#ifndef PRINTEXPORT_HPP #define PRINTEXPORT_HPP // For png export of the sliced model #include #include #include #include #include "Rasterizer/Rasterizer.hpp" //#include //#include //#include "tbb/mutex.h" namespace Slic3r { enum ePrintStatistics { psUsedMaterial = 0, psNumFade, psNumSlow, psNumFast, psCnt }; enum class FilePrinterFormat { SLA_PNGZIP, SVG }; /* * Interface for a file printer of the slices. Implementation can be an SVG * or PNG printer or any other format. * * The format argument specifies the output format of the printer and it enables * different implementations of this class template for each supported format. * */ template class FilePrinter { public: // Draw an ExPolygon which is a polygon inside a slice on the specified layer. void draw_polygon(const ExPolygon& p, unsigned lyr); // Tell the printer how many layers should it consider. void layers(unsigned layernum); // Get the number of layers in the print. unsigned layers() const; /* Switch to a particular layer. If there where less layers then the * specified layer number than an appropriate number of layers will be * allocated in the printer. */ void begin_layer(unsigned layer); // Allocate a new layer on top of the last and switch to it. void begin_layer(); /* * Finish the selected layer. It means that no drawing is allowed on that * layer anymore. This fact can be used to prepare the file system output * data like png comprimation and so on. */ void finish_layer(unsigned layer); // Finish the top layer. void finish_layer(); // Save all the layers into the file (or dir) specified in the path argument void save(const std::string& path); // Save only the selected layer to the file specified in path argument. void save_layer(unsigned lyr, const std::string& path); }; // Provokes static_assert in the right way. template struct VeryFalse { static const bool value = false; }; // This has to be explicitly implemented in the gui layer or a default zlib // based implementation is needed. I don't have time for that and I'm delegating // the implementation to the gui layer where the gui toolkit can cover this. template class LayerWriter { public: LayerWriter(const std::string& /*zipfile_path*/) { static_assert(VeryFalse::value, "No layer writer implementation provided!"); } void next_entry(const std::string& /*fname*/) {} std::string get_name() { return ""; } bool is_ok() { return false; } template LayerWriter& operator<<(const T& /*arg*/) { return *this; } void close() {} }; // Implementation for PNG raster output // Be aware that if a large number of layers are allocated, it can very well // exhaust the available memory especially on 32 bit platform. template<> class FilePrinter { struct Layer { Raster first; std::stringstream second; Layer() {} Layer(const Layer&) = delete; Layer(Layer&& m): first(std::move(m.first))/*, second(std::move(m.second))*/ {} }; // We will save the compressed PNG data into stringstreams which can be done // in parallel. Later we can write every layer to the disk sequentially. std::vector m_layers_rst; Raster::Resolution m_res; Raster::PixelDim m_pxdim; double m_exp_time_s = .0, m_exp_time_first_s = .0; double m_layer_height = .0; Raster::Origin m_o = Raster::Origin::TOP_LEFT; double m_used_material = 0.0; int m_cnt_fade_layers = 0; int m_cnt_slow_layers = 0; int m_cnt_fast_layers = 0; std::string createIniContent(const std::string& projectname) { // double layer_height = m_layer_height; using std::string; using std::to_string; auto expt_str = to_string(m_exp_time_s); auto expt_first_str = to_string(m_exp_time_first_s); // auto stepnum_str = to_string(static_cast(800*layer_height)); auto layerh_str = to_string(m_layer_height); const std::string cnt_fade_layers = to_string(m_cnt_fade_layers); const std::string cnt_slow_layers = to_string(m_cnt_slow_layers); const std::string cnt_fast_layers = to_string(m_cnt_fast_layers); const std::string used_material = to_string(m_used_material); return string( "action = print\n" "jobDir = ") + projectname + "\n" + "expTime = " + expt_str + "\n" "expTimeFirst = " + expt_first_str + "\n" // "stepNum = " + stepnum_str + "\n" // "wifiOn = 1\n" // "tiltSlow = 60\n" // "tiltFast = 15\n" "numFade = " + cnt_fade_layers + "\n" // "startdelay = 0\n" "layerHeight = " + layerh_str + "\n" "noteInfo = " "expTime = "+expt_str+" + resinType = generic+layerHeight = " +layerh_str+" + printer = DWARF3\n" "usedMaterial = " + used_material + "\n" "numSlow = " + cnt_slow_layers + "\n" "numFast = " + cnt_fast_layers + "\n"; } public: enum RasterOrientation { RO_LANDSCAPE, RO_PORTRAIT }; // We will play with the raster's coordinate origin parameter. When the // printer should print in landscape mode it should have the Y axis flipped // because the layers should be displayed upside down. PNG has its // coordinate origin in the top-left corner so normally the Raster objects // should be instantiated with the TOP_LEFT flag. However, in landscape mode // we do want the pictures to be upside down so we will make BOTTOM_LEFT // type rasters and the PNG format will do the flipping automatically. // In case of portrait images, we have to rotate the image by a 90 degrees // and flip the y axis. To get the correct upside-down orientation of the // slice images, we can flip the x and y coordinates of the input polygons // and do the Y flipping of the image. This will generate the correct // orientation in portrait mode. inline FilePrinter(double width_mm, double height_mm, unsigned width_px, unsigned height_px, double layer_height, double exp_time, double exp_time_first, RasterOrientation ro = RO_PORTRAIT): m_res(width_px, height_px), m_pxdim(width_mm/width_px, height_mm/height_px), m_exp_time_s(exp_time), m_exp_time_first_s(exp_time_first), m_layer_height(layer_height), // Here is the trick with the orientation. m_o(ro == RO_LANDSCAPE? Raster::Origin::BOTTOM_LEFT : Raster::Origin::TOP_LEFT ) { } FilePrinter(const FilePrinter& ) = delete; FilePrinter(FilePrinter&& m): m_layers_rst(std::move(m.m_layers_rst)), m_res(m.m_res), m_pxdim(m.m_pxdim) {} inline void layers(unsigned cnt) { if(cnt > 0) m_layers_rst.resize(cnt); } inline unsigned layers() const { return unsigned(m_layers_rst.size()); } inline void draw_polygon(const ExPolygon& p, unsigned lyr) { assert(lyr < m_layers_rst.size()); m_layers_rst[lyr].first.draw(p); } inline void begin_layer(unsigned lyr) { if(m_layers_rst.size() <= lyr) m_layers_rst.resize(lyr+1); m_layers_rst[lyr].first.reset(m_res, m_pxdim, m_o); } inline void begin_layer() { m_layers_rst.emplace_back(); m_layers_rst.front().first.reset(m_res, m_pxdim, m_o); } inline void finish_layer(unsigned lyr_id) { assert(lyr_id < m_layers_rst.size()); m_layers_rst[lyr_id].first.save(m_layers_rst[lyr_id].second, Raster::Compression::PNG); m_layers_rst[lyr_id].first.reset(); } inline void finish_layer() { if(!m_layers_rst.empty()) { m_layers_rst.back().first.save(m_layers_rst.back().second, Raster::Compression::PNG); m_layers_rst.back().first.reset(); } } template inline void save(const std::string& path) { try { LayerWriter writer(path); if(!writer.is_ok()) return; std::string project = writer.get_name(); writer.next_entry("config.ini"); if(!writer.is_ok()) return; writer << createIniContent(project); for(unsigned i = 0; i < m_layers_rst.size() && writer.is_ok(); i++) { if(m_layers_rst[i].second.rdbuf()->in_avail() > 0) { char lyrnum[6]; std::sprintf(lyrnum, "%.5d", i); auto zfilename = project + lyrnum + ".png"; writer.next_entry(zfilename); if(!writer.is_ok()) break; writer << m_layers_rst[i].second.str(); // writer << m_layers_rst[i].second.rdbuf(); // we can keep the date for later calls of this method //m_layers_rst[i].second.str(""); } } } catch(std::exception& e) { BOOST_LOG_TRIVIAL(error) << e.what(); // Rethrow the exception throw; } } void save_layer(unsigned lyr, const std::string& path) { unsigned i = lyr; assert(i < m_layers_rst.size()); char lyrnum[6]; std::sprintf(lyrnum, "%.5d", lyr); std::string loc = path + "layer" + lyrnum + ".png"; std::fstream out(loc, std::fstream::out | std::fstream::binary); if(out.good()) { m_layers_rst[i].first.save(out, Raster::Compression::PNG); } else { BOOST_LOG_TRIVIAL(error) << "Can't create file for layer"; } out.close(); m_layers_rst[i].first.reset(); } void set_statistics(const std::vector statistics) { if (statistics.size() != psCnt) return; m_used_material = statistics[psUsedMaterial]; m_cnt_fade_layers = int(statistics[psNumFade]); m_cnt_slow_layers = int(statistics[psNumSlow]); m_cnt_fast_layers = int(statistics[psNumFast]); } }; } #endif // PRINTEXPORT_HPP