package Slic3r::Layer; use Moo; use Math::Clipper ':all'; use Math::ConvexHull qw(convex_hull); use XXX; use constant PI => 4 * atan2(1, 1); # a sequential number of layer, starting at 0 has 'id' => ( is => 'ro', #isa => 'Int', required => 1, ); # collection of spare segments generated by slicing the original geometry; # these need to be merged in continuos (closed) polylines has 'lines' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Line]', default => sub { [] }, ); # collection of surfaces generated by slicing the original geometry has 'surfaces' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Surface]', default => sub { [] }, ); # collection of surfaces representing bridges has 'bridges' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Surface::Bridge]', default => sub { [] }, ); # collection of surfaces to make perimeters for has 'perimeter_surfaces' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Surface]', default => sub { [] }, ); # ordered collection of extrusion paths to build all perimeters has 'perimeters' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionLoop]', default => sub { [] }, ); # ordered collection of extrusion paths to build skirt loops has 'skirts' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionLoop]', default => sub { [] }, ); # collection of surfaces generated by offsetting the innermost perimeter(s) # they represent boundaries of areas to fill has 'fill_surfaces' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Surface::Collection]', default => sub { [] }, ); # ordered collection of extrusion paths to fill surfaces has 'fills' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionPath]', default => sub { [] }, ); sub z { my $self = shift; return $self->id * $Slic3r::layer_height / $Slic3r::resolution; } sub add_surface { my $self = shift; my (@vertices) = @_; # convert arrayref points to Point objects @vertices = map Slic3r::Point->cast($_), @vertices; my $surface = Slic3r::Surface->new( contour => Slic3r::Polyline::Closed->new(points => \@vertices), ); push @{ $self->surfaces }, $surface; # make sure our contour has its points in counter-clockwise order $surface->contour->make_counter_clockwise; return $surface; } sub add_line { my $self = shift; my ($line) = @_; $line = Slic3r::Line->cast($line); push @{ $self->lines }, $line; return $line; } sub remove_line { my $self = shift; my ($line) = @_; @{ $self->lines } = grep $_ ne $line, @{ $self->lines }; } sub remove_surface { my $self = shift; my ($surface) = @_; @{ $self->surfaces } = grep $_ ne $surface, @{ $self->surfaces }; } # build polylines of lines which do not already belong to a surface # okay, this code is a mess. will need some refactoring. sorry. sub make_polylines { my $self = shift; # remove line duplicates if (0) { # this removes any couple of coinciding Slic3r::Line::FacetEdge my %lines_map = (); foreach my $line (grep $_->isa('Slic3r::Line::FacetEdge'), @{ $self->lines }) { my $ordered_id = $line->ordered_id; if (exists $lines_map{$ordered_id}) { delete $lines_map{$ordered_id}; next; } $lines_map{$ordered_id} = $line; } @{ $self->lines } = (values(%lines_map), grep !$_->isa('Slic3r::Line::FacetEdge'), @{ $self->lines }); } if (1) { # this removes any duplicate, leaving one my %lines_map = map { join(',', sort map $_->id, @{$_->points} ) => "$_" } @{ $self->lines }; %lines_map = reverse %lines_map; @{ $self->lines } = grep $lines_map{"$_"}, @{ $self->lines }; } # now remove lines that are already part of a surface if (1) { my @lines = @{ $self->lines }; @{ $self->lines } = (); LINE: foreach my $line (@lines) { if (!$line->isa('Slic3r::Line::FacetEdge')) { push @{ $self->lines }, $line; next LINE; } foreach my $surface (@{$self->surfaces}) { if ($surface->surface_type eq $line->edge_type && $surface->contour->has_segment($line)) { next LINE; } } push @{ $self->lines }, $line; } } # make a cache of line endpoints my (%pointmap) = (); foreach my $line (@{ $self->lines }) { for my $point (@{ $line->points }) { $pointmap{$point->id} ||= []; push @{ $pointmap{$point->id} }, $line; } } foreach my $point_id (keys %pointmap) { $pointmap{$point_id} = [ sort { $a->isa('Slic3r::Line::FacetEdge') <=> $b->isa('Slic3r::Line::FacetEdge') } @{$pointmap{$point_id}} ]; } if (0) { # defensive programming for (keys %pointmap) { next if @{$pointmap{$_}} == 2; use Slic3r::SVG; Slic3r::SVG::output(undef, "lines_and_points.svg", lines => [ map $_->p, grep !$_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ], red_lines => [ map $_->p, grep $_->isa('Slic3r::Line::FacetEdge'), @{$self->lines} ], points => [ map [split /,/], keys %pointmap ], red_points => [ [split /,/, $_ ] ], ); YYY $pointmap{$_}; die sprintf "No point should be endpoint of less or more than 2 lines ($_ => %d)!", scalar(@{$pointmap{$_}}); } while (my @single_line_points = grep @{$pointmap{$_}} == 1, keys %pointmap) { for my $point_id (@single_line_points) { foreach my $lines (values %pointmap) { next unless $pointmap{$point_id}->[0]; @$lines = grep $_ ne $pointmap{$point_id}->[0], @$lines; } delete $pointmap{$point_id}; } } } # make a subroutine to remove lines from pointmap my $remove_line = sub { my $line = shift; foreach my $lines ($pointmap{$line->a->id}, $pointmap{$line->b->id}) { @$lines = grep $_ ne $line, @$lines; } }; my $polylines = []; # loop while we have spare lines while (my ($first_line) = map @$_, values %pointmap) { # add first line to a new polyline my $points = [ $first_line->a, $first_line->b ]; $remove_line->($first_line); my $last_point = $first_line->b; # loop through connected lines until we return to the first point while (my $next_line = $pointmap{$last_point->id}->[0]) { # get next point ($last_point) = grep $_->id ne $last_point->id, @{$next_line->points}; # add point to polyline push @$points, $last_point; $remove_line->($next_line); } # remove last point as it coincides with first one pop @$points; if (@$points == 1 && $first_line->isa('Slic3r::Line::FacetEdge')) { Slic3r::debugf "Skipping spare facet edge"; next; } die sprintf "Invalid polyline with only %d points\n", scalar(@$points) if @$points < 3; Slic3r::debugf "Discovered polyline of %d points (%s)\n", scalar @$points, join ' - ', map $_->id, @$points; push @$polylines, Slic3r::Polyline::Closed->new(points => $points); # actually this is not needed, as Math::Clipper used in make_surfaces() also cleans contours $polylines->[-1]->merge_continuous_lines; #$polylines->[-1]->cleanup; # not proven to be actually useful } return $polylines; } sub make_surfaces { my $self = shift; my ($polylines) = @_; #use Slic3r::SVG; #Slic3r::SVG::output_polygons($main::print, "polylines.svg", [ map $_->p, @$polylines ]); # count how many other polylines enclose each polyline # even = contour; odd = hole my %enclosing_polylines = (); my %enclosing_polylines_count = (); my $max_depth = 0; foreach my $polyline (@$polylines) { # a polyline encloses another one if any point of it is enclosed # in the other my $point = $polyline->points->[0]; my $ordered_id = $polyline->id; # find polylines contaning $point, and thus $polyline $enclosing_polylines{$polyline} = [ grep $_->id ne $ordered_id && $_->encloses_point($point), @$polylines ]; $enclosing_polylines_count{$polyline} = scalar @{ $enclosing_polylines{$polyline} }; $max_depth = $enclosing_polylines_count{$polyline} if $enclosing_polylines_count{$polyline} > $max_depth; } # make a cache for contours and surfaces my %surfaces = (); # contour => surface # start looking at most inner polylines for (; $max_depth > -1; $max_depth--) { foreach my $polyline (@$polylines) { next unless $enclosing_polylines_count{$polyline} == $max_depth; my $surface; if ($enclosing_polylines_count{$polyline} % 2 == 0) { # this is a contour $polyline->make_counter_clockwise; $surface = Slic3r::Surface->new(contour => $polyline); } else { # this is a hole $polyline->make_clockwise; # find the enclosing polyline having immediately close depth my ($contour) = grep $enclosing_polylines_count{$_} == ($max_depth-1), @{ $enclosing_polylines{$polyline} }; if ($surfaces{$contour}) { $surface = $surfaces{$contour}; $surface->add_hole($polyline); } else { $surface = Slic3r::Surface->new( contour => $contour, holes => [$polyline], ); $surfaces{$contour} = $surface; } } # check whether we already have this surface next if grep $_->id eq $surface->id, @{ $self->surfaces }; $surface->surface_type('internal'); push @{ $self->surfaces }, $surface; Slic3r::debugf "New surface: %s (%d holes: %s)\n", $surface->id, scalar @{$surface->holes}, join(', ', map $_->id, @{$surface->holes}) || 'none' if $Slic3r::debug; } } } sub merge_contiguous_surfaces { my $self = shift; if ($Slic3r::debug) { Slic3r::debugf "Initial surfaces (%d):\n", scalar @{ $self->surfaces }; Slic3r::debugf " [%s] %s (%s with %d holes)\n", $_->surface_type, $_->id, ($_->contour->is_counter_clockwise ? 'ccw' : 'cw'), scalar @{$_->holes} for @{ $self->surfaces }; #Slic3r::SVG::output_polygons($main::print, "polygons-before.svg", [ map $_->contour->p, @{$self->surfaces} ]); } my %resulting_surfaces = (); # only merge surfaces with same type foreach my $type (qw(bottom top internal)) { my $clipper = Math::Clipper->new; my @surfaces = grep $_->surface_type eq $type, @{$self->surfaces} or next; #Slic3r::SVG::output_polygons($main::print, "polygons-$type-before.svg", [ map $_->contour->p, @surfaces ]); $clipper->add_subject_polygons([ map $_->contour->p, @surfaces ]); my $result = $clipper->ex_execute(CT_UNION, PFT_NONZERO, PFT_NONZERO); $clipper->clear; my @extra_holes = map @{$_->{holes}}, @$result; $result = [ map $_->{outer}, @$result ]; #Slic3r::SVG::output_polygons($main::print, "polygons-$type-union.svg", $result); # subtract bottom or top surfaces from internal if ($type eq 'internal') { $clipper->add_subject_polygons($result); $clipper->add_clip_polygons([ map $_->{outer}, @{$resulting_surfaces{$_}} ]) for qw(bottom top); $result = $clipper->execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO); $clipper->clear; } # apply holes $clipper->add_subject_polygons($result); $result = $clipper->execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO); $clipper->clear; $clipper->add_subject_polygons($result); $clipper->add_clip_polygons([ @extra_holes ]) if @extra_holes; $clipper->add_clip_polygons([ map $_->p, map @{$_->holes}, @surfaces ]); my $result2 = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO); $resulting_surfaces{$type} = $result2; } # remove overlapping surfaces # (remove anything that is not internal from areas covered by internal surfaces) # this may happen because of rounding of Z coordinates: the model could have # features smaller than our layer height, so we'd get more things on a single # layer if (0) { # not proven to be necessary until now my $clipper = Math::Clipper->new; foreach my $type (qw(bottom top)) { $clipper->clear; $clipper->add_subject_polygons([ map { $_->{outer}, @{$_->{holes}} } @{$resulting_surfaces{$type}} ]); $clipper->add_clip_polygons([ map { $_->{outer}, @{$_->{holes}} } @{$resulting_surfaces{internal}} ]); $resulting_surfaces{$type} = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO); } } # save surfaces @{ $self->surfaces } = (); foreach my $type (keys %resulting_surfaces) { foreach my $p (@{ $resulting_surfaces{$type} }) { push @{ $self->surfaces }, Slic3r::Surface->new( surface_type => $type, contour => Slic3r::Polyline::Closed->cast($p->{outer}), holes => [ map Slic3r::Polyline::Closed->cast($_), @{$p->{holes}} ], ); } } if ($Slic3r::debug) { Slic3r::debugf "Final surfaces (%d):\n", scalar @{ $self->surfaces }; Slic3r::debugf " [%s] %s (%s with %d holes)\n", $_->surface_type, $_->id, ($_->contour->is_counter_clockwise ? 'ccw' : 'cw'), scalar @{$_->holes} for @{ $self->surfaces }; } } sub remove_small_surfaces { my $self = shift; my @good_surfaces = (); foreach my $surface (@{$self->surfaces}) { next if !$surface->contour->is_printable; @{$surface->holes} = grep $_->is_printable, @{$surface->holes}; push @good_surfaces, $surface; } @{$self->surfaces} = @good_surfaces; } sub remove_small_perimeters { my $self = shift; my @good_perimeters = grep $_->is_printable, @{$self->perimeters}; Slic3r::debugf "removed %d unprintable perimeters\n", (@{$self->perimeters} - @good_perimeters) if @good_perimeters != @{$self->perimeters}; @{$self->perimeters} = @good_perimeters; } # make bridges printable sub process_bridges { my $self = shift; return if $self->id == 0; # a bottom surface on a layer > 0 is either a bridge or a overhang # or a combination of both my @bottom_surfaces = grep $_->surface_type eq 'bottom', @{$self->surfaces} or return; my @supporting_surfaces = grep $_->surface_type =~ /internal/, @{$self->surfaces}; SURFACE: foreach my $surface (@bottom_surfaces) { # since we can't print concave bridges, we transform the surface # in a convex polygon; this will print thin membranes eventually my $surface_p = convex_hull($surface->contour->p); # find all supported edges (as polylines, thus keeping notion of # consecutive supported edges) my @supported_polylines = (); { my @current_polyline = (); EDGE: foreach my $edge (Slic3r::Geometry::polygon_lines($surface_p)) { for (@supporting_surfaces) { local $Slic3r::Geometry::epsilon = 1E+7; if (Slic3r::Geometry::polygon_has_subsegment($_->contour->p, $edge)) { push @current_polyline, $edge; next EDGE; } } if (@current_polyline) { push @supported_polylines, [@current_polyline]; @current_polyline = (); } } push @supported_polylines, [@current_polyline] if @current_polyline; } # defensive programming, this shouldn't happen if (@supported_polylines == 0) { Slic3r::debugf "Found bridge/overhang with no supports on layer %d; ignoring\n", $self->id; next SURFACE; } if (@supported_polylines == 1) { Slic3r::debugf "Found bridge/overhang with only one support on layer %d; ignoring\n", $self->id; next SURFACE; } # now connect the first point to the last of each polyline @supported_polylines = map [ $_->[0]->[0], $_->[-1]->[-1] ], @supported_polylines; # if we got more than two supports, get the longest two if (@supported_polylines > 2) { my %lengths = map { "$_" => Slic3r::Geometry::line_length($_) }, @supported_polylines; @supported_polylines = sort { $lengths{"$a"} <=> $lengths{"$b"} } @supported_polylines; @supported_polylines = @supported_polylines[0,1]; } # connect the midpoints, that will give the the optimal infill direction my @midpoints = map Slic3r::Geometry::midpoint($_), @supported_polylines; my $bridge_angle = -Slic3r::Geometry::rad2deg(Slic3r::Geometry::line_atan(\@midpoints) + PI/2); Slic3r::debugf "Optimal infill angle of bridge on layer %d is %d degrees\n", $self->id, $bridge_angle; # detect which neighbor surfaces are now supporting our bridge my @supporting_neighbor_surfaces = (); foreach my $supporting_surface (@supporting_surfaces) { local $Slic3r::Geometry::epsilon = 1E+7; push @supporting_neighbor_surfaces, $supporting_surface if grep Slic3r::Geometry::polygon_has_vertex($supporting_surface->contour->p, $_), map $_->[0], @supported_polylines; } # defensive programming, this shouldn't happen if (@supporting_neighbor_surfaces == 0) { Slic3r::debugf "Couldn't find supporting surfaces on layer %d; ignoring\n", $self->id; next SURFACE; } # now, extend our bridge by taking a portion of supporting surfaces { # offset the bridge by 5mm my $bridge_offset = ${ offset([$surface_p], 5 / $Slic3r::resolution, $Slic3r::resolution * 100, JT_MITER, 2) }[0]; # calculate the new bridge my $clipper = Math::Clipper->new; $clipper->add_subject_polygon($surface_p); $clipper->add_subject_polygons([ map $_->p, @supporting_neighbor_surfaces ]); $clipper->add_clip_polygon($bridge_offset); my $intersection = $clipper->execute(CT_INTERSECTION, PFT_NONZERO, PFT_NONZERO); push @{$self->bridges}, map Slic3r::Surface::Bridge->cast_from_polygon($_, surface_type => 'bottom', bridge_angle => $bridge_angle, ), @$intersection; } } } # generates a set of surfaces that will be used to make perimeters # thus, we need to merge internal surfaces and bridges sub detect_perimeter_surfaces { my $self = shift; # little optimization: skip the Clipper UNION if we have no bridges if (!@{$self->bridges}) { push @{$self->perimeter_surfaces}, @{$self->surfaces}; } else { my $clipper = Math::Clipper->new; $clipper->add_subject_polygons([ map $_->p, grep $_->surface_type =~ /internal/, @{$self->surfaces} ]); $clipper->add_clip_polygons([ map $_->p, @{$self->bridges} ]); my $union = $clipper->ex_execute(CT_UNION, PFT_NONZERO, PFT_NONZERO); push @{$self->perimeter_surfaces}, map Slic3r::Surface->cast_from_expolygon($_, surface_type => 'internal'), @$union; push @{$self->perimeter_surfaces}, grep $_->surface_type !~ /internal/ && ($_->surface_type ne 'bottom' || $self->id == 0), @{$self->surfaces}; } } # splits fill_surfaces in internal and bridge surfaces sub split_bridges_fills { my $self = shift; my $clipper = Math::Clipper->new; foreach my $surf_coll (@{$self->fill_surfaces}) { my @surfaces = @{$surf_coll->surfaces}; @{$surf_coll->surfaces} = (); # intersect fill_surfaces with bridges to get actual bridges foreach my $bridge (@{$self->bridges}) { $clipper->clear; $clipper->add_subject_polygons([ map $_->p, @surfaces ]); $clipper->add_clip_polygon($bridge->contour->p); my $intersection = $clipper->ex_execute(CT_INTERSECTION, PFT_NONZERO, PFT_NONZERO); push @{$surf_coll->surfaces}, map Slic3r::Surface::Bridge->cast_from_expolygon($_, surface_type => 'bottom', bridge_angle => $bridge->bridge_angle, ), @$intersection; } # difference between fill_surfaces and bridges are the other surfaces foreach my $surface (@surfaces) { $clipper->clear; $clipper->add_subject_polygons([ $surface->p ]); $clipper->add_clip_polygons([ map $_->contour->p, @{$self->bridges} ]); my $difference = $clipper->ex_execute(CT_DIFFERENCE, PFT_NONZERO, PFT_NONZERO); push @{$surf_coll->surfaces}, map Slic3r::Surface->cast_from_expolygon($_, surface_type => $surface->surface_type), @$difference; } } } 1;