#include "Flow.hpp" #include "Print.hpp" #include #include namespace Slic3r { // This static method returns a sane extrusion width default. static inline float auto_extrusion_width(FlowRole role, float nozzle_diameter, float height) { #if 1 // Here we calculate a sane default by matching the flow speed (at the nozzle) and the feed rate. // shape: rectangle with semicircles at the ends // This "sane" extrusion width gives the following results for a 0.4mm dmr nozzle: // Layer Calculated Calculated width // heigh extrusion over nozzle // width diameter // 0.40 0.40 1.00 // 0.35 0.43 1.09 // 0.30 0.48 1.21 // 0.25 0.56 1.39 // 0.20 0.67 1.68 // 0.15 0.87 2.17 // 0.10 1.28 3.20 // 0.05 2.52 6.31 // float width = 0.25 * (nozzle_diameter * nozzle_diameter) * PI / height + height * (1.0 - 0.25 * PI); switch (role) { case frExternalPerimeter: case frSupportMaterial: case frSupportMaterialInterface: return nozzle_diameter; case frPerimeter: case frSolidInfill: case frTopSolidInfill: // do not limit width for sparse infill so that we use full native flow for it return std::min(std::max(width, nozzle_diameter * 1.05f), nozzle_diameter * 1.7f); case frInfill: default: return std::max(width, nozzle_diameter * 1.05f); } #else // 1.125f * nozzle_diameter; switch (role) { case frSupportMaterial: case frSupportMaterialInterface: case frTopSolidInfill: return nozzle_diameter; default: case frExternalPerimeter: 1.125f * nozzle_diameter; case frPerimeter: case frSolidInfill: // do not limit width for sparse infill so that we use full native flow for it return std::min(std::max(width, nozzle_diameter * 1.05), nozzle_diameter * 1.7); case frInfill: return std::max(width, nozzle_diameter * 1.05); } #endif } // This constructor builds a Flow object from an extrusion width config setting // and other context properties. Flow Flow::new_from_config_width(FlowRole role, const ConfigOptionFloatOrPercent &width, float nozzle_diameter, float height, float bridge_flow_ratio) { // we need layer height unless it's a bridge if (height <= 0 && bridge_flow_ratio == 0) CONFESS("Invalid flow height supplied to new_from_config_width()"); float w; if (bridge_flow_ratio > 0) { // If bridge flow was requested, calculate the bridge width. height = w = (bridge_flow_ratio == 1.) ? // optimization to avoid sqrt() nozzle_diameter : sqrt(bridge_flow_ratio) * nozzle_diameter; } else if (! width.percent && width.value == 0.) { // If user left option to 0, calculate a sane default width. w = auto_extrusion_width(role, nozzle_diameter, height); } else { // If user set a manual value, use it. w = width.get_abs_value(height); } return Flow(w, height, nozzle_diameter, bridge_flow_ratio > 0); } // This constructor builds a Flow object from a given centerline spacing. Flow Flow::new_from_spacing(float spacing, float nozzle_diameter, float height, bool bridge) { // we need layer height unless it's a bridge if (height <= 0 && !bridge) CONFESS("Invalid flow height supplied to new_from_spacing()"); // Calculate width from spacing. // For normal extrusons, extrusion width is wider than the spacing due to the rounding and squishing of the extrusions. // For bridge extrusions, the extrusions are placed with a tiny BRIDGE_EXTRA_SPACING gaps between the threads. float width = bridge ? (spacing - BRIDGE_EXTRA_SPACING) : #ifdef HAS_PERIMETER_LINE_OVERLAP (spacing + PERIMETER_LINE_OVERLAP_FACTOR * height * (1. - 0.25 * PI)); #else (spacing + height * (1. - 0.25 * PI)); #endif return Flow(width, bridge ? width : height, nozzle_diameter, bridge); } // This method returns the centerline spacing between two adjacent extrusions // having the same extrusion width (and other properties). float Flow::spacing() const { #ifdef HAS_PERIMETER_LINE_OVERLAP if (this->bridge) return this->width + BRIDGE_EXTRA_SPACING; // rectangle with semicircles at the ends float min_flow_spacing = this->width - this->height * (1. - 0.25 * PI); return this->width - PERIMETER_LINE_OVERLAP_FACTOR * (this->width - min_flow_spacing); #else return this->bridge ? (this->width + BRIDGE_EXTRA_SPACING) : (this->width - this->height * (1. - 0.25 * PI)); #endif } // This method returns the centerline spacing between an extrusion using this // flow and another one using another flow. // this->spacing(other) shall return the same value as other.spacing(*this) float Flow::spacing(const Flow &other) const { assert(this->height == other.height); assert(this->bridge == other.bridge); return this->bridge ? 0.5f * this->width + 0.5f * other.width + BRIDGE_EXTRA_SPACING : 0.5f * this->spacing() + 0.5f * other.spacing(); } // This method returns extrusion volume per head move unit. double Flow::mm3_per_mm() const { return this->bridge ? (this->width * this->width) * 0.25 * PI : this->width * this->height + 0.25 * (this->height * this->height) / (PI - 4.0); } Flow support_material_flow(const PrintObject *object, float layer_height) { return Flow::new_from_config_width( frSupportMaterial, // The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution. (object->config.support_material_extrusion_width.value > 0) ? object->config.support_material_extrusion_width : object->config.extrusion_width, // if object->config.support_material_extruder == 0 (which means to not trigger tool change, but use the current extruder instead), get_at will return the 0th component. float(object->print()->config.nozzle_diameter.get_at(object->config.support_material_extruder-1)), (layer_height > 0.f) ? layer_height : float(object->config.layer_height.value), false); } Flow support_material_1st_layer_flow(const PrintObject *object, float layer_height) { return Flow::new_from_config_width( frSupportMaterial, // The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution. (object->print()->config.first_layer_extrusion_width.value > 0) ? object->print()->config.first_layer_extrusion_width : object->config.support_material_extrusion_width, float(object->print()->config.nozzle_diameter.get_at(object->config.support_material_extruder-1)), (layer_height > 0.f) ? layer_height : object->config.first_layer_height.get_abs_value(object->config.layer_height.value), false); } Flow support_material_interface_flow(const PrintObject *object, float layer_height) { return Flow::new_from_config_width( frSupportMaterialInterface, // The width parameter accepted by new_from_config_width is of type ConfigOptionFloatOrPercent, the Flow class takes care of the percent to value substitution. (object->config.support_material_extrusion_width > 0) ? object->config.support_material_extrusion_width : object->config.extrusion_width, // if object->config.support_material_interface_extruder == 0 (which means to not trigger tool change, but use the current extruder instead), get_at will return the 0th component. float(object->print()->config.nozzle_diameter.get_at(object->config.support_material_interface_extruder-1)), (layer_height > 0.f) ? layer_height : float(object->config.layer_height.value), false); } }