#include "SLAPrint.hpp" #include "SLA/SLASupportTree.hpp" #include "SLA/SLABasePool.hpp" #include #include //#include //#include "tbb/mutex.h" #include "I18N.hpp" //! macro used to mark string used at localization, //! return same string #define L(s) Slic3r::I18N::translate(s) namespace Slic3r { using SlicedModel = SlicedSupports; using SupportTreePtr = std::unique_ptr; class SLAPrintObject::SupportData { public: sla::EigenMesh3D emesh; // index-triangle representation sla::PointSet support_points; // all the support points (manual/auto) SupportTreePtr support_tree_ptr; // the supports SlicedSupports support_slices; // sliced supports }; namespace { const std::array OBJ_STEP_LEVELS = { 0, 20, 30, 50, 70, 90 }; const std::array OBJ_STEP_LABELS = { L("Slicing model"), // slaposObjectSlice, L("Generating islands"), // slaposSupportIslands, L("Scanning model structure"), // slaposSupportPoints, L("Generating support tree"), // slaposSupportTree, L("Generating base pool"), // slaposBasePool, L("Slicing supports") // slaposSliceSupports, }; const std::array PRINT_STEP_LEVELS = { // This is after processing all the Print objects, so we start from 50% 50, // slapsRasterize 90, // slapsValidate }; const std::array PRINT_STEP_LABELS = { L("Rasterizing layers"), // slapsRasterize L("Validating"), // slapsValidate }; } void SLAPrint::clear() { tbb::mutex::scoped_lock lock(this->state_mutex()); // The following call should stop background processing if it is running. this->invalidate_all_steps(); for (SLAPrintObject *object : m_objects) delete object; m_objects.clear(); } SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, const DynamicPrintConfig &config_in) { // if (m_objects.empty()) // return APPLY_STATUS_UNCHANGED; // Grab the lock for the Print / PrintObject milestones. tbb::mutex::scoped_lock lock(this->state_mutex()); if (m_objects.empty() && model.objects.empty() && m_model.objects.empty()) return APPLY_STATUS_UNCHANGED; // Temporary: just to have to correct layer height for the rasterization DynamicPrintConfig config(config_in); config.normalize(); m_material_config.initial_layer_height.set( config.opt("initial_layer_height")); // Temporary quick fix, just invalidate everything. { for (SLAPrintObject *print_object : m_objects) { print_object->invalidate_all_steps(); delete print_object; } m_objects.clear(); this->invalidate_all_steps(); // Copy the model by value (deep copy), // keep the Model / ModelObject / ModelInstance / ModelVolume IDs. m_model.assign_copy(model); // Generate new SLAPrintObjects. for (ModelObject *model_object : m_model.objects) { auto po = new SLAPrintObject(this, model_object); // po->m_config.layer_height.set(lh); po->m_config.apply(config, true); m_objects.emplace_back(po); for (ModelInstance *oinst : model_object->instances) { Point tr = Point::new_scale(oinst->get_offset()(X), oinst->get_offset()(Y)); auto rotZ = float(oinst->get_rotation()(Z)); po->m_instances.emplace_back(oinst->id(), tr, rotZ); } } } return APPLY_STATUS_INVALIDATED; } void SLAPrint::process() { using namespace sla; // Assumption: at this point the print objects should be populated only with // the model objects we have to process and the instances are also filtered // shortcut to initial layer height double ilhd = m_material_config.initial_layer_height.getFloat(); auto ilh = float(ilhd); // Slicing the model object. This method is oversimplified and needs to // be compared with the fff slicing algorithm for verification auto slice_model = [this, ilh, ilhd](SLAPrintObject& po) { double lh = po.m_config.layer_height.getFloat(); TriangleMesh mesh = po.transformed_mesh(); TriangleMeshSlicer slicer(&mesh); auto bb3d = mesh.bounding_box(); double elevation = po.get_elevation(); float minZ = float(bb3d.min(Z)) - float(elevation); float maxZ = float(bb3d.max(Z)) ; auto flh = float(lh); auto gnd = float(bb3d.min(Z)); std::vector heights; // The first layer (the one before the initial height) is added only // if the there is no pad and no elevation value if(minZ >= gnd) heights.emplace_back(minZ); for(float h = minZ + ilh; h < maxZ; h += flh) if(h >= gnd) heights.emplace_back(h); auto& layers = po.m_model_slices; slicer.slice(heights, &layers, [this](){ throw_if_canceled(); }); }; auto support_points = [](SLAPrintObject& po) { ModelObject& mo = *po.m_model_object; if(!mo.sla_support_points.empty()) { po.m_supportdata.reset(new SLAPrintObject::SupportData()); po.m_supportdata->emesh = sla::to_eigenmesh(po.transformed_mesh()); po.m_supportdata->support_points = sla::to_point_set(po.transformed_support_points()); } // for(SLAPrintObject *po : pobjects) { // TODO: calculate automatic support points // po->m_supportdata->slice_cache contains the slices at this point //} }; // In this step we create the supports auto support_tree = [this](SLAPrintObject& po) { if(!po.m_supportdata) return; auto& emesh = po.m_supportdata->emesh; auto& pts = po.m_supportdata->support_points; // nowhere filled yet try { sla::SupportConfig scfg; SLAPrintObjectConfig& c = po.m_config; scfg.head_front_radius_mm = c.support_head_front_radius.getFloat(); scfg.head_back_radius_mm = c.support_head_back_radius.getFloat(); scfg.head_penetration_mm = c.support_head_penetration.getFloat(); scfg.head_width_mm = c.support_head_width.getFloat(); scfg.object_elevation_mm = c.support_object_elevation.getFloat(); scfg.tilt = c.support_critical_angle.getFloat() * PI / 180.0 ; scfg.max_bridge_length_mm = c.support_max_bridge_length.getFloat(); scfg.pillar_radius_mm = c.support_pillar_radius.getFloat(); sla::Controller ctl; ctl.statuscb = [this](unsigned st, const std::string& msg) { unsigned stinit = OBJ_STEP_LEVELS[slaposSupportTree]; double d = (OBJ_STEP_LEVELS[slaposBasePool] - stinit) / 100.0; set_status(unsigned(stinit + st*d), msg); }; ctl.stopcondition = [this](){ return canceled(); }; ctl.cancelfn = [this]() { throw_if_canceled(); }; po.m_supportdata->support_tree_ptr.reset( new SLASupportTree(pts, emesh, scfg, ctl)); } catch(sla::SLASupportsStoppedException&) { // no need to rethrow // throw_if_canceled(); } }; // This step generates the sla base pad auto base_pool = [](SLAPrintObject& po) { // this step can only go after the support tree has been created // and before the supports had been sliced. (or the slicing has to be // repeated) if(po.is_step_done(slaposSupportTree) && po.m_config.pad_enable.getBool() && po.m_supportdata && po.m_supportdata->support_tree_ptr) { double wt = po.m_config.pad_wall_thickness.getFloat(); double h = po.m_config.pad_wall_height.getFloat(); double md = po.m_config.pad_max_merge_distance.getFloat(); double er = po.m_config.pad_edge_radius.getFloat(); double lh = po.m_config.layer_height.getFloat(); double elevation = po.m_config.support_object_elevation.getFloat(); sla::PoolConfig pcfg(wt, h, md, er); sla::ExPolygons bp; double pad_h = sla::get_pad_elevation(pcfg); if(elevation < pad_h) sla::base_plate(po.transformed_mesh(), bp, float(pad_h), float(lh)); po.m_supportdata->support_tree_ptr->add_pad(bp, wt, h, md, er); } }; // Slicing the support geometries similarly to the model slicing procedure. // If the pad had been added previously (see step "base_pool" than it will // be part of the slices) auto slice_supports = [ilh](SLAPrintObject& po) { auto& sd = po.m_supportdata; if(sd && sd->support_tree_ptr) { auto lh = float(po.m_config.layer_height.getFloat()); sd->support_slices = sd->support_tree_ptr->slice(lh, ilh); } }; // Rasterizing the model objects, and their supports auto rasterize = [this, ilh, ilhd]() { using Layer = sla::ExPolygons; using LayerCopies = std::vector; struct LayerRef { std::reference_wrapper lref; std::reference_wrapper copies; LayerRef(const Layer& lyr, const LayerCopies& cp) : lref(std::cref(lyr)), copies(std::cref(cp)) {} }; using LevelID = long long; using LayerRefs = std::vector; // layers according to quantized height levels std::map levels; auto sih = LevelID(scale_(ilh)); // For all print objects, go through its initial layers and place them // into the layers hash for(SLAPrintObject *o : m_objects) { auto bb = o->transformed_mesh().bounding_box(); double modelgnd = bb.min(Z); double elevation = o->get_elevation(); double lh = o->m_config.layer_height.getFloat(); double minZ = modelgnd - elevation; // scaled values: auto sminZ = LevelID(scale_(minZ)); auto smaxZ = LevelID(scale_(bb.max(Z))); auto smodelgnd = LevelID(scale_(modelgnd)); auto slh = LevelID(scale_(lh)); // It is important that the next levels math the levels in // model_slice method. Only difference is that here it works with // scaled coordinates std::vector levelids; if(sminZ >= smodelgnd) levelids.emplace_back(sminZ); for(LevelID h = sminZ + sih; h < smaxZ; h += slh) if(h >= smodelgnd) levelids.emplace_back(h); SlicedModel & oslices = o->m_model_slices; // If everything went well this code should not run at all, but // let's be robust... assert(levelids.size() == oslices.size()); if(levelids.size() < oslices.size()) { // extend the levels until... BOOST_LOG_TRIVIAL(warning) << "Height level mismatch at rasterization!\n"; LevelID lastlvl = levelids.back(); while(levelids.size() < oslices.size()) { lastlvl += slh; levelids.emplace_back(lastlvl); } } for(int i = 0; i < oslices.size(); ++i) { LevelID h = levelids[i]; auto& lyrs = levels[h]; // this initializes a new record lyrs.emplace_back(oslices[i], o->m_instances); } if(o->m_supportdata) { // deal with the support slices if present auto& sslices = o->m_supportdata->support_slices; for(int i = 0; i < sslices.size(); ++i) { int a = i == 0 ? 0 : 1; int b = i == 0 ? 0 : i - 1; LevelID h = sminZ + a * sih + b * slh; auto& lyrs = levels[h]; lyrs.emplace_back(sslices[i], o->m_instances); } } } if(canceled()) return; // collect all the keys std::vector keys; keys.reserve(levels.size()); for(auto& e : levels) keys.emplace_back(e.first); { // create a raster printer for the current print parameters // I don't know any better auto& ocfg = m_objects.front()->m_config; auto& matcfg = m_material_config; auto& printcfg = m_printer_config; double w = printcfg.display_width.getFloat(); double h = printcfg.display_height.getFloat(); unsigned pw = printcfg.display_pixels_x.getInt(); unsigned ph = printcfg.display_pixels_y.getInt(); double lh = ocfg.layer_height.getFloat(); double exp_t = matcfg.exposure_time.getFloat(); double iexp_t = matcfg.initial_exposure_time.getFloat(); m_printer.reset(new SLAPrinter(w, h, pw, ph, lh, exp_t, iexp_t)); } // Allocate space for all the layers SLAPrinter& printer = *m_printer; auto lvlcnt = unsigned(levels.size()); printer.layers(lvlcnt); // TODO exclusive progress indication for this step would be good // as it is the longest of all. It would require synchronization // in the parallel processing. // procedure to process one height level. This will run in parallel auto lvlfn = [this, &keys, &levels, &printer](unsigned level_id) { if(canceled()) return; LayerRefs& lrange = levels[keys[level_id]]; // Switch to the appropriate layer in the printer printer.begin_layer(level_id); for(auto& lyrref : lrange) { // for all layers in the current level if(canceled()) break; const Layer& sl = lyrref.lref; // get the layer reference const LayerCopies& copies = lyrref.copies; // Draw all the polygons in the slice to the actual layer. for(auto& cp : copies) { for(ExPolygon slice : sl) { slice.translate(cp.shift(X), cp.shift(Y)); slice.rotate(cp.rotation); printer.draw_polygon(slice, level_id); } } } // Finish the layer for later saving it. printer.finish_layer(level_id); }; // last minute escape if(canceled()) return; // Sequential version (for testing) // for(unsigned l = 0; l < lvlcnt; ++l) process_level(l); // Print all the layers in parallel tbb::parallel_for(0, lvlcnt, lvlfn); }; using slaposFn = std::function; using slapsFn = std::function; std::array objectsteps = { slaposObjectSlice, slaposSupportIslands, slaposSupportPoints, slaposSupportTree, slaposBasePool, slaposSliceSupports }; std::array pobj_program = { slice_model, [](SLAPrintObject&){}, // slaposSupportIslands now empty support_points, support_tree, base_pool, slice_supports }; std::array print_program = { rasterize, [](){} // validate }; const unsigned min_objstatus = 0; const unsigned max_objstatus = PRINT_STEP_LEVELS[slapsRasterize]; const size_t objcount = m_objects.size(); const double ostepd = (max_objstatus - min_objstatus) / (objcount * 100.0); for(SLAPrintObject * po : m_objects) { for(size_t s = 0; s < pobj_program.size(); ++s) { auto currentstep = objectsteps[s]; // Cancellation checking. Each step will check for cancellation // on its own and return earlier gracefully. Just after it returns // execution gets to this point and throws the canceled signal. throw_if_canceled(); if(po->m_stepmask[s] && !po->is_step_done(currentstep)) { unsigned st = OBJ_STEP_LEVELS[currentstep]; st = unsigned(min_objstatus + st * ostepd); set_status(st, OBJ_STEP_LABELS[currentstep]); po->set_started(currentstep); pobj_program[s](*po); po->set_done(currentstep); } } } std::array printsteps = { slapsRasterize, slapsValidate }; // this would disable the rasterization step // m_stepmask[slapsRasterize] = false; for(size_t s = 0; s < print_program.size(); ++s) { auto currentstep = printsteps[s]; throw_if_canceled(); if(m_stepmask[s] && !is_step_done(currentstep)) { set_status(PRINT_STEP_LEVELS[currentstep], PRINT_STEP_LABELS[currentstep]); set_started(currentstep); print_program[s](); set_done(currentstep); } } // If everything vent well set_status(100, L("Slicing done")); } SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object): Inherited(print, model_object), m_stepmask(slaposCount, true) { } SLAPrintObject::~SLAPrintObject() {} double SLAPrintObject::get_elevation() const { double ret = m_config.support_object_elevation.getFloat(); // if the pad is enabled, then half of the pad height is its base plate if(m_config.pad_enable.getBool()) { // Normally the elevation for the pad itself would be the thickness of // its walls but currently it is half of its thickness. Whatever it // will be in the future, we provide the config to the get_pad_elevation // method and we will have the correct value sla::PoolConfig pcfg; pcfg.min_wall_height_mm = m_config.pad_wall_height.getFloat(); pcfg.min_wall_thickness_mm = m_config.pad_wall_thickness.getFloat(); pcfg.edge_radius_mm = m_config.pad_edge_radius.getFloat(); pcfg.max_merge_distance_mm = m_config.pad_max_merge_distance.getFloat(); ret += sla::get_pad_elevation(pcfg); } return ret; } //const std::vector &SLAPrintObject::get_support_slices() const //{ // // I don't want to return a copy but the points may not exist, so ... // static const std::vector dummy_empty; // if(!m_supportdata) return dummy_empty; // return m_supportdata->support_slices; //} //const std::vector &SLAPrintObject::get_model_slices() const //{ // return m_model_slices; //} bool SLAPrintObject::has_mesh(SLAPrintObjectStep step) const { switch (step) { case slaposSupportTree: // return m_supportdata && m_supportdata->support_tree_ptr && ! m_supportdata->support_tree_ptr->get().merged_mesh().empty(); return ! this->support_mesh().empty(); case slaposBasePool: // return m_supportdata && m_supportdata->support_tree_ptr && ! m_supportdata->support_tree_ptr->get_pad().empty(); return ! this->pad_mesh().empty(); default: return false; } } TriangleMesh SLAPrintObject::get_mesh(SLAPrintObjectStep step) const { switch (step) { case slaposSupportTree: return this->support_mesh(); case slaposBasePool: return this->pad_mesh(); default: return TriangleMesh(); } } TriangleMesh SLAPrintObject::support_mesh() const { TriangleMesh trm; if(m_supportdata && m_supportdata->support_tree_ptr) m_supportdata->support_tree_ptr->merged_mesh(trm); // TODO: is this necessary? trm.repair(); return trm; } TriangleMesh SLAPrintObject::pad_mesh() const { if(!m_supportdata || !m_supportdata->support_tree_ptr) return {}; return m_supportdata->support_tree_ptr->get_pad(); } const TriangleMesh &SLAPrintObject::transformed_mesh() const { // we need to transform the raw mesh... // currently all the instances share the same x and y rotation and scaling // so we have to extract those from e.g. the first instance and apply to the // raw mesh. This is also true for the support points. // BUT: when the support structure is spawned for each instance than it has // to omit the X, Y rotation and scaling as those have been already applied // or apply an inverse transformation on the support structure after it // has been created. if(m_trmesh_valid) return m_transformed_rmesh; m_transformed_rmesh = m_model_object->raw_mesh(); m_transformed_rmesh.transform(m_trafo); m_trmesh_valid = true; return m_transformed_rmesh; } std::vector SLAPrintObject::transformed_support_points() const { assert(m_model_object != nullptr); auto& spts = m_model_object->sla_support_points; // this could be cached as well std::vector ret; ret.reserve(spts.size()); for(auto& sp : spts) ret.emplace_back( trafo() * Vec3d(sp.cast())); return ret; } } // namespace Slic3r