#ifndef slic3r_Print_hpp_ #define slic3r_Print_hpp_ #include "libslic3r.h" #include #include #include #include "BoundingBox.hpp" #include "Flow.hpp" #include "PrintConfig.hpp" #include "Point.hpp" #include "Layer.hpp" #include "Model.hpp" #include "PlaceholderParser.hpp" #include "Slicing.hpp" #include "GCode/ToolOrdering.hpp" #include "GCode/WipeTower.hpp" #include "tbb/atomic.h" namespace Slic3r { class Print; class PrintObject; class ModelObject; // Print step IDs for keeping track of the print state. enum PrintStep { psSkirt, psBrim, psWipeTower, psCount, }; enum PrintObjectStep { posSlice, posPerimeters, posPrepareInfill, posInfill, posSupportMaterial, posCount, }; // To be instantiated over PrintStep or PrintObjectStep enums. template class PrintState { public: PrintState() { memset(state, 0, sizeof(state)); } enum State { INVALID, STARTED, DONE, }; State state[COUNT]; bool is_started(StepType step) const { return this->state[step] == STARTED; } bool is_done(StepType step) const { return this->state[step] == DONE; } void set_started(StepType step) { this->state[step] = STARTED; } void set_done(StepType step) { this->state[step] = DONE; } bool invalidate(StepType step) { bool invalidated = this->state[step] != INVALID; this->state[step] = INVALID; return invalidated; } bool invalidate_all() { bool invalidated = false; for (size_t i = 0; i < COUNT; ++ i) if (this->state[i] != INVALID) { invalidated = true; break; } memset(state, 0, sizeof(state)); return invalidated; } }; // A PrintRegion object represents a group of volumes to print // sharing the same config (including the same assigned extruder(s)) class PrintRegion { friend class Print; public: PrintRegionConfig config; Print* print() { return this->_print; } Flow flow(FlowRole role, double layer_height, bool bridge, bool first_layer, double width, const PrintObject &object) const; coordf_t nozzle_dmr_avg(const PrintConfig &print_config) const; private: Print* _print; PrintRegion(Print* print) : _print(print) {} ~PrintRegion() {} }; typedef std::vector LayerPtrs; typedef std::vector SupportLayerPtrs; class BoundingBoxf3; // TODO: for temporary constructor parameter class PrintObject { friend class Print; public: // vector of (vectors of volume ids), indexed by region_id std::vector> region_volumes; PrintObjectConfig config; t_layer_height_ranges layer_height_ranges; // Profile of increasing z to a layer height, to be linearly interpolated when calculating the layers. // The pairs of are packed into a 1D array to simplify handling by the Perl XS. // layer_height_profile must not be set by the background thread. std::vector layer_height_profile; // There is a layer_height_profile at both PrintObject and ModelObject. The layer_height_profile at the ModelObject // is used for interactive editing and for loading / storing into a project file (AMF file as of today). // This flag indicates that the layer_height_profile at the UI has been updated, therefore the backend needs to get it. // This flag is necessary as we cannot safely clear the layer_height_profile if the background calculation is running. bool layer_height_profile_valid; // this is set to true when LayerRegion->slices is split in top/internal/bottom // so that next call to make_perimeters() performs a union() before computing loops bool typed_slices; Point3 size; // XYZ in scaled coordinates // scaled coordinates to add to copies (to compensate for the alignment // operated when creating the object but still preserving a coherent API // for external callers) Point _copies_shift; // Slic3r::Point objects in scaled G-code coordinates in our coordinates Points _shifted_copies; LayerPtrs layers; SupportLayerPtrs support_layers; PrintState state; Print* print() { return this->_print; } const Print* print() const { return this->_print; } ModelObject* model_object() { return this->_model_object; } const ModelObject* model_object() const { return this->_model_object; } const Points& copies() const { return this->_copies; } bool add_copy(const Pointf &point); bool delete_last_copy(); bool delete_all_copies() { return this->set_copies(Points()); } bool set_copies(const Points &points); bool reload_model_instances(); // since the object is aligned to origin, bounding box coincides with size BoundingBox bounding_box() const { return BoundingBox(Point(0,0), this->size); } // adds region_id, too, if necessary void add_region_volume(unsigned int region_id, int volume_id) { if (region_id >= region_volumes.size()) region_volumes.resize(region_id + 1); region_volumes[region_id].push_back(volume_id); } // This is the *total* layer count (including support layers) // this value is not supposed to be compared with Layer::id // since they have different semantics. size_t total_layer_count() const { return this->layer_count() + this->support_layer_count(); } size_t layer_count() const { return this->layers.size(); } void clear_layers(); Layer* get_layer(int idx) { return this->layers.at(idx); } const Layer* get_layer(int idx) const { return this->layers.at(idx); } // print_z: top of the layer; slice_z: center of the layer. Layer* add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z); size_t support_layer_count() const { return this->support_layers.size(); } void clear_support_layers(); SupportLayer* get_support_layer(int idx) { return this->support_layers.at(idx); } SupportLayer* add_support_layer(int id, coordf_t height, coordf_t print_z); void delete_support_layer(int idx); // methods for handling state bool invalidate_state_by_config_options(const std::vector &opt_keys); bool invalidate_step(PrintObjectStep step); bool invalidate_all_steps() { return this->state.invalidate_all(); } // To be used over the layer_height_profile of both the PrintObject and ModelObject // to initialize the height profile with the height ranges. bool update_layer_height_profile(std::vector &layer_height_profile) const; // Process layer_height_ranges, the raft layers and first layer thickness into layer_height_profile. // The layer_height_profile may be later modified interactively by the user to refine layers at sloping surfaces. bool update_layer_height_profile(); void reset_layer_height_profile(); // Collect the slicing parameters, to be used by variable layer thickness algorithm, // by the interactive layer height editor and by the printing process itself. // The slicing parameters are dependent on various configuration values // (layer height, first layer height, raft settings, print nozzle diameter etc). SlicingParameters slicing_parameters() const; void _slice(); std::string _fix_slicing_errors(); void _simplify_slices(double distance); void _prepare_infill(); bool has_support_material() const; void detect_surfaces_type(); void process_external_surfaces(); void discover_vertical_shells(); void bridge_over_infill(); void _make_perimeters(); void _infill(); void clip_fill_surfaces(); void discover_horizontal_shells(); void combine_infill(); void _generate_support_material(); private: Print* _print; ModelObject* _model_object; Points _copies; // Slic3r::Point objects in scaled G-code coordinates // TODO: call model_object->get_bounding_box() instead of accepting // parameter PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox); ~PrintObject() {} std::vector _slice_region(size_t region_id, const std::vector &z, bool modifier); }; typedef std::vector PrintObjectPtrs; typedef std::vector PrintRegionPtrs; // The complete print tray with possibly multiple objects. class Print { public: PrintConfig config; PrintObjectConfig default_object_config; PrintRegionConfig default_region_config; PrintObjectPtrs objects; PrintRegionPtrs regions; PlaceholderParser placeholder_parser; // TODO: status_cb std::string estimated_print_time; double total_used_filament, total_extruded_volume, total_cost, total_weight; std::map filament_stats; PrintState state; // ordered collections of extrusion paths to build skirt loops and brim ExtrusionEntityCollection skirt, brim; Print() : total_used_filament(0), total_extruded_volume(0) { restart(); } ~Print() { clear_objects(); } // methods for handling objects void clear_objects(); PrintObject* get_object(size_t idx) { return objects.at(idx); } const PrintObject* get_object(size_t idx) const { return objects.at(idx); } void delete_object(size_t idx); void reload_object(size_t idx); bool reload_model_instances(); // methods for handling regions PrintRegion* get_region(size_t idx) { return regions.at(idx); } const PrintRegion* get_region(size_t idx) const { return regions.at(idx); } PrintRegion* add_region(); // methods for handling state bool invalidate_step(PrintStep step); bool invalidate_all_steps() { return this->state.invalidate_all(); } bool step_done(PrintObjectStep step) const; void add_model_object(ModelObject* model_object, int idx = -1); bool apply_config(DynamicPrintConfig config); bool has_infinite_skirt() const; bool has_skirt() const; // Returns an empty string if valid, otherwise returns an error message. std::string validate() const; BoundingBox bounding_box() const; BoundingBox total_bounding_box() const; double skirt_first_layer_height() const; Flow brim_flow() const; Flow skirt_flow() const; std::vector object_extruders() const; std::vector support_material_extruders() const; std::vector extruders() const; void _simplify_slices(double distance); double max_allowed_layer_height() const; bool has_support_material() const; void auto_assign_extruders(ModelObject* model_object) const; void _make_skirt(); void _make_brim(); // Wipe tower support. bool has_wipe_tower() const; void _clear_wipe_tower(); void _make_wipe_tower(); // Tool ordering of a non-sequential print has to be known to calculate the wipe tower. // Cache it here, so it does not need to be recalculated during the G-code generation. ToolOrdering m_tool_ordering; // Cache of tool changes per print layer. std::unique_ptr m_wipe_tower_priming; std::vector> m_wipe_tower_tool_changes; std::unique_ptr m_wipe_tower_final_purge; std::string output_filename(); std::string output_filepath(const std::string &path); // Calls a registered callback to update the status. void set_status(int percent, const std::string &message); // Cancel the running computation. Stop execution of all the background threads. void cancel() { m_canceled = true; } // Cancel the running computation. Stop execution of all the background threads. void restart() { m_canceled = false; } // Has the calculation been canceled? bool canceled() { return m_canceled; } private: bool invalidate_state_by_config_options(const std::vector &opt_keys); PrintRegionConfig _region_config_from_model_volume(const ModelVolume &volume); // This function goes through all infill entities, decides which ones will be used for wiping and // marks them by the extruder id. Returns volume that remains to be wiped on the wipe tower: float mark_wiping_extrusions(const ToolOrdering::LayerTools& layer_tools, unsigned int new_extruder, float volume_to_wipe); // A function to go through all entities and unsets their extruder_override flag void reset_wiping_extrusions(); // Has the calculation been canceled? tbb::atomic m_canceled; }; #define FOREACH_BASE(type, container, iterator) for (type::const_iterator iterator = (container).begin(); iterator != (container).end(); ++iterator) #define FOREACH_REGION(print, region) FOREACH_BASE(PrintRegionPtrs, (print)->regions, region) #define FOREACH_OBJECT(print, object) FOREACH_BASE(PrintObjectPtrs, (print)->objects, object) #define FOREACH_LAYER(object, layer) FOREACH_BASE(LayerPtrs, (object)->layers, layer) #define FOREACH_LAYERREGION(layer, layerm) FOREACH_BASE(LayerRegionPtrs, (layer)->regions, layerm) } #endif