(point_gen.output().size() == ptnum);
        REQUIRE(checksum == get_chksum(point_gen.output()));
    }
}

TEST_CASE("Flat pad geometry is valid", "[SLASupportGeneration]") {
    sla::PadConfig padcfg;
    
    // Disable wings
    padcfg.wall_height_mm = .0;
    
    for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}

TEST_CASE("WingedPadGeometryIsValid", "[SLASupportGeneration]") {
    sla::PadConfig padcfg;
    
    // Add some wings to the pad to test the cavity
    padcfg.wall_height_mm = 1.;
    
    for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}

TEST_CASE("FlatPadAroundObjectIsValid", "[SLASupportGeneration]") {
    sla::PadConfig padcfg;
    
    // Add some wings to the pad to test the cavity
    padcfg.wall_height_mm = 0.;
    // padcfg.embed_object.stick_stride_mm = 0.;
    padcfg.embed_object.enabled = true;
    padcfg.embed_object.everywhere = true;
    
    for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}

TEST_CASE("WingedPadAroundObjectIsValid", "[SLASupportGeneration]") {
    sla::PadConfig padcfg;
    
    // Add some wings to the pad to test the cavity
    padcfg.wall_height_mm = 1.;
    padcfg.embed_object.enabled = true;
    padcfg.embed_object.everywhere = true;
    
    for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg);
}

TEST_CASE("ElevatedSupportGeometryIsValid", "[SLASupportGeneration]") {
    sla::SupportConfig supportcfg;
    supportcfg.object_elevation_mm = 5.;
    
    for (auto fname : SUPPORT_TEST_MODELS) test_supports(fname);
}

TEST_CASE("FloorSupportGeometryIsValid", "[SLASupportGeneration]") {
    sla::SupportConfig supportcfg;
    supportcfg.object_elevation_mm = 0;
    
    for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg);
}

TEST_CASE("ElevatedSupportsDoNotPierceModel", "[SLASupportGeneration]") {
    
    sla::SupportConfig supportcfg;
    
    for (auto fname : SUPPORT_TEST_MODELS)
        test_support_model_collision(fname, supportcfg);
}

TEST_CASE("FloorSupportsDoNotPierceModel", "[SLASupportGeneration]") {
    
    sla::SupportConfig supportcfg;
    supportcfg.object_elevation_mm = 0;
    
    for (auto fname : SUPPORT_TEST_MODELS)
        test_support_model_collision(fname, supportcfg);
}

TEST_CASE("InitializedRasterShouldBeNONEmpty", "[SLARasterOutput]") {
    // Default Prusa SL1 display parameters
    sla::RasterBase::Resolution res{2560, 1440};
    sla::RasterBase::PixelDim   pixdim{120. / res.width_px, 68. / res.height_px};
    
    sla::RasterGrayscaleAAGammaPower raster(res, pixdim, {}, 1.);
    REQUIRE(raster.resolution().width_px == res.width_px);
    REQUIRE(raster.resolution().height_px == res.height_px);
    REQUIRE(raster.pixel_dimensions().w_mm == Approx(pixdim.w_mm));
    REQUIRE(raster.pixel_dimensions().h_mm == Approx(pixdim.h_mm));
}

TEST_CASE("MirroringShouldBeCorrect", "[SLARasterOutput]") {
    sla::RasterBase::TMirroring mirrorings[] = {sla::RasterBase::NoMirror,
                                                sla::RasterBase::MirrorX,
                                                sla::RasterBase::MirrorY,
                                                sla::RasterBase::MirrorXY};

    sla::RasterBase::Orientation orientations[] =
        {sla::RasterBase::roLandscape, sla::RasterBase::roPortrait};
    
    for (auto orientation : orientations)
        for (auto &mirror : mirrorings)
            check_raster_transformations(orientation, mirror);
}


TEST_CASE("RasterizedPolygonAreaShouldMatch", "[SLARasterOutput]") {
    double disp_w = 120., disp_h = 68.;
    sla::RasterBase::Resolution res{2560, 1440};
    sla::RasterBase::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px};
    
    double gamma = 1.;
    sla::RasterGrayscaleAAGammaPower raster(res, pixdim, {}, gamma);
    auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)});
    
    ExPolygon poly = square_with_hole(10.);
    poly.translate(bb.center().x(), bb.center().y());
    raster.draw(poly);
    
    double a = poly.area() / (scaled<double>(1.) * scaled(1.));
    double ra = raster_white_area(raster);
    double diff = std::abs(a - ra);
    
    REQUIRE(diff <= predict_error(poly, pixdim));
    
    raster.clear();
    poly = square_with_hole(60.);
    poly.translate(bb.center().x(), bb.center().y());
    raster.draw(poly);
    
    a = poly.area() / (scaled<double>(1.) * scaled(1.));
    ra = raster_white_area(raster);
    diff = std::abs(a - ra);
    
    REQUIRE(diff <= predict_error(poly, pixdim));
    
    sla::RasterGrayscaleAA raster0(res, pixdim, {}, [](double) { return 0.; });
    REQUIRE(raster_pxsum(raster0) == 0);
    
    raster0.draw(poly);
    ra = raster_white_area(raster);
    REQUIRE(raster_pxsum(raster0) == 0);
}

TEST_CASE("Triangle mesh conversions should be correct", "[SLAConversions]")
{
    sla::Contour3D cntr;
    
    {
        std::fstream infile{"extruder_idler_quads.obj", std::ios::in};
        cntr.from_obj(infile);
    }
}