#include "BoundingBox.hpp" #include "ClipperUtils.hpp" #include "Polygon.hpp" #include "Polyline.hpp" namespace Slic3r { Lines Polygon::lines() const { return to_lines(*this); } Polyline Polygon::split_at_vertex(const Point &point) const { // find index of point for (const Point &pt : this->points) if (pt == point) return this->split_at_index(int(&pt - &this->points.front())); throw std::invalid_argument("Point not found"); return Polyline(); } // Split a closed polygon into an open polyline, with the split point duplicated at both ends. Polyline Polygon::split_at_index(int index) const { Polyline polyline; polyline.points.reserve(this->points.size() + 1); for (Points::const_iterator it = this->points.begin() + index; it != this->points.end(); ++it) polyline.points.push_back(*it); for (Points::const_iterator it = this->points.begin(); it != this->points.begin() + index + 1; ++it) polyline.points.push_back(*it); return polyline; } /* int64_t Polygon::area2x() const { size_t n = poly.size(); if (n < 3) return 0; int64_t a = 0; for (size_t i = 0, j = n - 1; i < n; ++i) a += int64_t(poly[j](0) + poly[i](0)) * int64_t(poly[j](1) - poly[i](1)); j = i; } return -a * 0.5; } */ double Polygon::area() const { size_t n = points.size(); if (n < 3) return 0.; double a = 0.; for (size_t i = 0, j = n - 1; i < n; ++i) { a += ((double)points[j](0) + (double)points[i](0)) * ((double)points[i](1) - (double)points[j](1)); j = i; } return 0.5 * a; } bool Polygon::is_counter_clockwise() const { return ClipperLib::Orientation(Slic3rMultiPoint_to_ClipperPath(*this)); } bool Polygon::is_clockwise() const { return !this->is_counter_clockwise(); } bool Polygon::make_counter_clockwise() { if (!this->is_counter_clockwise()) { this->reverse(); return true; } return false; } bool Polygon::make_clockwise() { if (this->is_counter_clockwise()) { this->reverse(); return true; } return false; } // Does an unoriented polygon contain a point? // Tested by counting intersections along a horizontal line. bool Polygon::contains(const Point &point) const { // http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html bool result = false; Points::const_iterator i = this->points.begin(); Points::const_iterator j = this->points.end() - 1; for (; i != this->points.end(); j = i++) { //FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point(1) well. // Does the ray with y == point(1) intersect this line segment? #if 1 if ( (((*i)(1) > point(1)) != ((*j)(1) > point(1))) && ((double)point(0) < (double)((*j)(0) - (*i)(0)) * (double)(point(1) - (*i)(1)) / (double)((*j)(1) - (*i)(1)) + (double)(*i)(0)) ) result = !result; #else if (((*i)(1) > point(1)) != ((*j)(1) > point(1))) { // Orientation predicated relative to i-th point. double orient = (double)(point(0) - (*i)(0)) * (double)((*j)(1) - (*i)(1)) - (double)(point(1) - (*i)(1)) * (double)((*j)(0) - (*i)(0)); if (((*i)(1) > (*j)(1)) ? (orient > 0.) : (orient < 0.)) result = !result; } #endif } return result; } // this only works on CCW polygons as CW will be ripped out by Clipper's simplify_polygons() Polygons Polygon::simplify(double tolerance) const { // repeat first point at the end in order to apply Douglas-Peucker // on the whole polygon Points points = this->points; points.push_back(points.front()); Polygon p(MultiPoint::_douglas_peucker(points, tolerance)); p.points.pop_back(); Polygons pp; pp.push_back(p); return simplify_polygons(pp); } void Polygon::simplify(double tolerance, Polygons &polygons) const { Polygons pp = this->simplify(tolerance); polygons.reserve(polygons.size() + pp.size()); polygons.insert(polygons.end(), pp.begin(), pp.end()); } // Only call this on convex polygons or it will return invalid results void Polygon::triangulate_convex(Polygons* polygons) const { for (Points::const_iterator it = this->points.begin() + 2; it != this->points.end(); ++it) { Polygon p; p.points.reserve(3); p.points.push_back(this->points.front()); p.points.push_back(*(it-1)); p.points.push_back(*it); // this should be replaced with a more efficient call to a merge_collinear_segments() method if (p.area() > 0) polygons->push_back(p); } } // center of mass Point Polygon::centroid() const { double area_temp = this->area(); double x_temp = 0; double y_temp = 0; Polyline polyline = this->split_at_first_point(); for (Points::const_iterator point = polyline.points.begin(); point != polyline.points.end() - 1; ++point) { x_temp += (double)( point->x() + (point+1)->x() ) * ( (double)point->x()*(point+1)->y() - (double)(point+1)->x()*point->y() ); y_temp += (double)( point->y() + (point+1)->y() ) * ( (double)point->x()*(point+1)->y() - (double)(point+1)->x()*point->y() ); } return Point(x_temp/(6*area_temp), y_temp/(6*area_temp)); } // find all concave vertices (i.e. having an internal angle greater than the supplied angle) // (external = right side, thus we consider ccw orientation) Points Polygon::concave_points(double angle) const { Points points; angle = 2. * PI - angle + EPSILON; // check whether first point forms a concave angle if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) <= angle) points.push_back(this->points.front()); // check whether points 1..(n-1) form concave angles for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++ p) if (p->ccw_angle(*(p-1), *(p+1)) <= angle) points.push_back(*p); // check whether last point forms a concave angle if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) <= angle) points.push_back(this->points.back()); return points; } // find all convex vertices (i.e. having an internal angle smaller than the supplied angle) // (external = right side, thus we consider ccw orientation) Points Polygon::convex_points(double angle) const { Points points; angle = 2*PI - angle - EPSILON; // check whether first point forms a convex angle if (this->points.front().ccw_angle(this->points.back(), *(this->points.begin()+1)) >= angle) points.push_back(this->points.front()); // check whether points 1..(n-1) form convex angles for (Points::const_iterator p = this->points.begin()+1; p != this->points.end()-1; ++p) { if (p->ccw_angle(*(p-1), *(p+1)) >= angle) points.push_back(*p); } // check whether last point forms a convex angle if (this->points.back().ccw_angle(*(this->points.end()-2), this->points.front()) >= angle) points.push_back(this->points.back()); return points; } // Projection of a point onto the polygon. Point Polygon::point_projection(const Point &point) const { Point proj = point; double dmin = std::numeric_limits::max(); if (! this->points.empty()) { for (size_t i = 0; i < this->points.size(); ++ i) { const Point &pt0 = this->points[i]; const Point &pt1 = this->points[(i + 1 == this->points.size()) ? 0 : i + 1]; double d = (point - pt0).cast().norm(); if (d < dmin) { dmin = d; proj = pt0; } d = (point - pt1).cast().norm(); if (d < dmin) { dmin = d; proj = pt1; } Vec2d v1(coordf_t(pt1(0) - pt0(0)), coordf_t(pt1(1) - pt0(1))); coordf_t div = v1.squaredNorm(); if (div > 0.) { Vec2d v2(coordf_t(point(0) - pt0(0)), coordf_t(point(1) - pt0(1))); coordf_t t = v1.dot(v2) / div; if (t > 0. && t < 1.) { Point foot(coord_t(floor(coordf_t(pt0(0)) + t * v1(0) + 0.5)), coord_t(floor(coordf_t(pt0(1)) + t * v1(1) + 0.5))); d = (point - foot).cast().norm(); if (d < dmin) { dmin = d; proj = foot; } } } } } return proj; } BoundingBox get_extents(const Points &points) { return BoundingBox(points); } BoundingBox get_extents(const Polygon &poly) { return poly.bounding_box(); } BoundingBox get_extents(const Polygons &polygons) { BoundingBox bb; if (! polygons.empty()) { bb = get_extents(polygons.front()); for (size_t i = 1; i < polygons.size(); ++ i) bb.merge(get_extents(polygons[i])); } return bb; } BoundingBox get_extents_rotated(const Polygon &poly, double angle) { return get_extents_rotated(poly.points, angle); } BoundingBox get_extents_rotated(const Polygons &polygons, double angle) { BoundingBox bb; if (! polygons.empty()) { bb = get_extents_rotated(polygons.front().points, angle); for (size_t i = 1; i < polygons.size(); ++ i) bb.merge(get_extents_rotated(polygons[i].points, angle)); } return bb; } extern std::vector get_extents_vector(const Polygons &polygons) { std::vector out; out.reserve(polygons.size()); for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++ it) out.push_back(get_extents(*it)); return out; } static inline bool is_stick(const Point &p1, const Point &p2, const Point &p3) { Point v1 = p2 - p1; Point v2 = p3 - p2; int64_t dir = int64_t(v1(0)) * int64_t(v2(0)) + int64_t(v1(1)) * int64_t(v2(1)); if (dir > 0) // p3 does not turn back to p1. Do not remove p2. return false; double l2_1 = double(v1(0)) * double(v1(0)) + double(v1(1)) * double(v1(1)); double l2_2 = double(v2(0)) * double(v2(0)) + double(v2(1)) * double(v2(1)); if (dir == 0) // p1, p2, p3 may make a perpendicular corner, or there is a zero edge length. // Remove p2 if it is coincident with p1 or p2. return l2_1 == 0 || l2_2 == 0; // p3 turns back to p1 after p2. Are p1, p2, p3 collinear? // Calculate distance from p3 to a segment (p1, p2) or from p1 to a segment(p2, p3), // whichever segment is longer double cross = double(v1(0)) * double(v2(1)) - double(v2(0)) * double(v1(1)); double dist2 = cross * cross / std::max(l2_1, l2_2); return dist2 < EPSILON * EPSILON; } bool remove_sticks(Polygon &poly) { bool modified = false; size_t j = 1; for (size_t i = 1; i + 1 < poly.points.size(); ++ i) { if (! is_stick(poly[j-1], poly[i], poly[i+1])) { // Keep the point. if (j < i) poly.points[j] = poly.points[i]; ++ j; } } if (++ j < poly.points.size()) { poly.points[j-1] = poly.points.back(); poly.points.erase(poly.points.begin() + j, poly.points.end()); modified = true; } while (poly.points.size() >= 3 && is_stick(poly.points[poly.points.size()-2], poly.points.back(), poly.points.front())) { poly.points.pop_back(); modified = true; } while (poly.points.size() >= 3 && is_stick(poly.points.back(), poly.points.front(), poly.points[1])) poly.points.erase(poly.points.begin()); return modified; } bool remove_sticks(Polygons &polys) { bool modified = false; size_t j = 0; for (size_t i = 0; i < polys.size(); ++ i) { modified |= remove_sticks(polys[i]); if (polys[i].points.size() >= 3) { if (j < i) std::swap(polys[i].points, polys[j].points); ++ j; } } if (j < polys.size()) polys.erase(polys.begin() + j, polys.end()); return modified; } bool remove_degenerate(Polygons &polys) { bool modified = false; size_t j = 0; for (size_t i = 0; i < polys.size(); ++ i) { if (polys[i].points.size() >= 3) { if (j < i) std::swap(polys[i].points, polys[j].points); ++ j; } else modified = true; } if (j < polys.size()) polys.erase(polys.begin() + j, polys.end()); return modified; } bool remove_small(Polygons &polys, double min_area) { bool modified = false; size_t j = 0; for (size_t i = 0; i < polys.size(); ++ i) { if (std::abs(polys[i].area()) >= min_area) { if (j < i) std::swap(polys[i].points, polys[j].points); ++ j; } else modified = true; } if (j < polys.size()) polys.erase(polys.begin() + j, polys.end()); return modified; } void remove_collinear(Polygon &poly) { if (poly.points.size() > 2) { // copy points and append both 1 and last point in place to cover the boundaries Points pp; pp.reserve(poly.points.size()+2); pp.push_back(poly.points.back()); pp.insert(pp.begin()+1, poly.points.begin(), poly.points.end()); pp.push_back(poly.points.front()); // delete old points vector. Will be re-filled in the loop poly.points.clear(); size_t i = 0; size_t k = 0; while (i < pp.size()-2) { k = i+1; const Point &p1 = pp[i]; while (k < pp.size()-1) { const Point &p2 = pp[k]; const Point &p3 = pp[k+1]; Line l(p1, p3); if(l.distance_to(p2) < SCALED_EPSILON) { k++; } else { if(i > 0) poly.points.push_back(p1); // implicitly removes the first point we appended above i = k; break; } } if(k > pp.size()-2) break; // all remaining points are collinear and can be skipped } poly.points.push_back(pp[i]); } } void remove_collinear(Polygons &polys) { for (Polygon &poly : polys) remove_collinear(poly); } }