package Slic3r::ExtrusionPath; use Moo; extends 'Slic3r::Polyline'; # this integer represents the vertical thickness of the extrusion # expressed in layers has 'depth_layers' => (is => 'ro', default => sub {1}); # perimeter/fill/solid-fill/bridge/skirt has 'role' => (is => 'ro', required => 1); use Slic3r::Geometry qw(PI X Y epsilon deg2rad rotate_points); use XXX; sub clip_end { my $self = shift; my ($distance) = @_; while ($distance > 0) { my $last_point = pop @{$self->points}; last if !@{$self->points}; my $last_segment_length = $last_point->distance_to($self->points->[-1]); if ($last_segment_length <= $distance) { $distance -= $last_segment_length; next; } my $new_point = Slic3r::Geometry::point_along_segment($last_point, $self->points->[-1], $distance); push @{$self->points}, Slic3r::Point->new($new_point); $distance = 0; } } sub endpoints { my $self = shift; return ($self->points->[0], $self->points->[-1]); } sub reverse { my $self = shift; @{$self->points} = reverse @{$self->points}; } sub split_at_acute_angles { my $self = shift; # calculate angle limit my $angle_limit = abs(Slic3r::Geometry::deg2rad(40)); my @points = @{$self->p}; my @paths = (); # take first two points my @p = splice @points, 0, 2; # loop until we have one spare point while (my $p3 = shift @points) { my $angle = abs(Slic3r::Geometry::angle3points($p[-1], $p[-2], $p3)); $angle = 2*PI - $angle if $angle > PI; if ($angle < $angle_limit) { # if the angle between $p[-2], $p[-1], $p3 is too acute # then consider $p3 only as a starting point of a new # path and stop the current one as it is push @paths, (ref $self)->cast( [@p], role => $self->role, depth_layers => $self->depth_layers, ); @p = ($p3); push @p, grep $_, shift @points or last; } else { push @p, $p3; } } push @paths, (ref $self)->cast( [@p], role => $self->role, depth_layers => $self->depth_layers, ) if @p > 1; return @paths; } sub detect_arcs { my $self = shift; my ($max_angle, $len_epsilon) = @_; $max_angle = deg2rad($max_angle || 15); $len_epsilon ||= 10 / $Slic3r::resolution; my @points = @{$self->points}; my @paths = (); # we require at least 3 consecutive segments to form an arc CYCLE: while (@points >= 4) { for (my $i = 0; $i <= $#points - 3; $i++) { my $s1 = Slic3r::Line->new($points[$i], $points[$i+1]); my $s2 = Slic3r::Line->new($points[$i+1], $points[$i+2]); my $s3 = Slic3r::Line->new($points[$i+2], $points[$i+3]); my $s1_len = $s1->length; my $s2_len = $s2->length; my $s3_len = $s3->length; # segments must have the same length if (abs($s3_len - $s2_len) > $len_epsilon) { # optimization: skip a cycle $i++; next; } next if abs($s2_len - $s1_len) > $len_epsilon; # segments must have the same relative angle my $s1_angle = $s1->atan; my $s2_angle = $s2->atan; my $s3_angle = $s3->atan; $s1_angle += 2*PI if $s1_angle < 0; $s2_angle += 2*PI if $s2_angle < 0; $s3_angle += 2*PI if $s3_angle < 0; my $s1s2_angle = $s2_angle - $s1_angle; my $s2s3_angle = $s3_angle - $s2_angle; next if abs($s1s2_angle - $s2s3_angle) > $Slic3r::Geometry::parallel_degrees_limit; next if abs($s1s2_angle) < $Slic3r::Geometry::parallel_degrees_limit; # ignore parallel lines next if $s1s2_angle > $max_angle; # ignore too sharp vertices my @arc_points = ($points[$i], $points[$i+3]), # first and last points # now look for more points my $last_line_angle = $s3_angle; my $last_j = $i+3; for (my $j = $i+3; $j < $#points; $j++) { my $line = Slic3r::Line->new($points[$j], $points[$j+1]); last if abs($line->length - $s1_len) > $len_epsilon; my $line_angle = $line->atan; $line_angle += 2*PI if $line_angle < 0; my $anglediff = $line_angle - $last_line_angle; last if abs($s1s2_angle - $anglediff) > $Slic3r::Geometry::parallel_degrees_limit; # point $j+1 belongs to the arc $arc_points[-1] = $points[$j+1]; $last_j = $j+1; $last_line_angle = $line_angle; } # s1, s2, s3 form an arc my $orientation = $s1->point_on_left($points[$i+2]) ? 'ccw' : 'cw'; # to find the center, we intersect the perpendicular lines # passing by midpoints of $s1 and last segment # a better method would be to draw all the perpendicular lines # and find the centroid of the enclosed polygon, or to # intersect multiple lines and find the centroid of the convex hull # around the intersections my $arc_center; { my $s1_mid = $s1->midpoint; my $last_mid = Slic3r::Line->new($points[$last_j-1], $points[$last_j])->midpoint; my $rotation_angle = PI/2 * ($orientation eq 'ccw' ? -1 : 1); my $ray1 = Slic3r::Line->new($s1_mid, rotate_points($rotation_angle, $s1_mid, $points[$i+1])); my $last_ray = Slic3r::Line->new($last_mid, rotate_points($rotation_angle, $last_mid, $points[$last_j])); $arc_center = $ray1->intersection($last_ray, 0); } my $arc = Slic3r::ExtrusionPath::Arc->new( points => [@arc_points], role => $self->role, orientation => $orientation, center => $arc_center, radius => $arc_center->distance_to($points[$i]), ); # points 0..$i form a linear path push @paths, (ref $self)->new( points => [ @points[0..$i] ], role => $self->role, depth_layers => $self->depth_layers, ) if $i > 0; # add our arc push @paths, $arc; Slic3r::debugf "ARC DETECTED\n"; # remove arc points from path, leaving one splice @points, 0, $last_j, (); next CYCLE; } last; } # remaining points form a linear path push @paths, (ref $self)->new( points => [@points], role => $self->role, depth_layers => $self->depth_layers, ) if @points > 1; return @paths; } 1;