#include "libslic3r/libslic3r.h" #include "libslic3r/Utils.hpp" #include "libslic3r/Print.hpp" #include "libslic3r/LocalesUtils.hpp" #include "libslic3r/format.hpp" #include "libslic3r/I18N.hpp" #include "libslic3r/GCodeWriter.hpp" #include "libslic3r/I18N.hpp" #include "GCodeProcessor.hpp" #include <boost/algorithm/string/case_conv.hpp> #include <boost/log/trivial.hpp> #include <boost/algorithm/string/predicate.hpp> #include <boost/algorithm/string/split.hpp> #include <boost/nowide/fstream.hpp> #include <boost/nowide/cstdio.hpp> #include <boost/filesystem/path.hpp> #include <float.h> #include <assert.h> #if __has_include(<charconv>) #include <charconv> #include <utility> #endif #include <chrono> static const float DEFAULT_TOOLPATH_WIDTH = 0.4f; static const float DEFAULT_TOOLPATH_HEIGHT = 0.2f; static const float INCHES_TO_MM = 25.4f; static const float MMMIN_TO_MMSEC = 1.0f / 60.0f; static const float DEFAULT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2 static const float DEFAULT_RETRACT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2 static const float DEFAULT_TRAVEL_ACCELERATION = 1250.0f; static const size_t MIN_EXTRUDERS_COUNT = 5; static const float DEFAULT_FILAMENT_DIAMETER = 1.75f; static const float DEFAULT_FILAMENT_DENSITY = 1.245f; static const float DEFAULT_FILAMENT_COST = 0.0f; static const Slic3r::Vec3f DEFAULT_EXTRUDER_OFFSET = Slic3r::Vec3f::Zero(); // taken from PrusaResearch.ini - [printer:Original Prusa i3 MK2.5 MMU2] static const std::vector<std::string> DEFAULT_EXTRUDER_COLORS = { "#FF8000", "#DB5182", "#3EC0FF", "#FF4F4F", "#FBEB7D" }; static const std::string INTERNAL_G2G3_TAG = "!#!#! internal only - from G2/G3 expansion !#!#!"; namespace Slic3r { const std::vector<std::string> GCodeProcessor::Reserved_Tags = { "TYPE:", "WIPE_START", "WIPE_END", "HEIGHT:", "WIDTH:", "LAYER_CHANGE", "COLOR_CHANGE", "PAUSE_PRINT", "CUSTOM_GCODE", "_GP_FIRST_LINE_M73_PLACEHOLDER", "_GP_LAST_LINE_M73_PLACEHOLDER", "_GP_ESTIMATED_PRINTING_TIME_PLACEHOLDER" }; const float GCodeProcessor::Wipe_Width = 0.05f; const float GCodeProcessor::Wipe_Height = 0.05f; #if ENABLE_GCODE_VIEWER_DATA_CHECKING const std::string GCodeProcessor::Mm3_Per_Mm_Tag = "MM3_PER_MM:"; #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING static void set_option_value(ConfigOptionFloats& option, size_t id, float value) { if (id < option.values.size()) option.values[id] = static_cast<double>(value); }; static float get_option_value(const ConfigOptionFloats& option, size_t id) { return option.values.empty() ? 0.0f : ((id < option.values.size()) ? static_cast<float>(option.values[id]) : static_cast<float>(option.values.back())); } static float estimated_acceleration_distance(float initial_rate, float target_rate, float acceleration) { return (acceleration == 0.0f) ? 0.0f : (sqr(target_rate) - sqr(initial_rate)) / (2.0f * acceleration); } static float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) { return (acceleration == 0.0f) ? 0.0f : (2.0f * acceleration * distance - sqr(initial_rate) + sqr(final_rate)) / (4.0f * acceleration); } static float speed_from_distance(float initial_feedrate, float distance, float acceleration) { // to avoid invalid negative numbers due to numerical errors float value = std::max(0.0f, sqr(initial_feedrate) + 2.0f * acceleration * distance); return ::sqrt(value); } // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the // acceleration within the allotted distance. static float max_allowable_speed(float acceleration, float target_velocity, float distance) { // to avoid invalid negative numbers due to numerical errors float value = std::max(0.0f, sqr(target_velocity) - 2.0f * acceleration * distance); return std::sqrt(value); } static float acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration) { return (acceleration != 0.0f) ? (speed_from_distance(initial_feedrate, distance, acceleration) - initial_feedrate) / acceleration : 0.0f; } void GCodeProcessor::CachedPosition::reset() { std::fill(position.begin(), position.end(), FLT_MAX); feedrate = FLT_MAX; } void GCodeProcessor::CpColor::reset() { counter = 0; current = 0; } float GCodeProcessor::Trapezoid::acceleration_time(float entry_feedrate, float acceleration) const { return acceleration_time_from_distance(entry_feedrate, accelerate_until, acceleration); } float GCodeProcessor::Trapezoid::cruise_time() const { return (cruise_feedrate != 0.0f) ? cruise_distance() / cruise_feedrate : 0.0f; } float GCodeProcessor::Trapezoid::deceleration_time(float distance, float acceleration) const { return acceleration_time_from_distance(cruise_feedrate, (distance - decelerate_after), -acceleration); } float GCodeProcessor::Trapezoid::cruise_distance() const { return decelerate_after - accelerate_until; } void GCodeProcessor::TimeBlock::calculate_trapezoid() { trapezoid.cruise_feedrate = feedrate_profile.cruise; float accelerate_distance = std::max(0.0f, estimated_acceleration_distance(feedrate_profile.entry, feedrate_profile.cruise, acceleration)); float decelerate_distance = std::max(0.0f, estimated_acceleration_distance(feedrate_profile.cruise, feedrate_profile.exit, -acceleration)); float cruise_distance = distance - accelerate_distance - decelerate_distance; // Not enough space to reach the nominal feedrate. // This means no cruising, and we'll have to use intersection_distance() to calculate when to abort acceleration // and start braking in order to reach the exit_feedrate exactly at the end of this block. if (cruise_distance < 0.0f) { accelerate_distance = std::clamp(intersection_distance(feedrate_profile.entry, feedrate_profile.exit, acceleration, distance), 0.0f, distance); cruise_distance = 0.0f; trapezoid.cruise_feedrate = speed_from_distance(feedrate_profile.entry, accelerate_distance, acceleration); } trapezoid.accelerate_until = accelerate_distance; trapezoid.decelerate_after = accelerate_distance + cruise_distance; } float GCodeProcessor::TimeBlock::time() const { return trapezoid.acceleration_time(feedrate_profile.entry, acceleration) + trapezoid.cruise_time() + trapezoid.deceleration_time(distance, acceleration); } void GCodeProcessor::TimeMachine::State::reset() { feedrate = 0.0f; safe_feedrate = 0.0f; axis_feedrate = { 0.0f, 0.0f, 0.0f, 0.0f }; abs_axis_feedrate = { 0.0f, 0.0f, 0.0f, 0.0f }; } void GCodeProcessor::TimeMachine::CustomGCodeTime::reset() { needed = false; cache = 0.0f; times = std::vector<std::pair<CustomGCode::Type, float>>(); } void GCodeProcessor::TimeMachine::reset() { enabled = false; acceleration = 0.0f; max_acceleration = 0.0f; retract_acceleration = 0.0f; max_retract_acceleration = 0.0f; travel_acceleration = 0.0f; max_travel_acceleration = 0.0f; extrude_factor_override_percentage = 1.0f; time = 0.0f; travel_time = 0.0f; stop_times = std::vector<StopTime>(); curr.reset(); prev.reset(); gcode_time.reset(); blocks = std::vector<TimeBlock>(); g1_times_cache = std::vector<G1LinesCacheItem>(); std::fill(moves_time.begin(), moves_time.end(), 0.0f); std::fill(roles_time.begin(), roles_time.end(), 0.0f); layers_time = std::vector<float>(); } void GCodeProcessor::TimeMachine::simulate_st_synchronize(float additional_time) { if (!enabled) return; calculate_time(0, additional_time); } static void planner_forward_pass_kernel(GCodeProcessor::TimeBlock& prev, GCodeProcessor::TimeBlock& curr) { // If the previous block is an acceleration block, but it is not long enough to complete the // full speed change within the block, we need to adjust the entry speed accordingly. Entry // speeds have already been reset, maximized, and reverse planned by reverse planner. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck. if (!prev.flags.nominal_length) { if (prev.feedrate_profile.entry < curr.feedrate_profile.entry) { float entry_speed = std::min(curr.feedrate_profile.entry, max_allowable_speed(-prev.acceleration, prev.feedrate_profile.entry, prev.distance)); // Check for junction speed change if (curr.feedrate_profile.entry != entry_speed) { curr.feedrate_profile.entry = entry_speed; curr.flags.recalculate = true; } } } } void planner_reverse_pass_kernel(GCodeProcessor::TimeBlock& curr, GCodeProcessor::TimeBlock& next) { // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and // check for maximum allowable speed reductions to ensure maximum possible planned speed. if (curr.feedrate_profile.entry != curr.max_entry_speed) { // If nominal length true, max junction speed is guaranteed to be reached. Only compute // for max allowable speed if block is decelerating and nominal length is false. if (!curr.flags.nominal_length && curr.max_entry_speed > next.feedrate_profile.entry) curr.feedrate_profile.entry = std::min(curr.max_entry_speed, max_allowable_speed(-curr.acceleration, next.feedrate_profile.entry, curr.distance)); else curr.feedrate_profile.entry = curr.max_entry_speed; curr.flags.recalculate = true; } } static void recalculate_trapezoids(std::vector<GCodeProcessor::TimeBlock>& blocks) { GCodeProcessor::TimeBlock* curr = nullptr; GCodeProcessor::TimeBlock* next = nullptr; for (size_t i = 0; i < blocks.size(); ++i) { GCodeProcessor::TimeBlock& b = blocks[i]; curr = next; next = &b; if (curr != nullptr) { // Recalculate if current block entry or exit junction speed has changed. if (curr->flags.recalculate || next->flags.recalculate) { // NOTE: Entry and exit factors always > 0 by all previous logic operations. GCodeProcessor::TimeBlock block = *curr; block.feedrate_profile.exit = next->feedrate_profile.entry; block.calculate_trapezoid(); curr->trapezoid = block.trapezoid; curr->flags.recalculate = false; // Reset current only to ensure next trapezoid is computed } } } // Last/newest block in buffer. Always recalculated. if (next != nullptr) { GCodeProcessor::TimeBlock block = *next; block.feedrate_profile.exit = next->safe_feedrate; block.calculate_trapezoid(); next->trapezoid = block.trapezoid; next->flags.recalculate = false; } } void GCodeProcessor::TimeMachine::calculate_time(size_t keep_last_n_blocks, float additional_time) { if (!enabled || blocks.size() < 2) return; assert(keep_last_n_blocks <= blocks.size()); // forward_pass for (size_t i = 0; i + 1 < blocks.size(); ++i) { planner_forward_pass_kernel(blocks[i], blocks[i + 1]); } // reverse_pass for (int i = static_cast<int>(blocks.size()) - 1; i > 0; --i) planner_reverse_pass_kernel(blocks[i - 1], blocks[i]); recalculate_trapezoids(blocks); size_t n_blocks_process = blocks.size() - keep_last_n_blocks; for (size_t i = 0; i < n_blocks_process; ++i) { const TimeBlock& block = blocks[i]; float block_time = block.time(); if (i == 0) block_time += additional_time; time += block_time; if (block.move_type == EMoveType::Travel) travel_time += block_time; else roles_time[static_cast<size_t>(block.role)] += block_time; gcode_time.cache += block_time; moves_time[static_cast<size_t>(block.move_type)] += block_time; if (block.layer_id >= layers_time.size()) { const size_t curr_size = layers_time.size(); layers_time.resize(block.layer_id); for (size_t i = curr_size; i < layers_time.size(); ++i) { layers_time[i] = 0.0f; } } layers_time[block.layer_id - 1] += block_time; g1_times_cache.push_back({ block.g1_line_id, time }); // update times for remaining time to printer stop placeholders auto it_stop_time = std::lower_bound(stop_times.begin(), stop_times.end(), block.g1_line_id, [](const StopTime& t, unsigned int value) { return t.g1_line_id < value; }); if (it_stop_time != stop_times.end() && it_stop_time->g1_line_id == block.g1_line_id) it_stop_time->elapsed_time = time; } if (keep_last_n_blocks) blocks.erase(blocks.begin(), blocks.begin() + n_blocks_process); else blocks.clear(); } void GCodeProcessor::TimeProcessor::reset() { extruder_unloaded = true; export_remaining_time_enabled = false; machine_envelope_processing_enabled = false; machine_limits = MachineEnvelopeConfig(); filament_load_times = std::vector<float>(); filament_unload_times = std::vector<float>(); for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { machines[i].reset(); } machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)].enabled = true; } void GCodeProcessor::UsedFilaments::reset() { color_change_cache = 0.0; volumes_per_color_change = std::vector<double>(); tool_change_cache = 0.0; volumes_per_extruder.clear(); role_cache = 0.0; filaments_per_role.clear(); extruder_retracted_volume.clear(); } void GCodeProcessor::UsedFilaments::increase_caches(double extruded_volume, unsigned char extruder_id, double parking_volume, double extra_loading_volume) { if (extruder_id >= extruder_retracted_volume.size()) extruder_retracted_volume.resize(extruder_id + 1, parking_volume); if (recent_toolchange) { extruded_volume -= extra_loading_volume; recent_toolchange = false; } extruder_retracted_volume[extruder_id] -= extruded_volume; if (extruder_retracted_volume[extruder_id] < 0.) { extruded_volume = - extruder_retracted_volume[extruder_id]; extruder_retracted_volume[extruder_id] = 0.; color_change_cache += extruded_volume; tool_change_cache += extruded_volume; role_cache += extruded_volume; } } void GCodeProcessor::UsedFilaments::process_color_change_cache() { if (color_change_cache != 0.0f) { volumes_per_color_change.push_back(color_change_cache); color_change_cache = 0.0f; } } void GCodeProcessor::UsedFilaments::process_extruder_cache(unsigned char extruder_id) { if (tool_change_cache != 0.0) { volumes_per_extruder[extruder_id] += tool_change_cache; tool_change_cache = 0.0; } recent_toolchange = true; } void GCodeProcessor::UsedFilaments::process_role_cache(const GCodeProcessor* processor) { if (role_cache != 0.0) { std::pair<double, double> filament = { 0.0f, 0.0f }; const double s = PI * sqr(0.5 * processor->m_result.filament_diameters[processor->m_extruder_id]); filament.first = role_cache / s * 0.001; filament.second = role_cache * processor->m_result.filament_densities[processor->m_extruder_id] * 0.001; GCodeExtrusionRole active_role = processor->m_extrusion_role; if (filaments_per_role.find(active_role) != filaments_per_role.end()) { filaments_per_role[active_role].first += filament.first; filaments_per_role[active_role].second += filament.second; } else filaments_per_role[active_role] = filament; role_cache = 0.0; } } void GCodeProcessor::UsedFilaments::process_caches(const GCodeProcessor* processor) { process_color_change_cache(); process_extruder_cache(processor->m_extruder_id); process_role_cache(processor); } #if ENABLE_GCODE_VIEWER_STATISTICS void GCodeProcessorResult::reset() { moves = std::vector<GCodeProcessorResult::MoveVertex>(); bed_shape = Pointfs(); max_print_height = 0.0f; settings_ids.reset(); extruders_count = 0; backtrace_enabled = false; extruder_colors = std::vector<std::string>(); filament_diameters = std::vector<float>(MIN_EXTRUDERS_COUNT, DEFAULT_FILAMENT_DIAMETER); filament_densities = std::vector<float>(MIN_EXTRUDERS_COUNT, DEFAULT_FILAMENT_DENSITY); filament_cost = std::vector<float>(MIN_EXTRUDERS_COUNT, DEFAULT_FILAMENT_COST); custom_gcode_per_print_z = std::vector<CustomGCode::Item>(); spiral_vase_layers = std::vector<std::pair<float, std::pair<size_t, size_t>>>(); time = 0; } #else void GCodeProcessorResult::reset() { moves.clear(); lines_ends.clear(); bed_shape = Pointfs(); max_print_height = 0.0f; settings_ids.reset(); extruders_count = 0; backtrace_enabled = false; extruder_colors = std::vector<std::string>(); filament_diameters = std::vector<float>(MIN_EXTRUDERS_COUNT, DEFAULT_FILAMENT_DIAMETER); filament_densities = std::vector<float>(MIN_EXTRUDERS_COUNT, DEFAULT_FILAMENT_DENSITY); filament_cost = std::vector<float>(MIN_EXTRUDERS_COUNT, DEFAULT_FILAMENT_COST); custom_gcode_per_print_z = std::vector<CustomGCode::Item>(); spiral_vase_layers = std::vector<std::pair<float, std::pair<size_t, size_t>>>(); } #endif // ENABLE_GCODE_VIEWER_STATISTICS const std::vector<std::pair<GCodeProcessor::EProducer, std::string>> GCodeProcessor::Producers = { { EProducer::PrusaSlicer, "generated by PrusaSlicer" }, { EProducer::Slic3rPE, "generated by Slic3r Prusa Edition" }, { EProducer::Slic3r, "generated by Slic3r" }, { EProducer::SuperSlicer, "generated by SuperSlicer" }, { EProducer::Cura, "Cura_SteamEngine" }, { EProducer::Simplify3D, "generated by Simplify3D(R)" }, { EProducer::CraftWare, "CraftWare" }, { EProducer::ideaMaker, "ideaMaker" }, { EProducer::KissSlicer, "KISSlicer" }, { EProducer::BambuStudio, "BambuStudio" } }; unsigned int GCodeProcessor::s_result_id = 0; bool GCodeProcessor::contains_reserved_tag(const std::string& gcode, std::string& found_tag) { bool ret = false; GCodeReader parser; parser.parse_buffer(gcode, [&ret, &found_tag](GCodeReader& parser, const GCodeReader::GCodeLine& line) { std::string comment = line.raw(); if (comment.length() > 2 && comment.front() == ';') { comment = comment.substr(1); for (const std::string& s : Reserved_Tags) { if (boost::starts_with(comment, s)) { ret = true; found_tag = comment; parser.quit_parsing(); return; } } } }); return ret; } bool GCodeProcessor::contains_reserved_tags(const std::string& gcode, unsigned int max_count, std::vector<std::string>& found_tag) { max_count = std::max(max_count, 1U); bool ret = false; CNumericLocalesSetter locales_setter; GCodeReader parser; parser.parse_buffer(gcode, [&ret, &found_tag, max_count](GCodeReader& parser, const GCodeReader::GCodeLine& line) { std::string comment = line.raw(); if (comment.length() > 2 && comment.front() == ';') { comment = comment.substr(1); for (const std::string& s : Reserved_Tags) { if (boost::starts_with(comment, s)) { ret = true; found_tag.push_back(comment); if (found_tag.size() == max_count) { parser.quit_parsing(); return; } } } } }); return ret; } GCodeProcessor::GCodeProcessor() : m_options_z_corrector(m_result) { reset(); m_time_processor.machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)].line_m73_main_mask = "M73 P%s R%s\n"; m_time_processor.machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Normal)].line_m73_stop_mask = "M73 C%s\n"; m_time_processor.machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Stealth)].line_m73_main_mask = "M73 Q%s S%s\n"; m_time_processor.machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Stealth)].line_m73_stop_mask = "M73 D%s\n"; } void GCodeProcessor::apply_config(const PrintConfig& config) { m_parser.apply_config(config); m_producer = EProducer::PrusaSlicer; m_flavor = config.gcode_flavor; m_result.backtrace_enabled = is_XL_printer(config); size_t extruders_count = config.nozzle_diameter.values.size(); m_result.extruders_count = extruders_count; m_extruder_offsets.resize(extruders_count); m_extruder_colors.resize(extruders_count); m_result.filament_diameters.resize(extruders_count); m_result.filament_densities.resize(extruders_count); m_result.filament_cost.resize(extruders_count); m_extruder_temps.resize(extruders_count); m_extruder_temps_config.resize(extruders_count); m_extruder_temps_first_layer_config.resize(extruders_count); m_is_XL_printer = is_XL_printer(config); for (size_t i = 0; i < extruders_count; ++ i) { m_extruder_offsets[i] = to_3d(config.extruder_offset.get_at(i).cast<float>().eval(), 0.f); m_extruder_colors[i] = static_cast<unsigned char>(i); m_extruder_temps_config[i] = static_cast<int>(config.temperature.get_at(i)); m_extruder_temps_first_layer_config[i] = static_cast<int>(config.first_layer_temperature.get_at(i)); m_result.filament_diameters[i] = static_cast<float>(config.filament_diameter.get_at(i)); m_result.filament_densities[i] = static_cast<float>(config.filament_density.get_at(i)); m_result.filament_cost[i] = static_cast<float>(config.filament_cost.get_at(i)); } if ((m_flavor == gcfMarlinLegacy || m_flavor == gcfMarlinFirmware || m_flavor == gcfRepRapFirmware || m_flavor == gcfKlipper) && config.machine_limits_usage.value != MachineLimitsUsage::Ignore) { m_time_processor.machine_limits = reinterpret_cast<const MachineEnvelopeConfig&>(config); if (m_flavor == gcfMarlinLegacy || m_flavor == gcfKlipper) { // Legacy Marlin and Klipper don't have separate travel acceleration, they use the 'extruding' value instead. m_time_processor.machine_limits.machine_max_acceleration_travel = m_time_processor.machine_limits.machine_max_acceleration_extruding; } if (m_flavor == gcfRepRapFirmware) { // RRF does not support setting min feedrates. Set them to zero. m_time_processor.machine_limits.machine_min_travel_rate.values.assign(m_time_processor.machine_limits.machine_min_travel_rate.size(), 0.); m_time_processor.machine_limits.machine_min_extruding_rate.values.assign(m_time_processor.machine_limits.machine_min_extruding_rate.size(), 0.); } } // Filament load / unload times are not specific to a firmware flavor. Let anybody use it if they find it useful. // As of now the fields are shown at the UI dialog in the same combo box as the ramming values, so they // are considered to be active for the single extruder multi-material printers only. m_time_processor.filament_load_times.resize(config.filament_load_time.values.size()); for (size_t i = 0; i < config.filament_load_time.values.size(); ++i) { m_time_processor.filament_load_times[i] = static_cast<float>(config.filament_load_time.values[i]); } m_time_processor.filament_unload_times.resize(config.filament_unload_time.values.size()); for (size_t i = 0; i < config.filament_unload_time.values.size(); ++i) { m_time_processor.filament_unload_times[i] = static_cast<float>(config.filament_unload_time.values[i]); } m_single_extruder_multi_material = config.single_extruder_multi_material; // With MM setups like Prusa MMU2, the filaments may be expected to be parked at the beginning. // Remember the parking position so the initial load is not included in filament estimate. if (m_single_extruder_multi_material && extruders_count > 1 && config.wipe_tower) { m_parking_position = float(config.parking_pos_retraction.value); m_extra_loading_move = float(config.extra_loading_move); } for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { float max_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_extruding, i); m_time_processor.machines[i].max_acceleration = max_acceleration; m_time_processor.machines[i].acceleration = (max_acceleration > 0.0f) ? max_acceleration : DEFAULT_ACCELERATION; float max_retract_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_retracting, i); m_time_processor.machines[i].max_retract_acceleration = max_retract_acceleration; m_time_processor.machines[i].retract_acceleration = (max_retract_acceleration > 0.0f) ? max_retract_acceleration : DEFAULT_RETRACT_ACCELERATION; float max_travel_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_travel, i); if ( ! GCodeWriter::supports_separate_travel_acceleration(config.gcode_flavor.value) || config.machine_limits_usage.value != MachineLimitsUsage::EmitToGCode) { // Only clamp travel acceleration when it is accessible in machine limits. max_travel_acceleration = 0; } m_time_processor.machines[i].max_travel_acceleration = max_travel_acceleration; m_time_processor.machines[i].travel_acceleration = (max_travel_acceleration > 0.0f) ? max_travel_acceleration : DEFAULT_TRAVEL_ACCELERATION; } m_time_processor.export_remaining_time_enabled = config.remaining_times.value; m_use_volumetric_e = config.use_volumetric_e; const ConfigOptionFloatOrPercent* first_layer_height = config.option<ConfigOptionFloatOrPercent>("first_layer_height"); if (first_layer_height != nullptr) m_first_layer_height = std::abs(first_layer_height->value); m_result.max_print_height = config.max_print_height; const ConfigOptionBool* spiral_vase = config.option<ConfigOptionBool>("spiral_vase"); if (spiral_vase != nullptr) m_spiral_vase_active = spiral_vase->value; const ConfigOptionFloat* z_offset = config.option<ConfigOptionFloat>("z_offset"); if (z_offset != nullptr) m_z_offset = z_offset->value; } void GCodeProcessor::apply_config(const DynamicPrintConfig& config) { m_parser.apply_config(config); const ConfigOptionEnum<GCodeFlavor>* gcode_flavor = config.option<ConfigOptionEnum<GCodeFlavor>>("gcode_flavor"); if (gcode_flavor != nullptr) m_flavor = gcode_flavor->value; const ConfigOptionPoints* bed_shape = config.option<ConfigOptionPoints>("bed_shape"); if (bed_shape != nullptr) m_result.bed_shape = bed_shape->values; const ConfigOptionString* print_settings_id = config.option<ConfigOptionString>("print_settings_id"); if (print_settings_id != nullptr) m_result.settings_ids.print = print_settings_id->value; const ConfigOptionStrings* filament_settings_id = config.option<ConfigOptionStrings>("filament_settings_id"); if (filament_settings_id != nullptr) m_result.settings_ids.filament = filament_settings_id->values; const ConfigOptionString* printer_settings_id = config.option<ConfigOptionString>("printer_settings_id"); if (printer_settings_id != nullptr) m_result.settings_ids.printer = printer_settings_id->value; m_result.extruders_count = config.option<ConfigOptionFloats>("nozzle_diameter")->values.size(); const ConfigOptionFloats* filament_diameters = config.option<ConfigOptionFloats>("filament_diameter"); if (filament_diameters != nullptr) { m_result.filament_diameters.clear(); m_result.filament_diameters.resize(filament_diameters->values.size()); for (size_t i = 0; i < filament_diameters->values.size(); ++i) { m_result.filament_diameters[i] = static_cast<float>(filament_diameters->values[i]); } } if (m_result.filament_diameters.size() < m_result.extruders_count) { for (size_t i = m_result.filament_diameters.size(); i < m_result.extruders_count; ++i) { m_result.filament_diameters.emplace_back(DEFAULT_FILAMENT_DIAMETER); } } const ConfigOptionFloats* filament_densities = config.option<ConfigOptionFloats>("filament_density"); if (filament_densities != nullptr) { m_result.filament_densities.clear(); m_result.filament_densities.resize(filament_densities->values.size()); for (size_t i = 0; i < filament_densities->values.size(); ++i) { m_result.filament_densities[i] = static_cast<float>(filament_densities->values[i]); } } if (m_result.filament_densities.size() < m_result.extruders_count) { for (size_t i = m_result.filament_densities.size(); i < m_result.extruders_count; ++i) { m_result.filament_densities.emplace_back(DEFAULT_FILAMENT_DENSITY); } } const ConfigOptionFloats* filament_cost = config.option<ConfigOptionFloats>("filament_cost"); if (filament_cost != nullptr) { m_result.filament_cost.clear(); m_result.filament_cost.resize(filament_cost->values.size()); for (size_t i = 0; i < filament_cost->values.size(); ++i) { m_result.filament_cost[i] = static_cast<float>(filament_cost->values[i]); } } if (m_result.filament_cost.size() < m_result.extruders_count) { for (size_t i = m_result.filament_cost.size(); i < m_result.extruders_count; ++i) { m_result.filament_cost.emplace_back(DEFAULT_FILAMENT_COST); } } const ConfigOptionPoints* extruder_offset = config.option<ConfigOptionPoints>("extruder_offset"); if (extruder_offset != nullptr) { m_extruder_offsets.resize(extruder_offset->values.size()); for (size_t i = 0; i < extruder_offset->values.size(); ++i) { Vec2f offset = extruder_offset->values[i].cast<float>(); m_extruder_offsets[i] = { offset(0), offset(1), 0.0f }; } } if (m_extruder_offsets.size() < m_result.extruders_count) { for (size_t i = m_extruder_offsets.size(); i < m_result.extruders_count; ++i) { m_extruder_offsets.emplace_back(DEFAULT_EXTRUDER_OFFSET); } } const ConfigOptionStrings* extruder_colour = config.option<ConfigOptionStrings>("extruder_colour"); if (extruder_colour != nullptr) { // takes colors from config m_result.extruder_colors = extruder_colour->values; // try to replace missing values with filament colors const ConfigOptionStrings* filament_colour = config.option<ConfigOptionStrings>("filament_colour"); if (filament_colour != nullptr && filament_colour->values.size() == m_result.extruder_colors.size()) { for (size_t i = 0; i < m_result.extruder_colors.size(); ++i) { if (m_result.extruder_colors[i].empty()) m_result.extruder_colors[i] = filament_colour->values[i]; } } } if (m_result.extruder_colors.size() < m_result.extruders_count) { for (size_t i = m_result.extruder_colors.size(); i < m_result.extruders_count; ++i) { m_result.extruder_colors.emplace_back(std::string()); } } // replace missing values with default for (size_t i = 0; i < m_result.extruder_colors.size(); ++i) { if (m_result.extruder_colors[i].empty()) m_result.extruder_colors[i] = "#FF8000"; } m_extruder_colors.resize(m_result.extruder_colors.size()); for (size_t i = 0; i < m_result.extruder_colors.size(); ++i) { m_extruder_colors[i] = static_cast<unsigned char>(i); } m_extruder_temps.resize(m_result.extruders_count); const ConfigOptionFloats* filament_load_time = config.option<ConfigOptionFloats>("filament_load_time"); if (filament_load_time != nullptr) { m_time_processor.filament_load_times.resize(filament_load_time->values.size()); for (size_t i = 0; i < filament_load_time->values.size(); ++i) { m_time_processor.filament_load_times[i] = static_cast<float>(filament_load_time->values[i]); } } const ConfigOptionFloats* filament_unload_time = config.option<ConfigOptionFloats>("filament_unload_time"); if (filament_unload_time != nullptr) { m_time_processor.filament_unload_times.resize(filament_unload_time->values.size()); for (size_t i = 0; i < filament_unload_time->values.size(); ++i) { m_time_processor.filament_unload_times[i] = static_cast<float>(filament_unload_time->values[i]); } } // With MM setups like Prusa MMU2, the filaments may be expected to be parked at the beginning. // Remember the parking position so the initial load is not included in filament estimate. const ConfigOptionBool* single_extruder_multi_material = config.option<ConfigOptionBool>("single_extruder_multi_material"); const ConfigOptionBool* wipe_tower = config.option<ConfigOptionBool>("wipe_tower"); const ConfigOptionFloat* parking_pos_retraction = config.option<ConfigOptionFloat>("parking_pos_retraction"); const ConfigOptionFloat* extra_loading_move = config.option<ConfigOptionFloat>("extra_loading_move"); m_single_extruder_multi_material = single_extruder_multi_material != nullptr && single_extruder_multi_material->value; if (m_single_extruder_multi_material && wipe_tower != nullptr && parking_pos_retraction != nullptr && extra_loading_move != nullptr) { if (m_single_extruder_multi_material && m_result.extruders_count > 1 && wipe_tower->value) { m_parking_position = float(parking_pos_retraction->value); m_extra_loading_move = float(extra_loading_move->value); } } bool use_machine_limits = false; const ConfigOptionEnum<MachineLimitsUsage>* machine_limits_usage = config.option<ConfigOptionEnum<MachineLimitsUsage>>("machine_limits_usage"); if (machine_limits_usage != nullptr) use_machine_limits = machine_limits_usage->value != MachineLimitsUsage::Ignore; if (use_machine_limits && (m_flavor == gcfMarlinLegacy || m_flavor == gcfMarlinFirmware || m_flavor == gcfRepRapFirmware || m_flavor == gcfKlipper)) { const ConfigOptionFloats* machine_max_acceleration_x = config.option<ConfigOptionFloats>("machine_max_acceleration_x"); if (machine_max_acceleration_x != nullptr) m_time_processor.machine_limits.machine_max_acceleration_x.values = machine_max_acceleration_x->values; const ConfigOptionFloats* machine_max_acceleration_y = config.option<ConfigOptionFloats>("machine_max_acceleration_y"); if (machine_max_acceleration_y != nullptr) m_time_processor.machine_limits.machine_max_acceleration_y.values = machine_max_acceleration_y->values; const ConfigOptionFloats* machine_max_acceleration_z = config.option<ConfigOptionFloats>("machine_max_acceleration_z"); if (machine_max_acceleration_z != nullptr) m_time_processor.machine_limits.machine_max_acceleration_z.values = machine_max_acceleration_z->values; const ConfigOptionFloats* machine_max_acceleration_e = config.option<ConfigOptionFloats>("machine_max_acceleration_e"); if (machine_max_acceleration_e != nullptr) m_time_processor.machine_limits.machine_max_acceleration_e.values = machine_max_acceleration_e->values; const ConfigOptionFloats* machine_max_feedrate_x = config.option<ConfigOptionFloats>("machine_max_feedrate_x"); if (machine_max_feedrate_x != nullptr) m_time_processor.machine_limits.machine_max_feedrate_x.values = machine_max_feedrate_x->values; const ConfigOptionFloats* machine_max_feedrate_y = config.option<ConfigOptionFloats>("machine_max_feedrate_y"); if (machine_max_feedrate_y != nullptr) m_time_processor.machine_limits.machine_max_feedrate_y.values = machine_max_feedrate_y->values; const ConfigOptionFloats* machine_max_feedrate_z = config.option<ConfigOptionFloats>("machine_max_feedrate_z"); if (machine_max_feedrate_z != nullptr) m_time_processor.machine_limits.machine_max_feedrate_z.values = machine_max_feedrate_z->values; const ConfigOptionFloats* machine_max_feedrate_e = config.option<ConfigOptionFloats>("machine_max_feedrate_e"); if (machine_max_feedrate_e != nullptr) m_time_processor.machine_limits.machine_max_feedrate_e.values = machine_max_feedrate_e->values; const ConfigOptionFloats* machine_max_jerk_x = config.option<ConfigOptionFloats>("machine_max_jerk_x"); if (machine_max_jerk_x != nullptr) m_time_processor.machine_limits.machine_max_jerk_x.values = machine_max_jerk_x->values; const ConfigOptionFloats* machine_max_jerk_y = config.option<ConfigOptionFloats>("machine_max_jerk_y"); if (machine_max_jerk_y != nullptr) m_time_processor.machine_limits.machine_max_jerk_y.values = machine_max_jerk_y->values; const ConfigOptionFloats* machine_max_jerk_z = config.option<ConfigOptionFloats>("machine_max_jerkz"); if (machine_max_jerk_z != nullptr) m_time_processor.machine_limits.machine_max_jerk_z.values = machine_max_jerk_z->values; const ConfigOptionFloats* machine_max_jerk_e = config.option<ConfigOptionFloats>("machine_max_jerk_e"); if (machine_max_jerk_e != nullptr) m_time_processor.machine_limits.machine_max_jerk_e.values = machine_max_jerk_e->values; const ConfigOptionFloats* machine_max_acceleration_extruding = config.option<ConfigOptionFloats>("machine_max_acceleration_extruding"); if (machine_max_acceleration_extruding != nullptr) m_time_processor.machine_limits.machine_max_acceleration_extruding.values = machine_max_acceleration_extruding->values; const ConfigOptionFloats* machine_max_acceleration_retracting = config.option<ConfigOptionFloats>("machine_max_acceleration_retracting"); if (machine_max_acceleration_retracting != nullptr) m_time_processor.machine_limits.machine_max_acceleration_retracting.values = machine_max_acceleration_retracting->values; // Legacy Marlin and Klipper don't have separate travel acceleration, they use the 'extruding' value instead. const ConfigOptionFloats* machine_max_acceleration_travel = config.option<ConfigOptionFloats>((m_flavor == gcfMarlinLegacy || m_flavor == gcfKlipper) ? "machine_max_acceleration_extruding" : "machine_max_acceleration_travel"); if (machine_max_acceleration_travel != nullptr) m_time_processor.machine_limits.machine_max_acceleration_travel.values = machine_max_acceleration_travel->values; const ConfigOptionFloats* machine_min_extruding_rate = config.option<ConfigOptionFloats>("machine_min_extruding_rate"); if (machine_min_extruding_rate != nullptr) { m_time_processor.machine_limits.machine_min_extruding_rate.values = machine_min_extruding_rate->values; if (m_flavor == gcfRepRapFirmware) { // RRF does not support setting min feedrates. Set zero. m_time_processor.machine_limits.machine_min_extruding_rate.values.assign(m_time_processor.machine_limits.machine_min_extruding_rate.size(), 0.); } } const ConfigOptionFloats* machine_min_travel_rate = config.option<ConfigOptionFloats>("machine_min_travel_rate"); if (machine_min_travel_rate != nullptr) { m_time_processor.machine_limits.machine_min_travel_rate.values = machine_min_travel_rate->values; if (m_flavor == gcfRepRapFirmware) { // RRF does not support setting min feedrates. Set zero. m_time_processor.machine_limits.machine_min_travel_rate.values.assign(m_time_processor.machine_limits.machine_min_travel_rate.size(), 0.); } } } for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { float max_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_extruding, i); m_time_processor.machines[i].max_acceleration = max_acceleration; m_time_processor.machines[i].acceleration = (max_acceleration > 0.0f) ? max_acceleration : DEFAULT_ACCELERATION; float max_retract_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_retracting, i); m_time_processor.machines[i].max_retract_acceleration = max_retract_acceleration; m_time_processor.machines[i].retract_acceleration = (max_retract_acceleration > 0.0f) ? max_retract_acceleration : DEFAULT_RETRACT_ACCELERATION; float max_travel_acceleration = get_option_value(m_time_processor.machine_limits.machine_max_acceleration_travel, i); m_time_processor.machines[i].max_travel_acceleration = max_travel_acceleration; m_time_processor.machines[i].travel_acceleration = (max_travel_acceleration > 0.0f) ? max_travel_acceleration : DEFAULT_TRAVEL_ACCELERATION; } if (m_flavor == gcfMarlinLegacy || m_flavor == gcfMarlinFirmware) { // No Klipper here, it does not support silent mode. const ConfigOptionBool* silent_mode = config.option<ConfigOptionBool>("silent_mode"); if (silent_mode != nullptr) { if (silent_mode->value && m_time_processor.machine_limits.machine_max_acceleration_x.values.size() > 1) enable_stealth_time_estimator(true); } } const ConfigOptionBool* use_volumetric_e = config.option<ConfigOptionBool>("use_volumetric_e"); if (use_volumetric_e != nullptr) m_use_volumetric_e = use_volumetric_e->value; const ConfigOptionFloatOrPercent* first_layer_height = config.option<ConfigOptionFloatOrPercent>("first_layer_height"); if (first_layer_height != nullptr) m_first_layer_height = std::abs(first_layer_height->value); const ConfigOptionFloat* max_print_height = config.option<ConfigOptionFloat>("max_print_height"); if (max_print_height != nullptr) m_result.max_print_height = max_print_height->value; const ConfigOptionBool* spiral_vase = config.option<ConfigOptionBool>("spiral_vase"); if (spiral_vase != nullptr) m_spiral_vase_active = spiral_vase->value; const ConfigOptionFloat* z_offset = config.option<ConfigOptionFloat>("z_offset"); if (z_offset != nullptr) m_z_offset = z_offset->value; } void GCodeProcessor::enable_stealth_time_estimator(bool enabled) { m_time_processor.machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Stealth)].enabled = enabled; } void GCodeProcessor::reset() { m_units = EUnits::Millimeters; m_global_positioning_type = EPositioningType::Absolute; m_e_local_positioning_type = EPositioningType::Absolute; m_extruder_offsets = std::vector<Vec3f>(MIN_EXTRUDERS_COUNT, Vec3f::Zero()); m_flavor = gcfRepRapSprinter; m_start_position = { 0.0f, 0.0f, 0.0f, 0.0f }; m_end_position = { 0.0f, 0.0f, 0.0f, 0.0f }; m_saved_position = { 0.0f, 0.0f, 0.0f, 0.0f }; m_origin = { 0.0f, 0.0f, 0.0f, 0.0f }; m_cached_position.reset(); m_wiping = false; m_line_id = 0; m_last_line_id = 0; m_feedrate = 0.0f; m_feed_multiply.reset(); m_width = 0.0f; m_height = 0.0f; m_forced_width = 0.0f; m_forced_height = 0.0f; m_mm3_per_mm = 0.0f; m_fan_speed = 0.0f; m_z_offset = 0.0f; m_extrusion_role = GCodeExtrusionRole::None; m_extruder_id = 0; m_extruder_colors.resize(MIN_EXTRUDERS_COUNT); for (size_t i = 0; i < MIN_EXTRUDERS_COUNT; ++i) { m_extruder_colors[i] = static_cast<unsigned char>(i); } m_extruder_temps.resize(MIN_EXTRUDERS_COUNT); for (size_t i = 0; i < MIN_EXTRUDERS_COUNT; ++i) { m_extruder_temps[i] = 0.0f; } m_parking_position = 0.f; m_extra_loading_move = 0.f; m_extruded_last_z = 0.0f; m_first_layer_height = 0.0f; m_g1_line_id = 0; m_layer_id = 0; m_cp_color.reset(); m_producer = EProducer::Unknown; m_time_processor.reset(); m_used_filaments.reset(); m_result.reset(); m_result.id = ++s_result_id; m_use_volumetric_e = false; m_last_default_color_id = 0; m_options_z_corrector.reset(); m_spiral_vase_active = false; m_kissslicer_toolchange_time_correction = 0.0f; m_single_extruder_multi_material = false; #if ENABLE_GCODE_VIEWER_DATA_CHECKING m_mm3_per_mm_compare.reset(); m_height_compare.reset(); m_width_compare.reset(); #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING } static inline const char* skip_whitespaces(const char *begin, const char *end) { for (; begin != end && (*begin == ' ' || *begin == '\t'); ++ begin); return begin; } static inline const char* remove_eols(const char *begin, const char *end) { for (; begin != end && (*(end - 1) == '\r' || *(end - 1) == '\n'); -- end); return end; } // Load a G-code into a stand-alone G-code viewer. // throws CanceledException through print->throw_if_canceled() (sent by the caller as callback). void GCodeProcessor::process_file(const std::string& filename, std::function<void()> cancel_callback) { CNumericLocalesSetter locales_setter; #if ENABLE_GCODE_VIEWER_STATISTICS m_start_time = std::chrono::high_resolution_clock::now(); #endif // ENABLE_GCODE_VIEWER_STATISTICS // pre-processing // parse the gcode file to detect its producer { m_parser.parse_file_raw(filename, [this](GCodeReader& reader, const char *begin, const char *end) { begin = skip_whitespaces(begin, end); if (begin != end && *begin == ';') { // Comment. begin = skip_whitespaces(++ begin, end); end = remove_eols(begin, end); if (begin != end && detect_producer(std::string_view(begin, end - begin))) m_parser.quit_parsing(); } }); m_parser.reset(); // if the gcode was produced by PrusaSlicer, // extract the config from it if (m_producer == EProducer::PrusaSlicer || m_producer == EProducer::Slic3rPE || m_producer == EProducer::Slic3r) { DynamicPrintConfig config; config.apply(FullPrintConfig::defaults()); // Silently substitute unknown values by new ones for loading configurations from PrusaSlicer's own G-code. // Showing substitution log or errors may make sense, but we are not really reading many values from the G-code config, // thus a probability of incorrect substitution is low and the G-code viewer is a consumer-only anyways. config.load_from_gcode_file(filename, ForwardCompatibilitySubstitutionRule::EnableSilent); apply_config(config); } else { m_result.extruder_colors = DEFAULT_EXTRUDER_COLORS; if (m_producer == EProducer::Simplify3D) apply_config_simplify3d(filename); else if (m_producer == EProducer::SuperSlicer) apply_config_superslicer(filename); else if (m_producer == EProducer::KissSlicer) apply_config_kissslicer(filename); } } // process gcode m_result.filename = filename; m_result.id = ++s_result_id; // 1st move must be a dummy move m_result.moves.emplace_back(GCodeProcessorResult::MoveVertex()); size_t parse_line_callback_cntr = 10000; m_parser.parse_file(filename, [this, cancel_callback, &parse_line_callback_cntr](GCodeReader& reader, const GCodeReader::GCodeLine& line) { if (-- parse_line_callback_cntr == 0) { // Don't call the cancel_callback() too often, do it every at every 10000'th line. parse_line_callback_cntr = 10000; if (cancel_callback) cancel_callback(); } this->process_gcode_line(line, true); }, m_result.lines_ends); // Don't post-process the G-code to update time stamps. this->finalize(false); } void GCodeProcessor::initialize(const std::string& filename) { assert(is_decimal_separator_point()); #if ENABLE_GCODE_VIEWER_STATISTICS m_start_time = std::chrono::high_resolution_clock::now(); #endif // ENABLE_GCODE_VIEWER_STATISTICS // process gcode m_result.filename = filename; m_result.id = ++s_result_id; // 1st move must be a dummy move m_result.moves.emplace_back(GCodeProcessorResult::MoveVertex()); } void GCodeProcessor::process_buffer(const std::string &buffer) { //FIXME maybe cache GCodeLine gline to be over multiple parse_buffer() invocations. m_parser.parse_buffer(buffer, [this](GCodeReader&, const GCodeReader::GCodeLine& line) { this->process_gcode_line(line, false); }); } void GCodeProcessor::finalize(bool perform_post_process) { // update width/height of wipe moves for (GCodeProcessorResult::MoveVertex& move : m_result.moves) { if (move.type == EMoveType::Wipe) { move.width = Wipe_Width; move.height = Wipe_Height; } } // process the time blocks for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { TimeMachine& machine = m_time_processor.machines[i]; TimeMachine::CustomGCodeTime& gcode_time = machine.gcode_time; machine.calculate_time(); if (gcode_time.needed && gcode_time.cache != 0.0f) gcode_time.times.push_back({ CustomGCode::ColorChange, gcode_time.cache }); } m_used_filaments.process_caches(this); update_estimated_times_stats(); #if ENABLE_GCODE_VIEWER_DATA_CHECKING std::cout << "\n"; m_mm3_per_mm_compare.output(); m_height_compare.output(); m_width_compare.output(); #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING if (perform_post_process) post_process(); #if ENABLE_GCODE_VIEWER_STATISTICS m_result.time = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - m_start_time).count(); #endif // ENABLE_GCODE_VIEWER_STATISTICS } float GCodeProcessor::get_time(PrintEstimatedStatistics::ETimeMode mode) const { return (mode < PrintEstimatedStatistics::ETimeMode::Count) ? m_time_processor.machines[static_cast<size_t>(mode)].time : 0.0f; } std::string GCodeProcessor::get_time_dhm(PrintEstimatedStatistics::ETimeMode mode) const { return (mode < PrintEstimatedStatistics::ETimeMode::Count) ? short_time(get_time_dhms(m_time_processor.machines[static_cast<size_t>(mode)].time)) : std::string("N/A"); } float GCodeProcessor::get_travel_time(PrintEstimatedStatistics::ETimeMode mode) const { return (mode < PrintEstimatedStatistics::ETimeMode::Count) ? m_time_processor.machines[static_cast<size_t>(mode)].travel_time : 0.0f; } std::string GCodeProcessor::get_travel_time_dhm(PrintEstimatedStatistics::ETimeMode mode) const { return (mode < PrintEstimatedStatistics::ETimeMode::Count) ? short_time(get_time_dhms(m_time_processor.machines[static_cast<size_t>(mode)].travel_time)) : std::string("N/A"); } std::vector<std::pair<CustomGCode::Type, std::pair<float, float>>> GCodeProcessor::get_custom_gcode_times(PrintEstimatedStatistics::ETimeMode mode, bool include_remaining) const { std::vector<std::pair<CustomGCode::Type, std::pair<float, float>>> ret; if (mode < PrintEstimatedStatistics::ETimeMode::Count) { const TimeMachine& machine = m_time_processor.machines[static_cast<size_t>(mode)]; float total_time = 0.0f; for (const auto& [type, time] : machine.gcode_time.times) { float remaining = include_remaining ? machine.time - total_time : 0.0f; ret.push_back({ type, { time, remaining } }); total_time += time; } } return ret; } std::vector<std::pair<EMoveType, float>> GCodeProcessor::get_moves_time(PrintEstimatedStatistics::ETimeMode mode) const { std::vector<std::pair<EMoveType, float>> ret; if (mode < PrintEstimatedStatistics::ETimeMode::Count) { for (size_t i = 0; i < m_time_processor.machines[static_cast<size_t>(mode)].moves_time.size(); ++i) { float time = m_time_processor.machines[static_cast<size_t>(mode)].moves_time[i]; if (time > 0.0f) ret.push_back({ static_cast<EMoveType>(i), time }); } } return ret; } std::vector<std::pair<GCodeExtrusionRole, float>> GCodeProcessor::get_roles_time(PrintEstimatedStatistics::ETimeMode mode) const { std::vector<std::pair<GCodeExtrusionRole, float>> ret; if (mode < PrintEstimatedStatistics::ETimeMode::Count) { for (size_t i = 0; i < m_time_processor.machines[static_cast<size_t>(mode)].roles_time.size(); ++i) { float time = m_time_processor.machines[static_cast<size_t>(mode)].roles_time[i]; if (time > 0.0f) ret.push_back({ static_cast<GCodeExtrusionRole>(i), time }); } } return ret; } ConfigSubstitutions load_from_superslicer_gcode_file(const std::string& filename, DynamicPrintConfig& config, ForwardCompatibilitySubstitutionRule compatibility_rule) { // for reference, see: ConfigBase::load_from_gcode_file() boost::nowide::ifstream ifs(filename); auto header_end_pos = ifs.tellg(); ConfigSubstitutionContext substitutions_ctxt(compatibility_rule); size_t key_value_pairs = 0; ifs.seekg(0, ifs.end); auto file_length = ifs.tellg(); auto data_length = std::min<std::fstream::pos_type>(65535, file_length - header_end_pos); ifs.seekg(file_length - data_length, ifs.beg); std::vector<char> data(size_t(data_length) + 1, 0); ifs.read(data.data(), data_length); ifs.close(); key_value_pairs = ConfigBase::load_from_gcode_string_legacy(config, data.data(), substitutions_ctxt); if (key_value_pairs < 80) throw Slic3r::RuntimeError(format("Suspiciously low number of configuration values extracted from %1%: %2%", filename, key_value_pairs)); return std::move(substitutions_ctxt.substitutions); } void GCodeProcessor::apply_config_superslicer(const std::string& filename) { DynamicPrintConfig config; config.apply(FullPrintConfig::defaults()); load_from_superslicer_gcode_file(filename, config, ForwardCompatibilitySubstitutionRule::EnableSilent); apply_config(config); } void GCodeProcessor::apply_config_kissslicer(const std::string& filename) { size_t found_counter = 0; m_parser.parse_file_raw(filename, [this, &found_counter](GCodeReader& reader, const char* begin, const char* end) { auto detect_flavor = [this](const std::string_view comment) { static const std::string search_str = "firmware_type"; const size_t pos = comment.find(search_str); if (pos != comment.npos) { std::vector<std::string> elements; boost::split(elements, comment, boost::is_any_of("=")); if (elements.size() == 2) { try { switch (std::stoi(elements[1])) { default: { break; } case 1: case 2: case 3: { m_flavor = gcfMarlinLegacy; break; } } return true; } catch (...) { // invalid data, do nothing } } } return false; }; auto detect_printer = [this](const std::string_view comment) { static const std::string search_str = "printer_name"; const size_t pos = comment.find(search_str); if (pos != comment.npos) { std::vector<std::string> elements; boost::split(elements, comment, boost::is_any_of("=")); if (elements.size() == 2) { elements[1] = boost::to_upper_copy(elements[1]); if (boost::contains(elements[1], "MK2.5") || boost::contains(elements[1], "MK3")) m_kissslicer_toolchange_time_correction = 18.0f; // MMU2 else if (boost::contains(elements[1], "MK2")) m_kissslicer_toolchange_time_correction = 5.0f; // MMU } return true; } return false; }; begin = skip_whitespaces(begin, end); if (begin != end) { if (*begin == ';') { // Comment. begin = skip_whitespaces(++begin, end); end = remove_eols(begin, end); if (begin != end) { const std::string_view comment(begin, end - begin); if (detect_flavor(comment) || detect_printer(comment)) ++found_counter; } // we got the data, // force early exit to avoid parsing the entire file if (found_counter == 2) m_parser.quit_parsing(); } else if (*begin == 'M' || *begin == 'G') // the header has been fully parsed, quit search m_parser.quit_parsing(); } } ); m_parser.reset(); } std::vector<float> GCodeProcessor::get_layers_time(PrintEstimatedStatistics::ETimeMode mode) const { return (mode < PrintEstimatedStatistics::ETimeMode::Count) ? m_time_processor.machines[static_cast<size_t>(mode)].layers_time : std::vector<float>(); } void GCodeProcessor::apply_config_simplify3d(const std::string& filename) { struct BedSize { double x{ 0.0 }; double y{ 0.0 }; bool is_defined() const { return x > 0.0 && y > 0.0; } }; BedSize bed_size; bool producer_detected = false; m_parser.parse_file_raw(filename, [this, &bed_size, &producer_detected](GCodeReader& reader, const char* begin, const char* end) { auto extract_double = [](const std::string_view cmt, const std::string& key, double& out) { size_t pos = cmt.find(key); if (pos != cmt.npos) { pos = cmt.find(',', pos); if (pos != cmt.npos) { out = string_to_double_decimal_point(cmt.substr(pos+1)); return true; } } return false; }; auto extract_floats = [](const std::string_view cmt, const std::string& key, std::vector<float>& out) { size_t pos = cmt.find(key); if (pos != cmt.npos) { pos = cmt.find(',', pos); if (pos != cmt.npos) { const std::string_view data_str = cmt.substr(pos + 1); std::vector<std::string> values_str; boost::split(values_str, data_str, boost::is_any_of("|,"), boost::token_compress_on); for (const std::string& s : values_str) { out.emplace_back(static_cast<float>(string_to_double_decimal_point(s))); } return true; } } return false; }; begin = skip_whitespaces(begin, end); end = remove_eols(begin, end); if (begin != end) { if (*begin == ';') { // Comment. begin = skip_whitespaces(++ begin, end); if (begin != end) { std::string_view comment(begin, end - begin); if (producer_detected) { if (bed_size.x == 0.0 && comment.find("strokeXoverride") != comment.npos) extract_double(comment, "strokeXoverride", bed_size.x); else if (bed_size.y == 0.0 && comment.find("strokeYoverride") != comment.npos) extract_double(comment, "strokeYoverride", bed_size.y); else if (comment.find("filamentDiameters") != comment.npos) { m_result.filament_diameters.clear(); extract_floats(comment, "filamentDiameters", m_result.filament_diameters); } else if (comment.find("filamentDensities") != comment.npos) { m_result.filament_densities.clear(); extract_floats(comment, "filamentDensities", m_result.filament_densities); } else if (comment.find("filamentPricesPerKg") != comment.npos) { m_result.filament_cost.clear(); extract_floats(comment, "filamentPricesPerKg", m_result.filament_cost); } else if (comment.find("extruderDiameter") != comment.npos) { std::vector<float> extruder_diameters; extract_floats(comment, "extruderDiameter", extruder_diameters); m_result.extruders_count = extruder_diameters.size(); } } else if (boost::starts_with(comment, "G-Code generated by Simplify3D(R)")) producer_detected = true; } } else { // Some non-empty G-code line detected, stop parsing config comments. reader.quit_parsing(); } } }); if (m_result.extruders_count == 0) m_result.extruders_count = std::max<size_t>(1, std::min(m_result.filament_diameters.size(), std::min(m_result.filament_densities.size(), m_result.filament_cost.size()))); if (bed_size.is_defined()) { m_result.bed_shape = { { 0.0, 0.0 }, { bed_size.x, 0.0 }, { bed_size.x, bed_size.y }, { 0.0, bed_size.y } }; } } void GCodeProcessor::process_gcode_line(const GCodeReader::GCodeLine& line, bool producers_enabled) { /* std::cout << line.raw() << std::endl; */ ++m_line_id; // update start position m_start_position = m_end_position; const std::string_view cmd = line.cmd(); if (cmd.length() > 1) { // process command lines switch (cmd[0]) { case 'g': case 'G': switch (cmd.size()) { case 2: switch (cmd[1]) { case '0': { process_G0(line); break; } // Move case '1': { process_G1(line); break; } // Move case '2': { process_G2_G3(line, true); break; } // CW Arc Move case '3': { process_G2_G3(line, false); break; } // CCW Arc Move default: break; } break; case 3: switch (cmd[1]) { case '1': switch (cmd[2]) { case '0': { process_G10(line); break; } // Retract or Set tool temperature case '1': { process_G11(line); break; } // Unretract default: break; } break; case '2': switch (cmd[2]) { case '0': { process_G20(line); break; } // Set Units to Inches case '1': { process_G21(line); break; } // Set Units to Millimeters case '2': { process_G22(line); break; } // Firmware controlled retract case '3': { process_G23(line); break; } // Firmware controlled unretract case '8': { process_G28(line); break; } // Move to origin default: break; } break; case '6': switch (cmd[2]) { case '0': { process_G60(line); break; } // Save Current Position case '1': { process_G61(line); break; } // Return to Saved Position default: break; } break; case '9': switch (cmd[2]) { case '0': { process_G90(line); break; } // Set to Absolute Positioning case '1': { process_G91(line); break; } // Set to Relative Positioning case '2': { process_G92(line); break; } // Set Position default: break; } break; } break; default: break; } break; case 'm': case 'M': switch (cmd.size()) { case 2: switch (cmd[1]) { case '1': { process_M1(line); break; } // Sleep or Conditional stop default: break; } break; case 3: switch (cmd[1]) { case '8': switch (cmd[2]) { case '2': { process_M82(line); break; } // Set extruder to absolute mode case '3': { process_M83(line); break; } // Set extruder to relative mode default: break; } break; default: break; } break; case 4: switch (cmd[1]) { case '1': switch (cmd[2]) { case '0': switch (cmd[3]) { case '4': { process_M104(line); break; } // Set extruder temperature case '6': { process_M106(line); break; } // Set fan speed case '7': { process_M107(line); break; } // Disable fan case '8': { process_M108(line); break; } // Set tool (Sailfish) case '9': { process_M109(line); break; } // Set extruder temperature and wait default: break; } break; case '3': switch (cmd[3]) { case '2': { process_M132(line); break; } // Recall stored home offsets case '5': { process_M135(line); break; } // Set tool (MakerWare) default: break; } break; default: break; } break; case '2': switch (cmd[2]) { case '0': switch (cmd[3]) { case '1': { process_M201(line); break; } // Set max printing acceleration case '3': { process_M203(line); break; } // Set maximum feedrate case '4': { process_M204(line); break; } // Set default acceleration case '5': { process_M205(line); break; } // Advanced settings default: break; } break; case '2': switch (cmd[3]) { case '0': { process_M220(line); break; } // Set Feedrate Percentage case '1': { process_M221(line); break; } // Set extrude factor override percentage default: break; } break; default: break; } break; case '4': switch (cmd[2]) { case '0': switch (cmd[3]) { case '1': { process_M401(line); break; } // Repetier: Store x, y and z position case '2': { process_M402(line); break; } // Repetier: Go to stored position default: break; } break; default: break; } break; case '5': switch (cmd[2]) { case '6': switch (cmd[3]) { case '6': { process_M566(line); break; } // Set allowable instantaneous speed change default: break; } break; default: break; } break; case '7': switch (cmd[2]) { case '0': switch (cmd[3]) { case '2': { process_M702(line); break; } // Unload the current filament into the MK3 MMU2 unit at the end of print. default: break; } break; default: break; } break; default: break; } break; default: break; } break; case 't': case 'T': process_T(line); // Select Tool break; default: break; } } else { const std::string &comment = line.raw(); if (comment.length() > 2 && comment.front() == ';') // Process tags embedded into comments. Tag comments always start at the start of a line // with a comment and continue with a tag without any whitespace separator. process_tags(comment.substr(1), producers_enabled); } } #if __has_include(<charconv>) template <typename T, typename = void> struct is_from_chars_convertible : std::false_type {}; template <typename T> struct is_from_chars_convertible<T, std::void_t<decltype(std::from_chars(std::declval<const char*>(), std::declval<const char*>(), std::declval<T&>()))>> : std::true_type {}; #endif // Returns true if the number was parsed correctly into out and the number spanned the whole input string. template<typename T> [[nodiscard]] static inline bool parse_number(const std::string_view sv, T &out) { // https://www.bfilipek.com/2019/07/detect-overload-from-chars.html#example-stdfromchars #if __has_include(<charconv>) // Visual Studio 19 supports from_chars all right. // OSX compiler that we use only implements std::from_chars just for ints. // GCC that we compile on does not provide <charconv> at all. if constexpr (is_from_chars_convertible<T>::value) { auto str_end = sv.data() + sv.size(); auto [end_ptr, error_code] = std::from_chars(sv.data(), str_end, out); return error_code == std::errc() && end_ptr == str_end; } else #endif { // Legacy conversion, which is costly due to having to make a copy of the string before conversion. try { assert(sv.size() < 1024); assert(sv.data() != nullptr); std::string str { sv }; size_t read = 0; if constexpr (std::is_same_v<T, int>) out = std::stoi(str, &read); else if constexpr (std::is_same_v<T, long>) out = std::stol(str, &read); else if constexpr (std::is_same_v<T, float>) out = string_to_double_decimal_point(str, &read); else if constexpr (std::is_same_v<T, double>) out = string_to_double_decimal_point(str, &read); return str.size() == read; } catch (...) { return false; } } } void GCodeProcessor::process_tags(const std::string_view comment, bool producers_enabled) { // producers tags if (producers_enabled && process_producers_tags(comment)) return; // extrusion role tag if (boost::starts_with(comment, reserved_tag(ETags::Role))) { set_extrusion_role(string_to_gcode_extrusion_role(comment.substr(reserved_tag(ETags::Role).length()))); if (m_extrusion_role == GCodeExtrusionRole::ExternalPerimeter) m_seams_detector.activate(true); return; } // wipe start tag if (boost::starts_with(comment, reserved_tag(ETags::Wipe_Start))) { m_wiping = true; return; } // wipe end tag if (boost::starts_with(comment, reserved_tag(ETags::Wipe_End))) { m_wiping = false; return; } if (!producers_enabled || m_producer == EProducer::PrusaSlicer) { // height tag if (boost::starts_with(comment, reserved_tag(ETags::Height))) { if (!parse_number(comment.substr(reserved_tag(ETags::Height).size()), m_forced_height)) BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Height (" << comment << ")."; return; } // width tag if (boost::starts_with(comment, reserved_tag(ETags::Width))) { if (!parse_number(comment.substr(reserved_tag(ETags::Width).size()), m_forced_width)) BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Width (" << comment << ")."; return; } } // color change tag if (boost::starts_with(comment, reserved_tag(ETags::Color_Change))) { unsigned char extruder_id = 0; static std::vector<std::string> Default_Colors = { "#0B2C7A", // { 0.043f, 0.173f, 0.478f }, // bluish "#1C8891", // { 0.110f, 0.533f, 0.569f }, "#AAF200", // { 0.667f, 0.949f, 0.000f }, "#F5CE0A", // { 0.961f, 0.808f, 0.039f }, "#D16830", // { 0.820f, 0.408f, 0.188f }, "#942616", // { 0.581f, 0.149f, 0.087f } // reddish }; std::string color = Default_Colors[0]; auto is_valid_color = [](const std::string& color) { auto is_hex_digit = [](char c) { return ((c >= '0' && c <= '9') || (c >= 'A' && c <= 'F') || (c >= 'a' && c <= 'f')); }; if (color[0] != '#' || color.length() != 7) return false; for (int i = 1; i <= 6; ++i) { if (!is_hex_digit(color[i])) return false; } return true; }; std::vector<std::string> tokens; boost::split(tokens, comment, boost::is_any_of(","), boost::token_compress_on); if (tokens.size() > 1) { if (tokens[1][0] == 'T') { int eid; if (!parse_number(tokens[1].substr(1), eid) || eid < 0 || eid > 255) { BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Color_Change (" << comment << ")."; return; } extruder_id = static_cast<unsigned char>(eid); } } if (tokens.size() > 2) { if (is_valid_color(tokens[2])) color = tokens[2]; } else { color = Default_Colors[m_last_default_color_id]; ++m_last_default_color_id; if (m_last_default_color_id == Default_Colors.size()) m_last_default_color_id = 0; } if (extruder_id < m_extruder_colors.size()) m_extruder_colors[extruder_id] = static_cast<unsigned char>(m_extruder_offsets.size()) + m_cp_color.counter; // color_change position in list of color for preview ++m_cp_color.counter; if (m_cp_color.counter == UCHAR_MAX) m_cp_color.counter = 0; if (m_extruder_id == extruder_id) { m_cp_color.current = m_extruder_colors[extruder_id]; store_move_vertex(EMoveType::Color_change); CustomGCode::Item item = { static_cast<double>(m_end_position[2]), CustomGCode::ColorChange, extruder_id + 1, color, "" }; m_result.custom_gcode_per_print_z.emplace_back(item); m_options_z_corrector.set(); process_custom_gcode_time(CustomGCode::ColorChange); process_filaments(CustomGCode::ColorChange); } return; } // pause print tag if (comment == reserved_tag(ETags::Pause_Print)) { store_move_vertex(EMoveType::Pause_Print); CustomGCode::Item item = { static_cast<double>(m_end_position[2]), CustomGCode::PausePrint, m_extruder_id + 1, "", "" }; m_result.custom_gcode_per_print_z.emplace_back(item); m_options_z_corrector.set(); process_custom_gcode_time(CustomGCode::PausePrint); return; } // custom code tag if (comment == reserved_tag(ETags::Custom_Code)) { store_move_vertex(EMoveType::Custom_GCode); CustomGCode::Item item = { static_cast<double>(m_end_position[2]), CustomGCode::Custom, m_extruder_id + 1, "", "" }; m_result.custom_gcode_per_print_z.emplace_back(item); m_options_z_corrector.set(); return; } // layer change tag if (comment == reserved_tag(ETags::Layer_Change)) { ++m_layer_id; if (m_spiral_vase_active) { if (m_result.moves.empty() || m_result.spiral_vase_layers.empty()) // add a placeholder for layer height. the actual value will be set inside process_G1() method m_result.spiral_vase_layers.push_back({ FLT_MAX, { 0, 0 } }); else { const size_t move_id = m_result.moves.size() - 1; if (!m_result.spiral_vase_layers.empty()) m_result.spiral_vase_layers.back().second.second = move_id; // add a placeholder for layer height. the actual value will be set inside process_G1() method m_result.spiral_vase_layers.push_back({ FLT_MAX, { move_id, move_id } }); } } return; } #if ENABLE_GCODE_VIEWER_DATA_CHECKING // mm3_per_mm print tag if (boost::starts_with(comment, Mm3_Per_Mm_Tag)) { if (! parse_number(comment.substr(Mm3_Per_Mm_Tag.size()), m_mm3_per_mm_compare.last_tag_value)) BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Mm3_Per_Mm (" << comment << ")."; return; } #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING } bool GCodeProcessor::process_producers_tags(const std::string_view comment) { switch (m_producer) { case EProducer::Slic3rPE: case EProducer::Slic3r: case EProducer::SuperSlicer: case EProducer::PrusaSlicer: { return process_prusaslicer_tags(comment); } case EProducer::Cura: { return process_cura_tags(comment); } case EProducer::Simplify3D: { return process_simplify3d_tags(comment); } case EProducer::CraftWare: { return process_craftware_tags(comment); } case EProducer::ideaMaker: { return process_ideamaker_tags(comment); } case EProducer::KissSlicer: { return process_kissslicer_tags(comment); } case EProducer::BambuStudio: { return process_bambustudio_tags(comment); } default: { return false; } } } bool GCodeProcessor::process_prusaslicer_tags(const std::string_view comment) { return false; } bool GCodeProcessor::process_cura_tags(const std::string_view comment) { // TYPE -> extrusion role std::string tag = "TYPE:"; size_t pos = comment.find(tag); if (pos != comment.npos) { const std::string_view type = comment.substr(pos + tag.length()); if (type == "SKIRT") set_extrusion_role(GCodeExtrusionRole::Skirt); else if (type == "WALL-OUTER") set_extrusion_role(GCodeExtrusionRole::ExternalPerimeter); else if (type == "WALL-INNER") set_extrusion_role(GCodeExtrusionRole::Perimeter); else if (type == "SKIN") set_extrusion_role(GCodeExtrusionRole::SolidInfill); else if (type == "FILL") set_extrusion_role(GCodeExtrusionRole::InternalInfill); else if (type == "SUPPORT") set_extrusion_role(GCodeExtrusionRole::SupportMaterial); else if (type == "SUPPORT-INTERFACE") set_extrusion_role(GCodeExtrusionRole::SupportMaterialInterface); else if (type == "PRIME-TOWER") set_extrusion_role(GCodeExtrusionRole::WipeTower); else { set_extrusion_role(GCodeExtrusionRole::None); BOOST_LOG_TRIVIAL(warning) << "GCodeProcessor found unknown extrusion role: " << type; } if (m_extrusion_role == GCodeExtrusionRole::ExternalPerimeter) m_seams_detector.activate(true); return true; } // flavor tag = "FLAVOR:"; pos = comment.find(tag); if (pos != comment.npos) { const std::string_view flavor = comment.substr(pos + tag.length()); if (flavor == "BFB") m_flavor = gcfMarlinLegacy; // is this correct ? else if (flavor == "Mach3") m_flavor = gcfMach3; else if (flavor == "Makerbot") m_flavor = gcfMakerWare; else if (flavor == "UltiGCode") m_flavor = gcfMarlinLegacy; // is this correct ? else if (flavor == "Marlin(Volumetric)") m_flavor = gcfMarlinLegacy; // is this correct ? else if (flavor == "Griffin") m_flavor = gcfMarlinLegacy; // is this correct ? else if (flavor == "Repetier") m_flavor = gcfRepetier; else if (flavor == "RepRap") m_flavor = gcfRepRapFirmware; else if (flavor == "Marlin") m_flavor = gcfMarlinLegacy; else BOOST_LOG_TRIVIAL(warning) << "GCodeProcessor found unknown flavor: " << flavor; return true; } // layer tag = "LAYER:"; pos = comment.find(tag); if (pos != comment.npos) { ++m_layer_id; return true; } return false; } bool GCodeProcessor::process_simplify3d_tags(const std::string_view comment) { // extrusion roles // in older versions the comments did not contain the key 'feature' std::string_view cmt = comment; size_t pos = cmt.find(" feature"); if (pos == 0) cmt.remove_prefix(8); // ; skirt pos = cmt.find(" skirt"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::Skirt); return true; } // ; outer perimeter pos = cmt.find(" outer perimeter"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::ExternalPerimeter); m_seams_detector.activate(true); return true; } // ; inner perimeter pos = cmt.find(" inner perimeter"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::Perimeter); return true; } // ; gap fill pos = cmt.find(" gap fill"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::GapFill); return true; } // ; infill pos = cmt.find(" infill"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::InternalInfill); return true; } // ; solid layer pos = cmt.find(" solid layer"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::SolidInfill); return true; } // ; bridge pos = cmt.find(" bridge"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::BridgeInfill); return true; } // ; support pos = cmt.find(" support"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::SupportMaterial); return true; } // ; dense support pos = cmt.find(" dense support"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::SupportMaterialInterface); return true; } // ; prime pillar pos = cmt.find(" prime pillar"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::WipeTower); return true; } // ; ooze shield pos = cmt.find(" ooze shield"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::None); // Missing mapping return true; } // ; raft pos = cmt.find(" raft"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::SupportMaterial); return true; } // ; internal single extrusion pos = cmt.find(" internal single extrusion"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::None); // Missing mapping return true; } // geometry // ; tool std::string tag = " tool"; pos = cmt.find(tag); if (pos == 0) { const std::string_view data = cmt.substr(pos + tag.length()); std::string h_tag = "H"; size_t h_start = data.find(h_tag); size_t h_end = data.find_first_of(' ', h_start); std::string w_tag = "W"; size_t w_start = data.find(w_tag); size_t w_end = data.find_first_of(' ', w_start); if (h_start != data.npos) { if (!parse_number(data.substr(h_start + 1, (h_end != data.npos) ? h_end - h_start - 1 : h_end), m_forced_height)) BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Height (" << comment << ")."; } if (w_start != data.npos) { if (!parse_number(data.substr(w_start + 1, (w_end != data.npos) ? w_end - w_start - 1 : w_end), m_forced_width)) BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Width (" << comment << ")."; } return true; } // ; layer | ;layer tag = "layer"; pos = cmt.find(tag); if (pos == 0 || pos == 1) { // skip lines "; layer end" const std::string_view data = cmt.substr(pos + tag.length()); size_t end_start = data.find("end"); if (end_start == data.npos) ++m_layer_id; return true; } return false; } bool GCodeProcessor::process_craftware_tags(const std::string_view comment) { // segType -> extrusion role std::string tag = "segType:"; size_t pos = comment.find(tag); if (pos != comment.npos) { const std::string_view type = comment.substr(pos + tag.length()); if (type == "Skirt") set_extrusion_role(GCodeExtrusionRole::Skirt); else if (type == "Perimeter") set_extrusion_role(GCodeExtrusionRole::ExternalPerimeter); else if (type == "HShell") set_extrusion_role(GCodeExtrusionRole::None); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< else if (type == "InnerHair") set_extrusion_role(GCodeExtrusionRole::None); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< else if (type == "Loop") set_extrusion_role(GCodeExtrusionRole::None); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< else if (type == "Infill") set_extrusion_role(GCodeExtrusionRole::InternalInfill); else if (type == "Raft") set_extrusion_role(GCodeExtrusionRole::Skirt); else if (type == "Support") set_extrusion_role(GCodeExtrusionRole::SupportMaterial); else if (type == "SupportTouch") set_extrusion_role(GCodeExtrusionRole::SupportMaterial); else if (type == "SoftSupport") set_extrusion_role(GCodeExtrusionRole::SupportMaterialInterface); else if (type == "Pillar") set_extrusion_role(GCodeExtrusionRole::WipeTower); else { set_extrusion_role(GCodeExtrusionRole::None); BOOST_LOG_TRIVIAL(warning) << "GCodeProcessor found unknown extrusion role: " << type; } if (m_extrusion_role == GCodeExtrusionRole::ExternalPerimeter) m_seams_detector.activate(true); return true; } // layer pos = comment.find(" Layer #"); if (pos == 0) { ++m_layer_id; return true; } return false; } bool GCodeProcessor::process_ideamaker_tags(const std::string_view comment) { // TYPE -> extrusion role std::string tag = "TYPE:"; size_t pos = comment.find(tag); if (pos != comment.npos) { const std::string_view type = comment.substr(pos + tag.length()); if (type == "RAFT") set_extrusion_role(GCodeExtrusionRole::Skirt); else if (type == "WALL-OUTER") set_extrusion_role(GCodeExtrusionRole::ExternalPerimeter); else if (type == "WALL-INNER") set_extrusion_role(GCodeExtrusionRole::Perimeter); else if (type == "SOLID-FILL") set_extrusion_role(GCodeExtrusionRole::SolidInfill); else if (type == "FILL") set_extrusion_role(GCodeExtrusionRole::InternalInfill); else if (type == "BRIDGE") set_extrusion_role(GCodeExtrusionRole::BridgeInfill); else if (type == "SUPPORT") set_extrusion_role(GCodeExtrusionRole::SupportMaterial); else { set_extrusion_role(GCodeExtrusionRole::None); BOOST_LOG_TRIVIAL(warning) << "GCodeProcessor found unknown extrusion role: " << type; } if (m_extrusion_role == GCodeExtrusionRole::ExternalPerimeter) m_seams_detector.activate(true); return true; } // geometry // width tag = "WIDTH:"; pos = comment.find(tag); if (pos != comment.npos) { if (!parse_number(comment.substr(pos + tag.length()), m_forced_width)) BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Width (" << comment << ")."; return true; } // height tag = "HEIGHT:"; pos = comment.find(tag); if (pos != comment.npos) { if (!parse_number(comment.substr(pos + tag.length()), m_forced_height)) BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid value for Height (" << comment << ")."; return true; } // layer pos = comment.find("LAYER:"); if (pos == 0) { ++m_layer_id; return true; } return false; } bool GCodeProcessor::process_kissslicer_tags(const std::string_view comment) { // extrusion roles // ; 'Raft Path' size_t pos = comment.find(" 'Raft Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::Skirt); return true; } // ; 'Support Interface Path' pos = comment.find(" 'Support Interface Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::SupportMaterialInterface); return true; } // ; 'Travel/Ironing Path' pos = comment.find(" 'Travel/Ironing Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::Ironing); return true; } // ; 'Support (may Stack) Path' pos = comment.find(" 'Support (may Stack) Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::SupportMaterial); return true; } // ; 'Perimeter Path' pos = comment.find(" 'Perimeter Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::ExternalPerimeter); m_seams_detector.activate(true); return true; } // ; 'Pillar Path' pos = comment.find(" 'Pillar Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::None); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< return true; } // ; 'Destring/Wipe/Jump Path' pos = comment.find(" 'Destring/Wipe/Jump Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::None); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< return true; } // ; 'Prime Pillar Path' pos = comment.find(" 'Prime Pillar Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::None); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< return true; } // ; 'Loop Path' pos = comment.find(" 'Loop Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::None); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< return true; } // ; 'Crown Path' pos = comment.find(" 'Crown Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::None); // <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< return true; } // ; 'Solid Path' pos = comment.find(" 'Solid Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::None); return true; } // ; 'Stacked Sparse Infill Path' pos = comment.find(" 'Stacked Sparse Infill Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::InternalInfill); return true; } // ; 'Sparse Infill Path' pos = comment.find(" 'Sparse Infill Path'"); if (pos == 0) { set_extrusion_role(GCodeExtrusionRole::SolidInfill); return true; } // geometry // layer pos = comment.find(" BEGIN_LAYER_"); if (pos == 0) { ++m_layer_id; return true; } return false; } bool GCodeProcessor::process_bambustudio_tags(const std::string_view comment) { // extrusion roles std::string tag = "FEATURE: "; size_t pos = comment.find(tag); if (pos != comment.npos) { const std::string_view type = comment.substr(pos + tag.length()); if (type == "Custom") set_extrusion_role(GCodeExtrusionRole::Custom); else if (type == "Inner wall") set_extrusion_role(GCodeExtrusionRole::Perimeter); else if (type == "Outer wall") set_extrusion_role(GCodeExtrusionRole::ExternalPerimeter); else if (type == "Overhang wall") set_extrusion_role(GCodeExtrusionRole::OverhangPerimeter); else if (type == "Gap infill") set_extrusion_role(GCodeExtrusionRole::GapFill); else if (type == "Bridge") set_extrusion_role(GCodeExtrusionRole::BridgeInfill); else if (type == "Sparse infill") set_extrusion_role(GCodeExtrusionRole::InternalInfill); else if (type == "Internal solid infill") set_extrusion_role(GCodeExtrusionRole::SolidInfill); else if (type == "Top surface") set_extrusion_role(GCodeExtrusionRole::TopSolidInfill); else if (type == "Bottom surface") set_extrusion_role(GCodeExtrusionRole::None); else if (type == "Ironing") set_extrusion_role(GCodeExtrusionRole::Ironing); else if (type == "Skirt") set_extrusion_role(GCodeExtrusionRole::Skirt); else if (type == "Brim") set_extrusion_role(GCodeExtrusionRole::Skirt); else if (type == "Support") set_extrusion_role(GCodeExtrusionRole::SupportMaterial); else if (type == "Support interface") set_extrusion_role(GCodeExtrusionRole::SupportMaterialInterface); else if (type == "Support transition") set_extrusion_role(GCodeExtrusionRole::None); else if (type == "Prime tower") set_extrusion_role(GCodeExtrusionRole::WipeTower); else { set_extrusion_role(GCodeExtrusionRole::None); BOOST_LOG_TRIVIAL(warning) << "GCodeProcessor found unknown extrusion role: " << type; } if (m_extrusion_role == GCodeExtrusionRole::ExternalPerimeter) m_seams_detector.activate(true); return true; } return false; } bool GCodeProcessor::detect_producer(const std::string_view comment) { for (const auto& [id, search_string] : Producers) { const size_t pos = comment.find(search_string); if (pos != comment.npos) { m_producer = id; BOOST_LOG_TRIVIAL(info) << "Detected gcode producer: " << search_string; return true; } } return false; } void GCodeProcessor::process_G0(const GCodeReader::GCodeLine& line) { process_G1(line); } void GCodeProcessor::process_G1(const GCodeReader::GCodeLine& line) { const float filament_diameter = (static_cast<size_t>(m_extruder_id) < m_result.filament_diameters.size()) ? m_result.filament_diameters[m_extruder_id] : m_result.filament_diameters.back(); const float filament_radius = 0.5f * filament_diameter; const float area_filament_cross_section = static_cast<float>(M_PI) * sqr(filament_radius); auto move_type = [this](const AxisCoords& delta_pos) { EMoveType type = EMoveType::Noop; if (m_wiping) type = EMoveType::Wipe; else if (delta_pos[E] < 0.0f) type = (delta_pos[X] != 0.0f || delta_pos[Y] != 0.0f || delta_pos[Z] != 0.0f) ? EMoveType::Travel : EMoveType::Retract; else if (delta_pos[E] > 0.0f) { if (delta_pos[X] == 0.0f && delta_pos[Y] == 0.0f) type = (delta_pos[Z] == 0.0f) ? EMoveType::Unretract : EMoveType::Travel; else if (delta_pos[X] != 0.0f || delta_pos[Y] != 0.0f) type = EMoveType::Extrude; } else if (delta_pos[X] != 0.0f || delta_pos[Y] != 0.0f || delta_pos[Z] != 0.0f) type = EMoveType::Travel; return type; }; ++m_g1_line_id; // enable processing of lines M201/M203/M204/M205 m_time_processor.machine_envelope_processing_enabled = true; // updates axes positions from line for (unsigned char a = X; a <= E; ++a) { m_end_position[a] = extract_absolute_position_on_axis((Axis)a, line, double(area_filament_cross_section)); } // updates feedrate from line, if present if (line.has_f()) m_feedrate = m_feed_multiply.current * line.f() * MMMIN_TO_MMSEC; // calculates movement deltas AxisCoords delta_pos; for (unsigned char a = X; a <= E; ++a) delta_pos[a] = m_end_position[a] - m_start_position[a]; if (std::all_of(delta_pos.begin(), delta_pos.end(), [](double d) { return d == 0.; })) return; const float volume_extruded_filament = area_filament_cross_section * delta_pos[E]; if (volume_extruded_filament != 0.) m_used_filaments.increase_caches(volume_extruded_filament, m_extruder_id, area_filament_cross_section * m_parking_position, area_filament_cross_section * m_extra_loading_move); const EMoveType type = move_type(delta_pos); if (type == EMoveType::Extrude) { const float delta_xyz = std::sqrt(sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z])); const float area_toolpath_cross_section = volume_extruded_filament / delta_xyz; // volume extruded filament / tool displacement = area toolpath cross section m_mm3_per_mm = area_toolpath_cross_section; #if ENABLE_GCODE_VIEWER_DATA_CHECKING m_mm3_per_mm_compare.update(area_toolpath_cross_section, m_extrusion_role); #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING if (m_forced_height > 0.0f) m_height = m_forced_height; else if (m_layer_id == 0) m_height = m_first_layer_height + m_z_offset; else if (line.comment() != INTERNAL_G2G3_TAG){ if (m_end_position[Z] > m_extruded_last_z + EPSILON && delta_pos[Z] == 0.0) m_height = m_end_position[Z] - m_extruded_last_z; } if (m_height == 0.0f) m_height = DEFAULT_TOOLPATH_HEIGHT; if (m_end_position[Z] == 0.0f || (m_extrusion_role == GCodeExtrusionRole::Custom && m_layer_id == 0)) m_end_position[Z] = m_height; if (line.comment() != INTERNAL_G2G3_TAG) m_extruded_last_z = m_end_position[Z]; m_options_z_corrector.update(m_height); #if ENABLE_GCODE_VIEWER_DATA_CHECKING m_height_compare.update(m_height, m_extrusion_role); #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING if (m_forced_width > 0.0f) m_width = m_forced_width; else if (m_extrusion_role == GCodeExtrusionRole::ExternalPerimeter) // cross section: rectangle m_width = delta_pos[E] * static_cast<float>(M_PI * sqr(1.05f * filament_radius)) / (delta_xyz * m_height); else if (m_extrusion_role == GCodeExtrusionRole::BridgeInfill || m_extrusion_role == GCodeExtrusionRole::None) // cross section: circle m_width = static_cast<float>(m_result.filament_diameters[m_extruder_id]) * std::sqrt(delta_pos[E] / delta_xyz); else // cross section: rectangle + 2 semicircles m_width = delta_pos[E] * static_cast<float>(M_PI * sqr(filament_radius)) / (delta_xyz * m_height) + static_cast<float>(1.0 - 0.25 * M_PI) * m_height; if (m_width == 0.0f) m_width = DEFAULT_TOOLPATH_WIDTH; // clamp width to avoid artifacts which may arise from wrong values of m_height m_width = std::min(m_width, std::max(2.0f, 4.0f * m_height)); #if ENABLE_GCODE_VIEWER_DATA_CHECKING m_width_compare.update(m_width, m_extrusion_role); #endif // ENABLE_GCODE_VIEWER_DATA_CHECKING } // time estimate section auto move_length = [](const AxisCoords& delta_pos) { float sq_xyz_length = sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]); return (sq_xyz_length > 0.0f) ? std::sqrt(sq_xyz_length) : std::abs(delta_pos[E]); }; auto is_extrusion_only_move = [](const AxisCoords& delta_pos) { return delta_pos[X] == 0.0f && delta_pos[Y] == 0.0f && delta_pos[Z] == 0.0f && delta_pos[E] != 0.0f; }; const float distance = move_length(delta_pos); assert(distance != 0.0f); const float inv_distance = 1.0f / distance; for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { TimeMachine& machine = m_time_processor.machines[i]; if (!machine.enabled) continue; TimeMachine::State& curr = machine.curr; TimeMachine::State& prev = machine.prev; std::vector<TimeBlock>& blocks = machine.blocks; curr.feedrate = (delta_pos[E] == 0.0f) ? minimum_travel_feedrate(static_cast<PrintEstimatedStatistics::ETimeMode>(i), m_feedrate) : minimum_feedrate(static_cast<PrintEstimatedStatistics::ETimeMode>(i), m_feedrate); TimeBlock block; block.move_type = type; block.role = m_extrusion_role; block.distance = distance; block.g1_line_id = m_g1_line_id; block.layer_id = std::max<unsigned int>(1, m_layer_id); // calculates block cruise feedrate float min_feedrate_factor = 1.0f; for (unsigned char a = X; a <= E; ++a) { curr.axis_feedrate[a] = curr.feedrate * delta_pos[a] * inv_distance; if (a == E) curr.axis_feedrate[a] *= machine.extrude_factor_override_percentage; curr.abs_axis_feedrate[a] = std::abs(curr.axis_feedrate[a]); if (curr.abs_axis_feedrate[a] != 0.0f) { const float axis_max_feedrate = get_axis_max_feedrate(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a)); if (axis_max_feedrate != 0.0f) min_feedrate_factor = std::min<float>(min_feedrate_factor, axis_max_feedrate / curr.abs_axis_feedrate[a]); } } block.feedrate_profile.cruise = min_feedrate_factor * curr.feedrate; if (min_feedrate_factor < 1.0f) { for (unsigned char a = X; a <= E; ++a) { curr.axis_feedrate[a] *= min_feedrate_factor; curr.abs_axis_feedrate[a] *= min_feedrate_factor; } } // calculates block acceleration float acceleration = (type == EMoveType::Travel) ? get_travel_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i)) : (is_extrusion_only_move(delta_pos) ? get_retract_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i)) : get_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i))); for (unsigned char a = X; a <= E; ++a) { const float axis_max_acceleration = get_axis_max_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a)); if (acceleration * std::abs(delta_pos[a]) * inv_distance > axis_max_acceleration) acceleration = axis_max_acceleration; } block.acceleration = acceleration; // calculates block exit feedrate curr.safe_feedrate = block.feedrate_profile.cruise; for (unsigned char a = X; a <= E; ++a) { const float axis_max_jerk = get_axis_max_jerk(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a)); if (curr.abs_axis_feedrate[a] > axis_max_jerk) curr.safe_feedrate = std::min(curr.safe_feedrate, axis_max_jerk); } block.feedrate_profile.exit = curr.safe_feedrate; static const float PREVIOUS_FEEDRATE_THRESHOLD = 0.0001f; // calculates block entry feedrate float vmax_junction = curr.safe_feedrate; if (!blocks.empty() && prev.feedrate > PREVIOUS_FEEDRATE_THRESHOLD) { bool prev_speed_larger = prev.feedrate > block.feedrate_profile.cruise; float smaller_speed_factor = prev_speed_larger ? (block.feedrate_profile.cruise / prev.feedrate) : (prev.feedrate / block.feedrate_profile.cruise); // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting. vmax_junction = prev_speed_larger ? block.feedrate_profile.cruise : prev.feedrate; float v_factor = 1.0f; bool limited = false; for (unsigned char a = X; a <= E; ++a) { // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop. float v_exit = prev.axis_feedrate[a]; float v_entry = curr.axis_feedrate[a]; if (prev_speed_larger) v_exit *= smaller_speed_factor; if (limited) { v_exit *= v_factor; v_entry *= v_factor; } // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction. const float jerk = (v_exit > v_entry) ? ((v_entry > 0.0f || v_exit < 0.0f) ? // coasting (v_exit - v_entry) : // axis reversal std::max(v_exit, -v_entry)) : // v_exit <= v_entry ((v_entry < 0.0f || v_exit > 0.0f) ? // coasting (v_entry - v_exit) : // axis reversal std::max(-v_exit, v_entry)); const float axis_max_jerk = get_axis_max_jerk(static_cast<PrintEstimatedStatistics::ETimeMode>(i), static_cast<Axis>(a)); if (jerk > axis_max_jerk) { v_factor *= axis_max_jerk / jerk; limited = true; } } if (limited) vmax_junction *= v_factor; // Now the transition velocity is known, which maximizes the shared exit / entry velocity while // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints. const float vmax_junction_threshold = vmax_junction * 0.99f; // Not coasting. The machine will stop and start the movements anyway, better to start the segment from start. if (prev.safe_feedrate > vmax_junction_threshold && curr.safe_feedrate > vmax_junction_threshold) vmax_junction = curr.safe_feedrate; } const float v_allowable = max_allowable_speed(-acceleration, curr.safe_feedrate, block.distance); block.feedrate_profile.entry = std::min(vmax_junction, v_allowable); block.max_entry_speed = vmax_junction; block.flags.nominal_length = (block.feedrate_profile.cruise <= v_allowable); block.flags.recalculate = true; block.safe_feedrate = curr.safe_feedrate; // calculates block trapezoid block.calculate_trapezoid(); // updates previous prev = curr; blocks.push_back(block); if (blocks.size() > TimeProcessor::Planner::refresh_threshold) machine.calculate_time(TimeProcessor::Planner::queue_size); } if (m_seams_detector.is_active()) { // check for seam starting vertex if (type == EMoveType::Extrude && m_extrusion_role == GCodeExtrusionRole::ExternalPerimeter && !m_seams_detector.has_first_vertex()) m_seams_detector.set_first_vertex(m_result.moves.back().position - m_extruder_offsets[m_extruder_id]); // check for seam ending vertex and store the resulting move else if ((type != EMoveType::Extrude || (m_extrusion_role != GCodeExtrusionRole::ExternalPerimeter && m_extrusion_role != GCodeExtrusionRole::OverhangPerimeter)) && m_seams_detector.has_first_vertex()) { auto set_end_position = [this](const Vec3f& pos) { m_end_position[X] = pos.x(); m_end_position[Y] = pos.y(); m_end_position[Z] = pos.z(); }; const Vec3f curr_pos(m_end_position[X], m_end_position[Y], m_end_position[Z]); const Vec3f new_pos = m_result.moves.back().position - m_extruder_offsets[m_extruder_id]; const std::optional<Vec3f> first_vertex = m_seams_detector.get_first_vertex(); // the threshold value = 0.0625f == 0.25 * 0.25 is arbitrary, we may find some smarter condition later if ((new_pos - *first_vertex).squaredNorm() < 0.0625f) { set_end_position(0.5f * (new_pos + *first_vertex) + m_z_offset * Vec3f::UnitZ()); store_move_vertex(EMoveType::Seam); set_end_position(curr_pos); } m_seams_detector.activate(false); } } else if (type == EMoveType::Extrude && m_extrusion_role == GCodeExtrusionRole::ExternalPerimeter) { m_seams_detector.activate(true); m_seams_detector.set_first_vertex(m_result.moves.back().position - m_extruder_offsets[m_extruder_id]); } if (m_spiral_vase_active && !m_result.spiral_vase_layers.empty()) { if (m_result.spiral_vase_layers.back().first == FLT_MAX && delta_pos[Z] >= 0.0) // replace layer height placeholder with correct value m_result.spiral_vase_layers.back().first = static_cast<float>(m_end_position[Z]); if (!m_result.moves.empty()) m_result.spiral_vase_layers.back().second.second = m_result.moves.size() - 1; } // store move store_move_vertex(type, line.comment() == INTERNAL_G2G3_TAG); } void GCodeProcessor::process_G2_G3(const GCodeReader::GCodeLine& line, bool clockwise) { if (!line.has('I') || !line.has('J')) return; // relative center Vec3f rel_center = Vec3f::Zero(); if (!line.has_value('I', rel_center.x()) || !line.has_value('J', rel_center.y())) return; // scale center, if needed if (m_units == EUnits::Inches) rel_center *= INCHES_TO_MM; struct Arc { Vec3d start{ Vec3d::Zero() }; Vec3d end{ Vec3d::Zero() }; Vec3d center{ Vec3d::Zero() }; double angle{ 0.0 }; double delta_x() const { return end.x() - start.x(); } double delta_y() const { return end.y() - start.y(); } double delta_z() const { return end.z() - start.z(); } double length() const { return angle * start_radius(); } double travel_length() const { return std::sqrt(sqr(length() + sqr(delta_z()))); } double start_radius() const { return (start - center).norm(); } double end_radius() const { return (end - center).norm(); } Vec3d relative_start() const { return start - center; } Vec3d relative_end() const { return end - center; } bool is_full_circle() const { return std::abs(delta_x()) < EPSILON && std::abs(delta_y()) < EPSILON; } }; Arc arc; // arc start endpoint arc.start = Vec3d(m_start_position[X], m_start_position[Y], m_start_position[Z]); // arc center arc.center = arc.start + rel_center.cast<double>(); const float filament_diameter = (static_cast<size_t>(m_extruder_id) < m_result.filament_diameters.size()) ? m_result.filament_diameters[m_extruder_id] : m_result.filament_diameters.back(); const float filament_radius = 0.5f * filament_diameter; const float area_filament_cross_section = static_cast<float>(M_PI) * sqr(filament_radius); AxisCoords end_position = m_start_position; for (unsigned char a = X; a <= E; ++a) { end_position[a] = extract_absolute_position_on_axis((Axis)a, line, double(area_filament_cross_section)); } // arc end endpoint arc.end = Vec3d(end_position[X], end_position[Y], end_position[Z]); // radii if (std::abs(arc.end_radius() - arc.start_radius()) > EPSILON) { // what to do ??? } // updates feedrate from line std::optional<float> feedrate; if (line.has_f()) feedrate = m_feed_multiply.current * line.f() * MMMIN_TO_MMSEC; // updates extrusion from line std::optional<float> extrusion; if (line.has_e()) extrusion = end_position[E] - m_start_position[E]; // relative arc endpoints const Vec3d rel_arc_start = arc.relative_start(); const Vec3d rel_arc_end = arc.relative_end(); // arc angle if (arc.is_full_circle()) arc.angle = 2.0 * PI; else { arc.angle = std::atan2(rel_arc_start.x() * rel_arc_end.y() - rel_arc_start.y() * rel_arc_end.x(), rel_arc_start.x() * rel_arc_end.x() + rel_arc_start.y() * rel_arc_end.y()); if (arc.angle < 0.0) arc.angle += 2.0 * PI; if (clockwise) arc.angle -= 2.0 * PI; } const double travel_length = arc.travel_length(); if (travel_length < 0.001) return; auto adjust_target = [this, area_filament_cross_section](const AxisCoords& target, const AxisCoords& prev_position) { AxisCoords ret = target; if (m_global_positioning_type == EPositioningType::Relative) { for (unsigned char a = X; a <= E; ++a) { ret[a] -= prev_position[a]; } } else if (m_e_local_positioning_type == EPositioningType::Relative) ret[E] -= prev_position[E]; if (m_use_volumetric_e) ret[E] *= area_filament_cross_section; const double lengthsScaleFactor = (m_units == EUnits::Inches) ? double(INCHES_TO_MM) : 1.0; for (unsigned char a = X; a <= E; ++a) { ret[a] /= lengthsScaleFactor; } return ret; }; auto internal_only_g1_line = [](const AxisCoords& target, bool has_z, const std::optional<float>& feedrate, const std::optional<float>& extrusion) { std::string ret = (boost::format("G1 X%1% Y%2%") % target[X] % target[Y]).str(); if (has_z) ret += (boost::format(" Z%1%") % target[Z]).str(); if (feedrate.has_value()) ret += (boost::format(" F%1%") % *feedrate).str(); if (extrusion.has_value()) ret += (boost::format(" E%1%") % target[E]).str(); ret += (boost::format(" ;%1%\n") % INTERNAL_G2G3_TAG).str(); return ret; }; // calculate arc segments // reference: // Prusa-Firmware\Firmware\motion_control.cpp - mc_arc() // https://github.com/prusa3d/Prusa-Firmware/blob/MK3/Firmware/motion_control.cpp // segments count static const double MM_PER_ARC_SEGMENT = 0.5; const size_t segments = std::ceil(travel_length / MM_PER_ARC_SEGMENT); assert(segments >= 1); const double theta_per_segment = arc.angle / double(segments); const double z_per_segment = arc.delta_z() / double(segments); const double extruder_per_segment = (extrusion.has_value()) ? *extrusion / double(segments) : 0.0; const double sq_theta_per_segment = sqr(theta_per_segment); const double cos_T = 1.0 - 0.5 * sq_theta_per_segment; // Small angle approximation const double sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6.0; // Small angle approximation AxisCoords prev_target = m_start_position; AxisCoords arc_target; // Initialize the linear axis arc_target[Z] = m_start_position[Z]; // Initialize the extruder axis arc_target[E] = m_start_position[E]; static const size_t N_ARC_CORRECTION = 25; Vec3d curr_rel_arc_start = arc.relative_start(); std::string gcode; size_t n_arc_correction = N_ARC_CORRECTION; for (size_t i = 1; i < segments; ++i) { if (n_arc_correction-- == 0) { // Calculate the actual position for r_axis_x and r_axis_y const double cos_Ti = ::cos((double)i * theta_per_segment); const double sin_Ti = ::sin((double)i * theta_per_segment); curr_rel_arc_start.x() = -double(rel_center.x()) * cos_Ti + double(rel_center.y()) * sin_Ti; curr_rel_arc_start.y() = -double(rel_center.x()) * sin_Ti - double(rel_center.y()) * cos_Ti; // reset n_arc_correction n_arc_correction = N_ARC_CORRECTION; } else { // Calculate X and Y using the small angle approximation const float r_axisi = curr_rel_arc_start.x() * sin_T + curr_rel_arc_start.y() * cos_T; curr_rel_arc_start.x() = curr_rel_arc_start.x() * cos_T - curr_rel_arc_start.y() * sin_T; curr_rel_arc_start.y() = r_axisi; } // Update arc_target location arc_target[X] = arc.center.x() + curr_rel_arc_start.x(); arc_target[Y] = arc.center.y() + curr_rel_arc_start.y(); arc_target[Z] += z_per_segment; arc_target[E] += extruder_per_segment; gcode += internal_only_g1_line(adjust_target(arc_target, prev_target), z_per_segment != 0.0, feedrate, extrusion); prev_target = arc_target; // feedrate is constant, we do not need to repeat it feedrate.reset(); } // Ensure last segment arrives at target location. gcode += internal_only_g1_line(adjust_target(end_position, prev_target), arc.delta_z() != 0.0, feedrate, extrusion); // process fake gcode lines GCodeReader parser; parser.parse_buffer(gcode, [this](GCodeReader&, const GCodeReader::GCodeLine& line) { // force all lines to share the same id --m_line_id; process_gcode_line(line, false); }); } void GCodeProcessor::process_G10(const GCodeReader::GCodeLine& line) { if (m_flavor == gcfRepRapFirmware) { // similar to M104/M109 float new_temp; if (line.has_value('S', new_temp)) { size_t id = m_extruder_id; float val; if (line.has_value('P', val)) { const size_t eid = static_cast<size_t>(val); if (eid < m_extruder_temps.size()) id = eid; } m_extruder_temps[id] = new_temp; return; } } // stores retract move store_move_vertex(EMoveType::Retract); } void GCodeProcessor::process_G11(const GCodeReader::GCodeLine& line) { // stores unretract move store_move_vertex(EMoveType::Unretract); } void GCodeProcessor::process_G20(const GCodeReader::GCodeLine& line) { m_units = EUnits::Inches; } void GCodeProcessor::process_G21(const GCodeReader::GCodeLine& line) { m_units = EUnits::Millimeters; } void GCodeProcessor::process_G22(const GCodeReader::GCodeLine& line) { // stores retract move store_move_vertex(EMoveType::Retract); } void GCodeProcessor::process_G23(const GCodeReader::GCodeLine& line) { // stores unretract move store_move_vertex(EMoveType::Unretract); } void GCodeProcessor::process_G28(const GCodeReader::GCodeLine& line) { std::string_view cmd = line.cmd(); std::string new_line_raw = { cmd.data(), cmd.size() }; bool found = false; if (line.has('X')) { new_line_raw += " X0"; found = true; } if (line.has('Y')) { new_line_raw += " Y0"; found = true; } if (line.has('Z')) { new_line_raw += " Z0"; found = true; } if (!found) new_line_raw += " X0 Y0 Z0"; GCodeReader::GCodeLine new_gline; GCodeReader reader; reader.parse_line(new_line_raw, [&](GCodeReader& reader, const GCodeReader::GCodeLine& gline) { new_gline = gline; }); process_G1(new_gline); } void GCodeProcessor::process_G60(const GCodeReader::GCodeLine& line) { if (m_flavor == gcfMarlinLegacy || m_flavor == gcfMarlinFirmware) m_saved_position = m_end_position; } void GCodeProcessor::process_G61(const GCodeReader::GCodeLine& line) { if (m_flavor == gcfMarlinLegacy || m_flavor == gcfMarlinFirmware) { bool modified = false; if (line.has_x()) { m_end_position[X] = m_saved_position[X]; modified = true; } if (line.has_y()) { m_end_position[Y] = m_saved_position[Y]; modified = true; } if (line.has_z()) { m_end_position[Z] = m_saved_position[Z]; modified = true; } if (line.has_e()) { m_end_position[E] = m_saved_position[E]; modified = true; } if (line.has_f()) m_feedrate = m_feed_multiply.current * line.f(); if (!modified) m_end_position = m_saved_position; store_move_vertex(EMoveType::Travel); } } void GCodeProcessor::process_G90(const GCodeReader::GCodeLine& line) { m_global_positioning_type = EPositioningType::Absolute; } void GCodeProcessor::process_G91(const GCodeReader::GCodeLine& line) { m_global_positioning_type = EPositioningType::Relative; } void GCodeProcessor::process_G92(const GCodeReader::GCodeLine& line) { float lengths_scale_factor = (m_units == EUnits::Inches) ? INCHES_TO_MM : 1.0f; bool any_found = false; if (line.has_x()) { m_origin[X] = m_end_position[X] - line.x() * lengths_scale_factor; any_found = true; } if (line.has_y()) { m_origin[Y] = m_end_position[Y] - line.y() * lengths_scale_factor; any_found = true; } if (line.has_z()) { m_origin[Z] = m_end_position[Z] - line.z() * lengths_scale_factor; any_found = true; } if (line.has_e()) { // extruder coordinate can grow to the point where its float representation does not allow for proper addition with small increments, // we set the value taken from the G92 line as the new current position for it m_end_position[E] = line.e() * lengths_scale_factor; any_found = true; } else simulate_st_synchronize(); if (!any_found && !line.has_unknown_axis()) { // The G92 may be called for axes that PrusaSlicer does not recognize, for example see GH issue #3510, // where G92 A0 B0 is called although the extruder axis is till E. for (unsigned char a = X; a <= E; ++a) { m_origin[a] = m_end_position[a]; } } } void GCodeProcessor::process_M1(const GCodeReader::GCodeLine& line) { simulate_st_synchronize(); } void GCodeProcessor::process_M82(const GCodeReader::GCodeLine& line) { m_e_local_positioning_type = EPositioningType::Absolute; } void GCodeProcessor::process_M83(const GCodeReader::GCodeLine& line) { m_e_local_positioning_type = EPositioningType::Relative; } void GCodeProcessor::process_M104(const GCodeReader::GCodeLine& line) { float new_temp; if (line.has_value('S', new_temp)) { size_t id = m_extruder_id; float val; if (line.has_value('T', val)) { const size_t eid = static_cast<size_t>(val); if (eid < m_extruder_temps.size()) id = eid; } m_extruder_temps[id] = new_temp; } } void GCodeProcessor::process_M106(const GCodeReader::GCodeLine& line) { if (!line.has('P')) { // The absence of P means the print cooling fan, so ignore anything else. float new_fan_speed; if (line.has_value('S', new_fan_speed)) m_fan_speed = (100.0f / 255.0f) * new_fan_speed; else m_fan_speed = 100.0f; } } void GCodeProcessor::process_M107(const GCodeReader::GCodeLine& line) { m_fan_speed = 0.0f; } void GCodeProcessor::process_M108(const GCodeReader::GCodeLine& line) { // These M-codes are used by Sailfish to change active tool. // They have to be processed otherwise toolchanges will be unrecognised // by the analyzer - see https://github.com/prusa3d/PrusaSlicer/issues/2566 if (m_flavor != gcfSailfish) return; std::string cmd = line.raw(); size_t pos = cmd.find("T"); if (pos != std::string::npos) process_T(cmd.substr(pos)); } void GCodeProcessor::process_M109(const GCodeReader::GCodeLine& line) { float new_temp; size_t id = (size_t)-1; if (line.has_value('R', new_temp)) { float val; if (line.has_value('T', val)) { const size_t eid = static_cast<size_t>(val); if (eid < m_extruder_temps.size()) id = eid; } else id = m_extruder_id; } else if (line.has_value('S', new_temp)) id = m_extruder_id; if (id != (size_t)-1) m_extruder_temps[id] = new_temp; } void GCodeProcessor::process_M132(const GCodeReader::GCodeLine& line) { // This command is used by Makerbot to load the current home position from EEPROM // see: https://github.com/makerbot/s3g/blob/master/doc/GCodeProtocol.md // Using this command to reset the axis origin to zero helps in fixing: https://github.com/prusa3d/PrusaSlicer/issues/3082 if (line.has('X')) m_origin[X] = 0.0f; if (line.has('Y')) m_origin[Y] = 0.0f; if (line.has('Z')) m_origin[Z] = 0.0f; if (line.has('E')) m_origin[E] = 0.0f; } void GCodeProcessor::process_M135(const GCodeReader::GCodeLine& line) { // These M-codes are used by MakerWare to change active tool. // They have to be processed otherwise toolchanges will be unrecognised // by the analyzer - see https://github.com/prusa3d/PrusaSlicer/issues/2566 if (m_flavor != gcfMakerWare) return; std::string cmd = line.raw(); size_t pos = cmd.find("T"); if (pos != std::string::npos) process_T(cmd.substr(pos)); } void GCodeProcessor::process_M201(const GCodeReader::GCodeLine& line) { // see http://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration float factor = ((m_flavor != gcfRepRapSprinter && m_flavor != gcfRepRapFirmware) && m_units == EUnits::Inches) ? INCHES_TO_MM : 1.0f; for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { if (static_cast<PrintEstimatedStatistics::ETimeMode>(i) == PrintEstimatedStatistics::ETimeMode::Normal || m_time_processor.machine_envelope_processing_enabled) { if (line.has_x()) set_option_value(m_time_processor.machine_limits.machine_max_acceleration_x, i, line.x() * factor); if (line.has_y()) set_option_value(m_time_processor.machine_limits.machine_max_acceleration_y, i, line.y() * factor); if (line.has_z()) set_option_value(m_time_processor.machine_limits.machine_max_acceleration_z, i, line.z() * factor); if (line.has_e()) set_option_value(m_time_processor.machine_limits.machine_max_acceleration_e, i, line.e() * factor); } } } void GCodeProcessor::process_M203(const GCodeReader::GCodeLine& line) { // see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate if (m_flavor == gcfRepetier) return; // see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate // http://smoothieware.org/supported-g-codes float factor = (m_flavor == gcfMarlinLegacy || m_flavor == gcfMarlinFirmware || m_flavor == gcfSmoothie) ? 1.0f : MMMIN_TO_MMSEC; for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { if (static_cast<PrintEstimatedStatistics::ETimeMode>(i) == PrintEstimatedStatistics::ETimeMode::Normal || m_time_processor.machine_envelope_processing_enabled) { if (line.has_x()) set_option_value(m_time_processor.machine_limits.machine_max_feedrate_x, i, line.x() * factor); if (line.has_y()) set_option_value(m_time_processor.machine_limits.machine_max_feedrate_y, i, line.y() * factor); if (line.has_z()) set_option_value(m_time_processor.machine_limits.machine_max_feedrate_z, i, line.z() * factor); if (line.has_e()) set_option_value(m_time_processor.machine_limits.machine_max_feedrate_e, i, line.e() * factor); } } } void GCodeProcessor::process_M204(const GCodeReader::GCodeLine& line) { float value; for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { if (static_cast<PrintEstimatedStatistics::ETimeMode>(i) == PrintEstimatedStatistics::ETimeMode::Normal || m_time_processor.machine_envelope_processing_enabled) { if (line.has_value('S', value)) { // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware // It is also generated by PrusaSlicer to control acceleration per extrusion type // (perimeters, first layer etc) when 'Marlin (legacy)' flavor is used. set_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value); set_travel_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value); if (line.has_value('T', value)) set_retract_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value); } else { // New acceleration format, compatible with the upstream Marlin. if (line.has_value('P', value)) set_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value); if (line.has_value('R', value)) set_retract_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value); if (line.has_value('T', value)) // Interpret the T value as the travel acceleration in the new Marlin format. set_travel_acceleration(static_cast<PrintEstimatedStatistics::ETimeMode>(i), value); } } } } void GCodeProcessor::process_M205(const GCodeReader::GCodeLine& line) { for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { if (static_cast<PrintEstimatedStatistics::ETimeMode>(i) == PrintEstimatedStatistics::ETimeMode::Normal || m_time_processor.machine_envelope_processing_enabled) { if (line.has_x()) { float max_jerk = line.x(); set_option_value(m_time_processor.machine_limits.machine_max_jerk_x, i, max_jerk); set_option_value(m_time_processor.machine_limits.machine_max_jerk_y, i, max_jerk); } if (line.has_y()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_y, i, line.y()); if (line.has_z()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_z, i, line.z()); if (line.has_e()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_e, i, line.e()); float value; if (line.has_value('S', value)) set_option_value(m_time_processor.machine_limits.machine_min_extruding_rate, i, value); if (line.has_value('T', value)) set_option_value(m_time_processor.machine_limits.machine_min_travel_rate, i, value); } } } void GCodeProcessor::process_M220(const GCodeReader::GCodeLine& line) { if (m_flavor != gcfMarlinLegacy && m_flavor != gcfMarlinFirmware && m_flavor != gcfKlipper) return; if (line.has('B')) m_feed_multiply.saved = m_feed_multiply.current; float value; if (line.has_value('S', value)) m_feed_multiply.current = value * 0.01f; if (line.has('R')) m_feed_multiply.current = m_feed_multiply.saved; } void GCodeProcessor::process_M221(const GCodeReader::GCodeLine& line) { float value_s; float value_t; if (line.has_value('S', value_s) && !line.has_value('T', value_t)) { value_s *= 0.01f; for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { m_time_processor.machines[i].extrude_factor_override_percentage = value_s; } } } void GCodeProcessor::process_M401(const GCodeReader::GCodeLine& line) { if (m_flavor != gcfRepetier) return; for (unsigned char a = 0; a <= 3; ++a) { m_cached_position.position[a] = m_start_position[a]; } m_cached_position.feedrate = m_feedrate; } void GCodeProcessor::process_M402(const GCodeReader::GCodeLine& line) { if (m_flavor != gcfRepetier) return; // see for reference: // https://github.com/repetier/Repetier-Firmware/blob/master/src/ArduinoAVR/Repetier/Printer.cpp // void Printer::GoToMemoryPosition(bool x, bool y, bool z, bool e, float feed) bool has_xyz = !(line.has('X') || line.has('Y') || line.has('Z')); float p = FLT_MAX; for (unsigned char a = X; a <= Z; ++a) { if (has_xyz || line.has(a)) { p = m_cached_position.position[a]; if (p != FLT_MAX) m_start_position[a] = p; } } p = m_cached_position.position[E]; if (p != FLT_MAX) m_start_position[E] = p; p = FLT_MAX; if (!line.has_value(4, p)) p = m_cached_position.feedrate; if (p != FLT_MAX) m_feedrate = p; } void GCodeProcessor::process_M566(const GCodeReader::GCodeLine& line) { for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { if (line.has_x()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_x, i, line.x() * MMMIN_TO_MMSEC); if (line.has_y()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_y, i, line.y() * MMMIN_TO_MMSEC); if (line.has_z()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_z, i, line.z() * MMMIN_TO_MMSEC); if (line.has_e()) set_option_value(m_time_processor.machine_limits.machine_max_jerk_e, i, line.e() * MMMIN_TO_MMSEC); } } void GCodeProcessor::process_M702(const GCodeReader::GCodeLine& line) { if (line.has('C')) { // MK3 MMU2 specific M code: // M702 C is expected to be sent by the custom end G-code when finalizing a print. // The MK3 unit shall unload and park the active filament into the MMU2 unit. m_time_processor.extruder_unloaded = true; simulate_st_synchronize(get_filament_unload_time(m_extruder_id)); } } void GCodeProcessor::process_T(const GCodeReader::GCodeLine& line) { process_T(line.cmd()); } void GCodeProcessor::process_T(const std::string_view command) { if (command.length() > 1) { int eid = 0; if (! parse_number(command.substr(1), eid) || eid < 0 || eid > 255) { // Specific to the MMU2 V2 (see https://www.help.prusa3d.com/en/article/prusa-specific-g-codes_112173): if ((m_flavor == gcfMarlinLegacy || m_flavor == gcfMarlinFirmware) && (command == "Tx" || command == "Tc" || command == "T?")) return; // T-1 is a valid gcode line for RepRap Firmwares (used to deselects all tools) see https://github.com/prusa3d/PrusaSlicer/issues/5677 if ((m_flavor != gcfRepRapFirmware && m_flavor != gcfRepRapSprinter) || eid != -1) BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid toolchange (" << command << ")."; } else { unsigned char id = static_cast<unsigned char>(eid); if (m_extruder_id != id) { if (((m_producer == EProducer::PrusaSlicer || m_producer == EProducer::Slic3rPE || m_producer == EProducer::Slic3r) && id >= m_result.extruders_count) || ((m_producer != EProducer::PrusaSlicer && m_producer != EProducer::Slic3rPE && m_producer != EProducer::Slic3r) && id >= m_result.extruder_colors.size())) BOOST_LOG_TRIVIAL(error) << "GCodeProcessor encountered an invalid toolchange, maybe from a custom gcode (" << command << ")."; else { unsigned char old_extruder_id = m_extruder_id; process_filaments(CustomGCode::ToolChange); m_extruder_id = id; m_cp_color.current = m_extruder_colors[id]; // Specific to the MK3 MMU2: // The initial value of extruder_unloaded is set to true indicating // that the filament is parked in the MMU2 unit and there is nothing to be unloaded yet. float extra_time = get_filament_unload_time(static_cast<size_t>(old_extruder_id)); m_time_processor.extruder_unloaded = false; extra_time += get_filament_load_time(static_cast<size_t>(m_extruder_id)); if (m_producer == EProducer::KissSlicer && m_flavor == gcfMarlinLegacy) extra_time += m_kissslicer_toolchange_time_correction; simulate_st_synchronize(extra_time); // specific to single extruder multi material, set the new extruder temperature // to match the old one if (m_single_extruder_multi_material) m_extruder_temps[m_extruder_id] = m_extruder_temps[old_extruder_id]; m_result.extruders_count = std::max<size_t>(m_result.extruders_count, m_extruder_id + 1); } // store tool change move store_move_vertex(EMoveType::Tool_change); } } } } void GCodeProcessor::post_process() { FilePtr in{ boost::nowide::fopen(m_result.filename.c_str(), "rb") }; if (in.f == nullptr) throw Slic3r::RuntimeError(std::string("GCode processor post process export failed.\nCannot open file for reading.\n")); // temporary file to contain modified gcode std::string out_path = m_result.filename + ".postprocess"; FilePtr out{ boost::nowide::fopen(out_path.c_str(), "wb") }; if (out.f == nullptr) { throw Slic3r::RuntimeError(std::string("GCode processor post process export failed.\nCannot open file for writing.\n")); } auto time_in_minutes = [](float time_in_seconds) { assert(time_in_seconds >= 0.f); return int((time_in_seconds + 0.5f) / 60.0f); }; auto time_in_last_minute = [](float time_in_seconds) { assert(time_in_seconds <= 60.0f); return time_in_seconds / 60.0f; }; auto format_line_M73_main = [](const std::string& mask, int percent, int time) { char line_M73[64]; sprintf(line_M73, mask.c_str(), std::to_string(percent).c_str(), std::to_string(time).c_str()); return std::string(line_M73); }; auto format_line_M73_stop_int = [](const std::string& mask, int time) { char line_M73[64]; sprintf(line_M73, mask.c_str(), std::to_string(time).c_str()); return std::string(line_M73); }; auto format_time_float = [](float time) { return Slic3r::float_to_string_decimal_point(time, 2); }; auto format_line_M73_stop_float = [format_time_float](const std::string& mask, float time) { char line_M73[64]; sprintf(line_M73, mask.c_str(), format_time_float(time).c_str()); return std::string(line_M73); }; std::string gcode_line; size_t g1_lines_counter = 0; // keeps track of last exported pair <percent, remaining time> std::array<std::pair<int, int>, static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count)> last_exported_main; for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { last_exported_main[i] = { 0, time_in_minutes(m_time_processor.machines[i].time) }; } // keeps track of last exported remaining time to next printer stop std::array<int, static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count)> last_exported_stop; for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { last_exported_stop[i] = time_in_minutes(m_time_processor.machines[i].time); } // Helper class to modify and export gcode to file class ExportLines { public: struct Backtrace { float time{ 60.0f }; unsigned int steps{ 10 }; float time_step() const { return time / float(steps); } }; enum class EWriteType { BySize, ByTime }; private: struct LineData { std::string line; float time; }; #ifndef NDEBUG class Statistics { ExportLines& m_parent; size_t m_max_size{ 0 }; size_t m_lines_count{ 0 }; size_t m_max_lines_count{ 0 }; public: explicit Statistics(ExportLines& parent) : m_parent(parent) {} void add_line(size_t line_size) { ++m_lines_count; m_max_size = std::max(m_max_size, m_parent.get_size() + line_size); m_max_lines_count = std::max(m_max_lines_count, m_lines_count); } void remove_line() { --m_lines_count; } void remove_all_lines() { m_lines_count = 0; } }; Statistics m_statistics; #endif // NDEBUG EWriteType m_write_type{ EWriteType::BySize }; // Time machine containing g1 times cache TimeMachine& m_machine; // Current time float m_time{ 0.0f }; // Current size in bytes size_t m_size{ 0 }; // gcode lines cache std::deque<LineData> m_lines; size_t m_added_lines_counter{ 0 }; // map of gcode line ids from original to final // used to update m_result.moves[].gcode_id std::vector<std::pair<size_t, size_t>> m_gcode_lines_map; size_t m_curr_g1_id{ 0 }; size_t m_out_file_pos{ 0 }; public: ExportLines(EWriteType type, TimeMachine& machine) #ifndef NDEBUG : m_statistics(*this), m_write_type(type), m_machine(machine) {} #else : m_write_type(type), m_machine(machine) {} #endif // NDEBUG void update(size_t lines_counter, size_t g1_lines_counter) { m_gcode_lines_map.push_back({ lines_counter, 0 }); if (g1_lines_counter == 0) return; auto init_it = m_machine.g1_times_cache.begin() + m_curr_g1_id; auto it = init_it; while (it != m_machine.g1_times_cache.end() && it->id < g1_lines_counter + 1) { ++it; ++m_curr_g1_id; } if ((it != m_machine.g1_times_cache.end() && it != init_it) || m_curr_g1_id == 0) m_time = it->elapsed_time; } // add the given gcode line to the cache void append_line(const std::string& line) { m_lines.push_back({ line, m_time }); #ifndef NDEBUG m_statistics.add_line(line.length()); #endif // NDEBUG m_size += line.length(); ++m_added_lines_counter; assert(!m_gcode_lines_map.empty()); m_gcode_lines_map.back().second = m_added_lines_counter; } // Insert the gcode lines required by the command cmd by backtracing into the cache void insert_lines(const Backtrace& backtrace, const std::string& cmd, std::function<std::string(unsigned int, float, float)> line_inserter, std::function<std::string(const std::string&)> line_replacer) { assert(!m_lines.empty()); const float time_step = backtrace.time_step(); size_t rev_it_dist = 0; // distance from the end of the cache of the starting point of the backtrace float last_time_insertion = 0.0f; // used to avoid inserting two lines at the same time for (unsigned int i = 0; i < backtrace.steps; ++i) { const float backtrace_time_i = (i + 1) * time_step; const float time_threshold_i = m_time - backtrace_time_i; auto rev_it = m_lines.rbegin() + rev_it_dist; auto start_rev_it = rev_it; // backtrace into the cache to find the place where to insert the line while (rev_it != m_lines.rend() && rev_it->time > time_threshold_i && GCodeReader::GCodeLine::extract_cmd(rev_it->line) != cmd) { rev_it->line = line_replacer(rev_it->line); ++rev_it; } // we met the previous evenience of cmd. stop inserting lines if (rev_it != m_lines.rend() && GCodeReader::GCodeLine::extract_cmd(rev_it->line) == cmd) break; // insert the line for the current step if (rev_it != m_lines.rend() && rev_it != start_rev_it && rev_it->time != last_time_insertion) { last_time_insertion = rev_it->time; const std::string out_line = line_inserter(i + 1, last_time_insertion, m_time - last_time_insertion); rev_it_dist = std::distance(m_lines.rbegin(), rev_it) + 1; m_lines.insert(rev_it.base(), { out_line, rev_it->time }); #ifndef NDEBUG m_statistics.add_line(out_line.length()); #endif // NDEBUG m_size += out_line.length(); // synchronize gcode lines map for (auto map_it = m_gcode_lines_map.rbegin(); map_it != m_gcode_lines_map.rbegin() + rev_it_dist - 1; ++map_it) { ++map_it->second; } ++m_added_lines_counter; } } } // write to file: // m_write_type == EWriteType::ByTime - all lines older than m_time - backtrace_time // m_write_type == EWriteType::BySize - all lines if current size is greater than 65535 bytes void write(FilePtr& out, float backtrace_time, GCodeProcessorResult& result, const std::string& out_path) { if (m_lines.empty()) return; // collect lines to write into a single string std::string out_string; if (!m_lines.empty()) { if (m_write_type == EWriteType::ByTime) { while (m_lines.front().time < m_time - backtrace_time) { const LineData& data = m_lines.front(); out_string += data.line; m_size -= data.line.length(); m_lines.pop_front(); #ifndef NDEBUG m_statistics.remove_line(); #endif // NDEBUG } } else { if (m_size > 65535) { while (!m_lines.empty()) { out_string += m_lines.front().line; m_lines.pop_front(); } m_size = 0; #ifndef NDEBUG m_statistics.remove_all_lines(); #endif // NDEBUG } } } write_to_file(out, out_string, result, out_path); } // flush the current content of the cache to file void flush(FilePtr& out, GCodeProcessorResult& result, const std::string& out_path) { // collect lines to flush into a single string std::string out_string; while (!m_lines.empty()) { out_string += m_lines.front().line; m_lines.pop_front(); } m_size = 0; #ifndef NDEBUG m_statistics.remove_all_lines(); #endif // NDEBUG write_to_file(out, out_string, result, out_path); } void synchronize_moves(GCodeProcessorResult& result) const { auto it = m_gcode_lines_map.begin(); for (GCodeProcessorResult::MoveVertex& move : result.moves) { while (it != m_gcode_lines_map.end() && it->first < move.gcode_id) { ++it; } if (it != m_gcode_lines_map.end() && it->first == move.gcode_id) move.gcode_id = it->second; } } size_t get_size() const { return m_size; } private: void write_to_file(FilePtr& out, const std::string& out_string, GCodeProcessorResult& result, const std::string& out_path) { if (!out_string.empty()) { fwrite((const void*)out_string.c_str(), 1, out_string.length(), out.f); if (ferror(out.f)) { out.close(); boost::nowide::remove(out_path.c_str()); throw Slic3r::RuntimeError(std::string("GCode processor post process export failed.\nIs the disk full?\n")); } for (size_t i = 0; i < out_string.size(); ++i) { if (out_string[i] == '\n') result.lines_ends.emplace_back(m_out_file_pos + i + 1); } m_out_file_pos += out_string.size(); } } }; ExportLines export_lines(m_result.backtrace_enabled ? ExportLines::EWriteType::ByTime : ExportLines::EWriteType::BySize, m_time_processor.machines[0]); // replace placeholder lines with the proper final value // gcode_line is in/out parameter, to reduce expensive memory allocation auto process_placeholders = [&](std::string& gcode_line) { bool processed = false; // remove trailing '\n' auto line = std::string_view(gcode_line).substr(0, gcode_line.length() - 1); if (line.length() > 1) { line = line.substr(1); if (m_time_processor.export_remaining_time_enabled && (line == reserved_tag(ETags::First_Line_M73_Placeholder) || line == reserved_tag(ETags::Last_Line_M73_Placeholder))) { for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { const TimeMachine& machine = m_time_processor.machines[i]; if (machine.enabled) { // export pair <percent, remaining time> export_lines.append_line(format_line_M73_main(machine.line_m73_main_mask.c_str(), (line == reserved_tag(ETags::First_Line_M73_Placeholder)) ? 0 : 100, (line == reserved_tag(ETags::First_Line_M73_Placeholder)) ? time_in_minutes(machine.time) : 0)); processed = true; // export remaining time to next printer stop if (line == reserved_tag(ETags::First_Line_M73_Placeholder) && !machine.stop_times.empty()) { const int to_export_stop = time_in_minutes(machine.stop_times.front().elapsed_time); export_lines.append_line(format_line_M73_stop_int(machine.line_m73_stop_mask.c_str(), to_export_stop)); last_exported_stop[i] = to_export_stop; } } } } else if (line == reserved_tag(ETags::Estimated_Printing_Time_Placeholder)) { for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { const TimeMachine& machine = m_time_processor.machines[i]; PrintEstimatedStatistics::ETimeMode mode = static_cast<PrintEstimatedStatistics::ETimeMode>(i); if (mode == PrintEstimatedStatistics::ETimeMode::Normal || machine.enabled) { char buf[128]; sprintf(buf, "; estimated printing time (%s mode) = %s\n", (mode == PrintEstimatedStatistics::ETimeMode::Normal) ? "normal" : "silent", get_time_dhms(machine.time).c_str()); export_lines.append_line(buf); processed = true; } } for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { const TimeMachine& machine = m_time_processor.machines[i]; PrintEstimatedStatistics::ETimeMode mode = static_cast<PrintEstimatedStatistics::ETimeMode>(i); if (mode == PrintEstimatedStatistics::ETimeMode::Normal || machine.enabled) { char buf[128]; sprintf(buf, "; estimated first layer printing time (%s mode) = %s\n", (mode == PrintEstimatedStatistics::ETimeMode::Normal) ? "normal" : "silent", get_time_dhms(machine.layers_time.empty() ? 0.f : machine.layers_time.front()).c_str()); export_lines.append_line(buf); processed = true; } } } } return processed; }; std::vector<double> filament_mm(m_result.extruders_count, 0.0); std::vector<double> filament_cm3(m_result.extruders_count, 0.0); std::vector<double> filament_g(m_result.extruders_count, 0.0); std::vector<double> filament_cost(m_result.extruders_count, 0.0); double filament_total_g = 0.0; double filament_total_cost = 0.0; for (const auto& [id, volume] : m_result.print_statistics.volumes_per_extruder) { filament_mm[id] = volume / (static_cast<double>(M_PI) * sqr(0.5 * m_result.filament_diameters[id])); filament_cm3[id] = volume * 0.001; filament_g[id] = filament_cm3[id] * double(m_result.filament_densities[id]); filament_cost[id] = filament_g[id] * double(m_result.filament_cost[id]) * 0.001; filament_total_g += filament_g[id]; filament_total_cost += filament_cost[id]; } auto process_used_filament = [&](std::string& gcode_line) { // Prefilter for parsing speed. if (gcode_line.size() < 8 || gcode_line[0] != ';' || gcode_line[1] != ' ') return false; if (const char c = gcode_line[2]; c != 'f' && c != 't') return false; auto process_tag = [](std::string& gcode_line, const std::string_view tag, const std::vector<double>& values) { if (boost::algorithm::starts_with(gcode_line, tag)) { gcode_line = tag; char buf[1024]; for (size_t i = 0; i < values.size(); ++i) { sprintf(buf, i == values.size() - 1 ? " %.2lf\n" : " %.2lf,", values[i]); gcode_line += buf; } return true; } return false; }; bool ret = false; ret |= process_tag(gcode_line, "; filament used [mm] =", filament_mm); ret |= process_tag(gcode_line, "; filament used [g] =", filament_g); ret |= process_tag(gcode_line, "; total filament used [g] =", { filament_total_g }); ret |= process_tag(gcode_line, "; filament used [cm3] =", filament_cm3); ret |= process_tag(gcode_line, "; filament cost =", filament_cost); ret |= process_tag(gcode_line, "; total filament cost =", { filament_total_cost }); return ret; }; // check for temporary lines auto is_temporary_decoration = [](const std::string_view gcode_line) { // remove trailing '\n' assert(!gcode_line.empty()); assert(gcode_line.back() == '\n'); // return true for decorations which are used in processing the gcode but that should not be exported into the final gcode // i.e.: // bool ret = gcode_line.substr(0, gcode_line.length() - 1) == ";" + Layer_Change_Tag; // ... // return ret; return false; }; // Iterators for the normal and silent cached time estimate entry recently processed, used by process_line_G1. auto g1_times_cache_it = Slic3r::reserve_vector<std::vector<TimeMachine::G1LinesCacheItem>::const_iterator>(m_time_processor.machines.size()); for (const auto& machine : m_time_processor.machines) g1_times_cache_it.emplace_back(machine.g1_times_cache.begin()); // add lines M73 to exported gcode auto process_line_G1 = [this, // Lambdas, mostly for string formatting, all with an empty capture block. time_in_minutes, format_time_float, format_line_M73_main, format_line_M73_stop_int, format_line_M73_stop_float, time_in_last_minute, // Caches, to be modified &g1_times_cache_it, &last_exported_main, &last_exported_stop, &export_lines] (const size_t g1_lines_counter) { if (m_time_processor.export_remaining_time_enabled) { for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { const TimeMachine& machine = m_time_processor.machines[i]; if (machine.enabled) { // export pair <percent, remaining time> // Skip all machine.g1_times_cache below g1_lines_counter. auto& it = g1_times_cache_it[i]; while (it != machine.g1_times_cache.end() && it->id < g1_lines_counter) ++it; if (it != machine.g1_times_cache.end() && it->id == g1_lines_counter) { std::pair<int, int> to_export_main = { int(100.0f * it->elapsed_time / machine.time), time_in_minutes(machine.time - it->elapsed_time) }; if (last_exported_main[i] != to_export_main) { export_lines.append_line(format_line_M73_main(machine.line_m73_main_mask.c_str(), to_export_main.first, to_export_main.second)); last_exported_main[i] = to_export_main; } // export remaining time to next printer stop auto it_stop = std::upper_bound(machine.stop_times.begin(), machine.stop_times.end(), it->elapsed_time, [](float value, const TimeMachine::StopTime& t) { return value < t.elapsed_time; }); if (it_stop != machine.stop_times.end()) { int to_export_stop = time_in_minutes(it_stop->elapsed_time - it->elapsed_time); if (last_exported_stop[i] != to_export_stop) { if (to_export_stop > 0) { if (last_exported_stop[i] != to_export_stop) { export_lines.append_line(format_line_M73_stop_int(machine.line_m73_stop_mask.c_str(), to_export_stop)); last_exported_stop[i] = to_export_stop; } } else { bool is_last = false; auto next_it = it + 1; is_last |= (next_it == machine.g1_times_cache.end()); if (next_it != machine.g1_times_cache.end()) { auto next_it_stop = std::upper_bound(machine.stop_times.begin(), machine.stop_times.end(), next_it->elapsed_time, [](float value, const TimeMachine::StopTime& t) { return value < t.elapsed_time; }); is_last |= (next_it_stop != it_stop); std::string time_float_str = format_time_float(time_in_last_minute(it_stop->elapsed_time - it->elapsed_time)); std::string next_time_float_str = format_time_float(time_in_last_minute(it_stop->elapsed_time - next_it->elapsed_time)); is_last |= (string_to_double_decimal_point(time_float_str) > 0. && string_to_double_decimal_point(next_time_float_str) == 0.); } if (is_last) { if (std::distance(machine.stop_times.begin(), it_stop) == static_cast<ptrdiff_t>(machine.stop_times.size() - 1)) export_lines.append_line(format_line_M73_stop_int(machine.line_m73_stop_mask.c_str(), to_export_stop)); else export_lines.append_line(format_line_M73_stop_float(machine.line_m73_stop_mask.c_str(), time_in_last_minute(it_stop->elapsed_time - it->elapsed_time))); last_exported_stop[i] = to_export_stop; } } } } } } } } }; // add lines XXX to exported gcode auto process_line_T = [this, &export_lines](const std::string& gcode_line, const size_t g1_lines_counter, const ExportLines::Backtrace& backtrace) { const std::string cmd = GCodeReader::GCodeLine::extract_cmd(gcode_line); if (cmd.size() >= 2) { std::stringstream ss(cmd.substr(1)); int tool_number = -1; ss >> tool_number; if (tool_number != -1) if (tool_number < 0 || (int)m_extruder_temps_config.size() <= tool_number) { // found an invalid value, clamp it to a valid one tool_number = std::clamp<int>(0, m_extruder_temps_config.size() - 1, tool_number); // emit warning std::string warning = _u8L("GCode Post-Processor encountered an invalid toolchange, maybe from a custom gcode:"); warning += "\n> "; warning += gcode_line; warning += _u8L("Generated M104 lines may be incorrect."); BOOST_LOG_TRIVIAL(error) << warning; if (m_print != nullptr) m_print->active_step_add_warning(PrintStateBase::WarningLevel::CRITICAL, warning); } export_lines.insert_lines(backtrace, cmd, // line inserter [tool_number, this](unsigned int id, float time, float time_diff) { int temperature = int( m_layer_id != 1 ? m_extruder_temps_config[tool_number] : m_extruder_temps_first_layer_config[tool_number]); const std::string out = "M104 T" + std::to_string(tool_number) + " P" + std::to_string(int(std::round(time_diff))) + " S" + std::to_string(temperature) + "\n"; return out; }, // line replacer [this, tool_number](const std::string& line) { if (GCodeReader::GCodeLine::cmd_is(line, "M104")) { GCodeReader::GCodeLine gline; GCodeReader reader; reader.parse_line(line, [&gline](GCodeReader& reader, const GCodeReader::GCodeLine& l) { gline = l; }); float val; if (gline.has_value('T', val) && gline.raw().find("cooldown") != std::string::npos && m_is_XL_printer) { if (static_cast<int>(val) == tool_number) return std::string("; removed M104\n"); } } return line; }); } }; m_result.lines_ends.clear(); unsigned int line_id = 0; // Backtrace data for Tx gcode lines static const ExportLines::Backtrace backtrace_T = { 120.0f, 10 }; // In case there are multiple sources of backtracing, keeps track of the longest backtrack time needed // to flush the backtrace cache accordingly float max_backtrace_time = 120.0f; { // Read the input stream 64kB at a time, extract lines and process them. std::vector<char> buffer(65536 * 10, 0); // Line buffer. assert(gcode_line.empty()); for (;;) { size_t cnt_read = ::fread(buffer.data(), 1, buffer.size(), in.f); if (::ferror(in.f)) throw Slic3r::RuntimeError(std::string("GCode processor post process export failed.\nError while reading from file.\n")); bool eof = cnt_read == 0; auto it = buffer.begin(); auto it_bufend = buffer.begin() + cnt_read; while (it != it_bufend || (eof && !gcode_line.empty())) { // Find end of line. bool eol = false; auto it_end = it; for (; it_end != it_bufend && !(eol = *it_end == '\r' || *it_end == '\n'); ++it_end); // End of line is indicated also if end of file was reached. eol |= eof && it_end == it_bufend; gcode_line.insert(gcode_line.end(), it, it_end); if (eol) { ++line_id; export_lines.update(line_id, g1_lines_counter); gcode_line += "\n"; // replace placeholder lines bool processed = process_placeholders(gcode_line); if (processed) gcode_line.clear(); if (!processed) processed = process_used_filament(gcode_line); if (!processed && !is_temporary_decoration(gcode_line)) { if (GCodeReader::GCodeLine::cmd_is(gcode_line, "G1")) // add lines M73 where needed process_line_G1(g1_lines_counter++); else if (m_result.backtrace_enabled && GCodeReader::GCodeLine::cmd_starts_with(gcode_line, "T")) { // add lines XXX where needed process_line_T(gcode_line, g1_lines_counter, backtrace_T); max_backtrace_time = std::max(max_backtrace_time, backtrace_T.time); } } if (!gcode_line.empty()) export_lines.append_line(gcode_line); export_lines.write(out, 1.1f * max_backtrace_time, m_result, out_path); gcode_line.clear(); } // Skip EOL. it = it_end; if (it != it_bufend && *it == '\r') ++it; if (it != it_bufend && *it == '\n') ++it; } if (eof) break; } } export_lines.flush(out, m_result, out_path); out.close(); in.close(); export_lines.synchronize_moves(m_result); if (rename_file(out_path, m_result.filename)) throw Slic3r::RuntimeError(std::string("Failed to rename the output G-code file from ") + out_path + " to " + m_result.filename + '\n' + "Is " + out_path + " locked?" + '\n'); } void GCodeProcessor::store_move_vertex(EMoveType type, bool internal_only) { m_last_line_id = (type == EMoveType::Color_change || type == EMoveType::Pause_Print || type == EMoveType::Custom_GCode) ? m_line_id + 1 : ((type == EMoveType::Seam) ? m_last_line_id : m_line_id); m_result.moves.push_back({ m_last_line_id, type, m_extrusion_role, m_extruder_id, m_cp_color.current, Vec3f(m_end_position[X], m_end_position[Y], m_end_position[Z] - m_z_offset) + m_extruder_offsets[m_extruder_id], static_cast<float>(m_end_position[E] - m_start_position[E]), m_feedrate, m_width, m_height, m_mm3_per_mm, m_fan_speed, m_extruder_temps[m_extruder_id], static_cast<float>(m_result.moves.size()), internal_only }); // stores stop time placeholders for later use if (type == EMoveType::Color_change || type == EMoveType::Pause_Print) { for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { TimeMachine& machine = m_time_processor.machines[i]; if (!machine.enabled) continue; machine.stop_times.push_back({ m_g1_line_id, 0.0f }); } } } void GCodeProcessor::set_extrusion_role(GCodeExtrusionRole role) { m_used_filaments.process_role_cache(this); m_extrusion_role = role; } float GCodeProcessor::minimum_feedrate(PrintEstimatedStatistics::ETimeMode mode, float feedrate) const { if (m_time_processor.machine_limits.machine_min_extruding_rate.empty()) return feedrate; return std::max(feedrate, get_option_value(m_time_processor.machine_limits.machine_min_extruding_rate, static_cast<size_t>(mode))); } float GCodeProcessor::minimum_travel_feedrate(PrintEstimatedStatistics::ETimeMode mode, float feedrate) const { if (m_time_processor.machine_limits.machine_min_travel_rate.empty()) return feedrate; return std::max(feedrate, get_option_value(m_time_processor.machine_limits.machine_min_travel_rate, static_cast<size_t>(mode))); } float GCodeProcessor::get_axis_max_feedrate(PrintEstimatedStatistics::ETimeMode mode, Axis axis) const { switch (axis) { case X: { return get_option_value(m_time_processor.machine_limits.machine_max_feedrate_x, static_cast<size_t>(mode)); } case Y: { return get_option_value(m_time_processor.machine_limits.machine_max_feedrate_y, static_cast<size_t>(mode)); } case Z: { return get_option_value(m_time_processor.machine_limits.machine_max_feedrate_z, static_cast<size_t>(mode)); } case E: { return get_option_value(m_time_processor.machine_limits.machine_max_feedrate_e, static_cast<size_t>(mode)); } default: { return 0.0f; } } } float GCodeProcessor::get_axis_max_acceleration(PrintEstimatedStatistics::ETimeMode mode, Axis axis) const { switch (axis) { case X: { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_x, static_cast<size_t>(mode)); } case Y: { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_y, static_cast<size_t>(mode)); } case Z: { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_z, static_cast<size_t>(mode)); } case E: { return get_option_value(m_time_processor.machine_limits.machine_max_acceleration_e, static_cast<size_t>(mode)); } default: { return 0.0f; } } } float GCodeProcessor::get_axis_max_jerk(PrintEstimatedStatistics::ETimeMode mode, Axis axis) const { switch (axis) { case X: { return get_option_value(m_time_processor.machine_limits.machine_max_jerk_x, static_cast<size_t>(mode)); } case Y: { return get_option_value(m_time_processor.machine_limits.machine_max_jerk_y, static_cast<size_t>(mode)); } case Z: { return get_option_value(m_time_processor.machine_limits.machine_max_jerk_z, static_cast<size_t>(mode)); } case E: { return get_option_value(m_time_processor.machine_limits.machine_max_jerk_e, static_cast<size_t>(mode)); } default: { return 0.0f; } } } float GCodeProcessor::get_retract_acceleration(PrintEstimatedStatistics::ETimeMode mode) const { size_t id = static_cast<size_t>(mode); return (id < m_time_processor.machines.size()) ? m_time_processor.machines[id].retract_acceleration : DEFAULT_RETRACT_ACCELERATION; } void GCodeProcessor::set_retract_acceleration(PrintEstimatedStatistics::ETimeMode mode, float value) { size_t id = static_cast<size_t>(mode); if (id < m_time_processor.machines.size()) { m_time_processor.machines[id].retract_acceleration = (m_time_processor.machines[id].max_retract_acceleration == 0.0f) ? value : // Clamp the acceleration with the maximum. std::min(value, m_time_processor.machines[id].max_retract_acceleration); } } float GCodeProcessor::get_acceleration(PrintEstimatedStatistics::ETimeMode mode) const { size_t id = static_cast<size_t>(mode); return (id < m_time_processor.machines.size()) ? m_time_processor.machines[id].acceleration : DEFAULT_ACCELERATION; } void GCodeProcessor::set_acceleration(PrintEstimatedStatistics::ETimeMode mode, float value) { size_t id = static_cast<size_t>(mode); if (id < m_time_processor.machines.size()) { m_time_processor.machines[id].acceleration = (m_time_processor.machines[id].max_acceleration == 0.0f) ? value : // Clamp the acceleration with the maximum. std::min(value, m_time_processor.machines[id].max_acceleration); } } float GCodeProcessor::get_travel_acceleration(PrintEstimatedStatistics::ETimeMode mode) const { size_t id = static_cast<size_t>(mode); return (id < m_time_processor.machines.size()) ? m_time_processor.machines[id].travel_acceleration : DEFAULT_TRAVEL_ACCELERATION; } void GCodeProcessor::set_travel_acceleration(PrintEstimatedStatistics::ETimeMode mode, float value) { size_t id = static_cast<size_t>(mode); if (id < m_time_processor.machines.size()) { m_time_processor.machines[id].travel_acceleration = (m_time_processor.machines[id].max_travel_acceleration == 0.0f) ? value : // Clamp the acceleration with the maximum. std::min(value, m_time_processor.machines[id].max_travel_acceleration); } } float GCodeProcessor::get_filament_load_time(size_t extruder_id) { if (m_is_XL_printer) return 4.5f; // FIXME return (m_time_processor.filament_load_times.empty() || m_time_processor.extruder_unloaded) ? 0.0f : ((extruder_id < m_time_processor.filament_load_times.size()) ? m_time_processor.filament_load_times[extruder_id] : m_time_processor.filament_load_times.front()); } float GCodeProcessor::get_filament_unload_time(size_t extruder_id) { if (m_is_XL_printer) return 0.f; // FIXME return (m_time_processor.filament_unload_times.empty() || m_time_processor.extruder_unloaded) ? 0.0f : ((extruder_id < m_time_processor.filament_unload_times.size()) ? m_time_processor.filament_unload_times[extruder_id] : m_time_processor.filament_unload_times.front()); } void GCodeProcessor::process_custom_gcode_time(CustomGCode::Type code) { for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { TimeMachine& machine = m_time_processor.machines[i]; if (!machine.enabled) continue; TimeMachine::CustomGCodeTime& gcode_time = machine.gcode_time; gcode_time.needed = true; //FIXME this simulates st_synchronize! is it correct? // The estimated time may be longer than the real print time. machine.simulate_st_synchronize(); if (gcode_time.cache != 0.0f) { gcode_time.times.push_back({ code, gcode_time.cache }); gcode_time.cache = 0.0f; } } } void GCodeProcessor::process_filaments(CustomGCode::Type code) { if (code == CustomGCode::ColorChange) m_used_filaments.process_color_change_cache(); if (code == CustomGCode::ToolChange) m_used_filaments.process_extruder_cache(m_extruder_id); } void GCodeProcessor::simulate_st_synchronize(float additional_time) { for (size_t i = 0; i < static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Count); ++i) { m_time_processor.machines[i].simulate_st_synchronize(additional_time); } } void GCodeProcessor::update_estimated_times_stats() { auto update_mode = [this](PrintEstimatedStatistics::ETimeMode mode) { PrintEstimatedStatistics::Mode& data = m_result.print_statistics.modes[static_cast<size_t>(mode)]; data.time = get_time(mode); data.travel_time = get_travel_time(mode); data.custom_gcode_times = get_custom_gcode_times(mode, true); data.moves_times = get_moves_time(mode); data.roles_times = get_roles_time(mode); data.layers_times = get_layers_time(mode); }; update_mode(PrintEstimatedStatistics::ETimeMode::Normal); if (m_time_processor.machines[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Stealth)].enabled) update_mode(PrintEstimatedStatistics::ETimeMode::Stealth); else m_result.print_statistics.modes[static_cast<size_t>(PrintEstimatedStatistics::ETimeMode::Stealth)].reset(); m_result.print_statistics.volumes_per_color_change = m_used_filaments.volumes_per_color_change; m_result.print_statistics.volumes_per_extruder = m_used_filaments.volumes_per_extruder; m_result.print_statistics.used_filaments_per_role = m_used_filaments.filaments_per_role; } double GCodeProcessor::extract_absolute_position_on_axis(Axis axis, const GCodeReader::GCodeLine& line, double area_filament_cross_section) { if (line.has(Slic3r::Axis(axis))) { bool is_relative = (m_global_positioning_type == EPositioningType::Relative); if (axis == E) is_relative |= (m_e_local_positioning_type == EPositioningType::Relative); const double lengthsScaleFactor = (m_units == EUnits::Inches) ? double(INCHES_TO_MM) : 1.0; double ret = line.value(Slic3r::Axis(axis)) * lengthsScaleFactor; if (axis == E && m_use_volumetric_e) ret /= area_filament_cross_section; return is_relative ? m_start_position[axis] + ret : m_origin[axis] + ret; } else return m_start_position[axis]; } } /* namespace Slic3r */