#include "WipeTowerPrusaMM.hpp" #include #include #include #include #include #if defined(__linux) || defined(__GNUC__ ) #include #endif /* __linux */ #ifdef _MSC_VER #define strcasecmp _stricmp #endif // experimental: ramming speed (mm^3/s) sampled in 0.25s intervals (one filament so far) const std::vector ramming_speed = {7.6, 7.6, 7.6, 7.6, 9.0, 9.0, 9.0, 10.7, 10.7, 10.7}; // experimental: time requested for cooling in seconds (common for all materials so far) const float cooling_time = 14; // PVA: 20; SCAFF: 17 const float loading_volume = 20; namespace Slic3r { namespace PrusaMultiMaterial { class Writer { public: Writer() : m_current_pos(std::numeric_limits::max(), std::numeric_limits::max()), m_current_z(0.f), m_current_feedrate(0.f), m_extrusion_flow(0.f), m_layer_height(0.f), m_preview_suppressed(false), m_elapsed_time(0.f) {} Writer& set_initial_position(const WipeTower::xy &pos) { m_start_pos = pos; m_current_pos = pos; return *this; } Writer& set_initial_tool(const unsigned int tool) { m_current_tool = tool; return *this; } Writer& set_z(float z) { m_current_z = z; return *this; } Writer& set_layer_height(float layer_height) { m_layer_height = layer_height; return *this; } Writer& set_extrusion_flow(float flow) { m_extrusion_flow = flow; return *this; } Writer& set_rotation(WipeTower::xy& pos, float width, float depth, float angle) { m_wipe_tower_pos = pos; m_wipe_tower_width = width; m_wipe_tower_depth=depth; m_angle_deg = angle; return (*this); } // Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various // filament loading and cooling moves from normal extrusion moves. Therefore the writer // is asked to suppres output of some lines, which look like extrusions. Writer& suppress_preview() { m_preview_suppressed = true; return *this; } Writer& resume_preview() { m_preview_suppressed = false; return *this; } Writer& feedrate(float f) { if (f != m_current_feedrate) m_gcode += "G1" + set_format_F(f) + "\n"; return *this; } const std::string& gcode() const { return m_gcode; } const std::vector& extrusions() const { return m_extrusions; } float x() const { return m_current_pos.x; } float y() const { return m_current_pos.y; } const WipeTower::xy& pos() const { return m_current_pos; } const WipeTower::xy start_pos_rotated() const { return m_start_pos.rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg); } const WipeTower::xy pos_rotated() const { return m_current_pos.rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg); } float elapsed_time() const { return m_elapsed_time; } // Extrude with an explicitely provided amount of extrusion. Writer& extrude_explicit(float x, float y, float e, float f = 0.f) { if (x == m_current_pos.x && y == m_current_pos.y && e == 0.f && (f == 0.f || f == m_current_feedrate)) // Neither extrusion nor a travel move. return *this; float dx = x - m_current_pos.x; float dy = y - m_current_pos.y; double len = sqrt(dx*dx+dy*dy); // For rotated wipe tower, transform position to printer coordinates WipeTower::xy rotated_current_pos(m_current_pos.rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg)); WipeTower::xy rot(WipeTower::xy(x,y).rotate(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_angle_deg)); if (! m_preview_suppressed && e > 0.f && len > 0.) { // Width of a squished extrusion, corrected for the roundings of the squished extrusions. // This is left zero if it is a travel move. float width = float(double(e) * Filament_Area / (len * m_layer_height)); // Correct for the roundings of a squished extrusion. width += m_layer_height * float(1. - M_PI / 4.); if (m_extrusions.empty() || m_extrusions.back().pos != rotated_current_pos) m_extrusions.emplace_back(WipeTower::Extrusion(rotated_current_pos, 0, m_current_tool)); m_extrusions.emplace_back(WipeTower::Extrusion(WipeTower::xy(rot.x, rot.y), width, m_current_tool)); } m_gcode += "G1"; if (rot.x != rotated_current_pos.x) m_gcode += set_format_X(rot.x); if (rot.y != rotated_current_pos.y) m_gcode += set_format_Y(rot.y); // Transform current position back to wipe tower coordinates (was updated by set_format_X) m_current_pos.x = x; m_current_pos.y = y; if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) m_gcode += set_format_F(f); // Update the elapsed time with a rough estimate. m_elapsed_time += ((len == 0) ? std::abs(e) : len) / m_current_feedrate * 60.f; m_gcode += "\n"; return *this; } Writer& extrude_explicit(const WipeTower::xy &dest, float e, float f = 0.f) { return extrude_explicit(dest.x, dest.y, e, f); } // Travel to a new XY position. f=0 means use the current value. Writer& travel(float x, float y, float f = 0.f) { return extrude_explicit(x, y, 0.f, f); } Writer& travel(const WipeTower::xy &dest, float f = 0.f) { return extrude_explicit(dest.x, dest.y, 0.f, f); } // Extrude a line from current position to x, y with the extrusion amount given by m_extrusion_flow. Writer& extrude(float x, float y, float f = 0.f) { float dx = x - m_current_pos.x; float dy = y - m_current_pos.y; return extrude_explicit(x, y, sqrt(dx*dx+dy*dy) * m_extrusion_flow, f); } Writer& extrude(const WipeTower::xy &dest, const float f = 0.f) { return extrude(dest.x, dest.y, f); } Writer& load(float e, float f = 0.f) { if (e == 0.f && (f == 0.f || f == m_current_feedrate)) return *this; m_gcode += "G1"; if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } // Derectract while moving in the X direction. // If |x| > 0, the feed rate relates to the x distance, // otherwise the feed rate relates to the e distance. Writer& load_move_x(float x, float e, float f = 0.f) { return extrude_explicit(x, m_current_pos.y, e, f); } Writer& retract(float e, float f = 0.f) { return load(-e, f); } // Elevate the extruder head above the current print_z position. Writer& z_hop(float hop, float f = 0.f) { m_gcode += std::string("G1") + set_format_Z(m_current_z + hop); if (f != 0 && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } // Lower the extruder head back to the current print_z position. Writer& z_hop_reset(float f = 0.f) { return z_hop(0, f); } // Move to x1, +y_increment, // extrude quickly amount e to x2 with feed f. Writer& ram(float x1, float x2, float dy, float e0, float e, float f) { extrude_explicit(x1, m_current_pos.y + dy, e0, f); extrude_explicit(x2, m_current_pos.y, e); return *this; } // Let the end of the pulled out filament cool down in the cooling tube // by moving up and down and moving the print head left / right // at the current Y position to spread the leaking material. Writer& cool(float x1, float x2, float e1, float e2, float f) { extrude_explicit(x1, m_current_pos.y, e1, f); extrude_explicit(x2, m_current_pos.y, e2); return *this; } Writer& set_tool(int tool) { char buf[64]; sprintf(buf, "T%d\n", tool); m_gcode += buf; m_current_tool = tool; return *this; } // Set extruder temperature, don't wait by default. Writer& set_extruder_temp(int temperature, bool wait = false) { char buf[128]; sprintf(buf, "M%d S%d\n", wait ? 109 : 104, temperature); m_gcode += buf; return *this; }; // Set speed factor override percentage. Writer& speed_override(int speed) { char buf[128]; sprintf(buf, "M220 S%d\n", speed); m_gcode += buf; return *this; }; // Set digital trimpot motor Writer& set_extruder_trimpot(int current) { char buf[128]; sprintf(buf, "M907 E%d\n", current); m_gcode += buf; return *this; }; Writer& flush_planner_queue() { m_gcode += "G4 S0\n"; return *this; } // Reset internal extruder counter. Writer& reset_extruder() { m_gcode += "G92 E0\n"; return *this; } Writer& comment_with_value(const char *comment, int value) { char strvalue[64]; sprintf(strvalue, "%d", value); m_gcode += std::string(";") + comment + strvalue + "\n"; return *this; }; Writer& set_fan(unsigned int speed) { if (speed == m_last_fan_speed) return *this; if (speed == 0) m_gcode += "M107\n"; else { m_gcode += "M106 S"; char buf[128]; sprintf(buf,"%u\n",(unsigned int)(255.0 * speed / 100.0)); m_gcode += buf; } m_last_fan_speed = speed; return *this; } Writer& comment_material(WipeTowerPrusaMM::material_type material) { m_gcode += "; material : "; switch (material) { case WipeTowerPrusaMM::PVA: m_gcode += "#8 (PVA)"; break; case WipeTowerPrusaMM::SCAFF: m_gcode += "#5 (Scaffold)"; break; case WipeTowerPrusaMM::FLEX: m_gcode += "#4 (Flex)"; break; default: m_gcode += "DEFAULT (PLA)"; break; } m_gcode += "\n"; return *this; }; Writer& append(const char *text) { m_gcode += text; return *this; } private: WipeTower::xy m_start_pos; WipeTower::xy m_current_pos; float m_current_z; float m_current_feedrate; unsigned int m_current_tool; float m_layer_height; float m_extrusion_flow; bool m_preview_suppressed; std::string m_gcode; std::vector m_extrusions; float m_elapsed_time; float m_angle_deg = 0; WipeTower::xy m_wipe_tower_pos; float m_wipe_tower_width; float m_wipe_tower_depth; float m_last_fan_speed = 0.f; std::string set_format_X(float x) { char buf[64]; sprintf(buf, " X%.3f", x); m_current_pos.x = x; return buf; } std::string set_format_Y(float y) { char buf[64]; sprintf(buf, " Y%.3f", y); m_current_pos.y = y; return buf; } std::string set_format_Z(float z) { char buf[64]; sprintf(buf, " Z%.3f", z); return buf; } std::string set_format_E(float e) { char buf[64]; sprintf(buf, " E%.4f", e); return buf; } std::string set_format_F(float f) { char buf[64]; sprintf(buf, " F%d", int(floor(f + 0.5f))); m_current_feedrate = f; return buf; } Writer& operator=(const Writer &rhs); }; /* class Material { public: std::string name; std::string type; struct RammingStep { // float length; float extrusion_multiplier; // sirka linky float extrusion; float speed; }; std::vector ramming_sequence; // Number and speed of the cooling moves. std::vector cooling_moves; // Percentage of the speed overide, in pairs of std::vector> speed_override; }; */ }; // namespace PrusaMultiMaterial WipeTowerPrusaMM::material_type WipeTowerPrusaMM::parse_material(const char *name) { if (strcasecmp(name, "PLA") == 0) return PLA; if (strcasecmp(name, "ABS") == 0) return ABS; if (strcasecmp(name, "PET") == 0) return PET; if (strcasecmp(name, "HIPS") == 0) return HIPS; if (strcasecmp(name, "FLEX") == 0) return FLEX; if (strcasecmp(name, "SCAFF") == 0) return SCAFF; if (strcasecmp(name, "EDGE") == 0) return EDGE; if (strcasecmp(name, "NGEN") == 0) return NGEN; if (strcasecmp(name, "PVA") == 0) return PVA; return INVALID; } // Returns gcode to prime the nozzles at the front edge of the print bed. WipeTower::ToolChangeResult WipeTowerPrusaMM::prime( // print_z of the first layer. float first_layer_height, // Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object. const std::vector &tools, // If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower. // If false, the last priming are will be large enough to wipe the last extruder sufficiently. bool last_wipe_inside_wipe_tower, // May be used by a stand alone post processor. Purpose purpose) { this->set_layer(first_layer_height, first_layer_height, tools.size(), true, false); float wipe_area = m_wipe_area; // Calculate the amount of wipe over the wipe tower brim following the prime, decrease wipe_area // with the amount of material extruded over the brim. // DOESN'T MAKE SENSE NOW, wipe tower dimensions are still unknown at this point /*{ // Simulate the brim extrusions, summ the length of the extrusion. float e_length = this->tool_change(0, false, PURPOSE_EXTRUDE).total_extrusion_length_in_plane(); // Shrink wipe_area by the amount of extrusion extruded by the finish_layer(). // Y stepping of the wipe extrusions. float dy = m_line_width; // Number of whole wipe lines, that would be extruded to wipe as much material as the finish_layer(). // Minimum wipe area is 5mm wide. //FIXME calculate the purge_lines_width precisely. float purge_lines_width = 1.3f; wipe_area = std::max(5.f, m_wipe_area - float(floor(e_length / m_wipe_tower_width)) * dy - purge_lines_width); } this->set_layer(first_layer_height, first_layer_height, tools.size(), true, false);*/ this->m_num_layer_changes = 0; this->m_current_tool = tools.front(); // The Prusa i3 MK2 has a working space of [0, -2.2] to [250, 210]. // Due to the XYZ calibration, this working space may shrink slightly from all directions, // therefore the homing position is shifted inside the bed by 0.2 in the firmware to [0.2, -2.0]. // box_coordinates cleaning_box(xy(0.5f, - 1.5f), m_wipe_tower_width, wipe_area); //FIXME: set the width properly constexpr float prime_section_width = 60.f; box_coordinates cleaning_box(xy(5.f, 0.f), prime_section_width, wipe_area); PrusaMultiMaterial::Writer writer; writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_layer_height(m_layer_height) .set_initial_tool(m_current_tool) .append(";--------------------\n" "; CP PRIMING START\n") .append(";--------------------\n") .speed_override(100); // Always move to the starting position. writer.set_initial_position(xy(0.f, 0.f)) .travel(cleaning_box.ld, 7200) // Increase the extruder driver current to allow fast ramming. .set_extruder_trimpot(750); if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { float y_end = 0.f; for (size_t idx_tool = 0; idx_tool < tools.size(); ++ idx_tool) { unsigned int tool = tools[idx_tool]; // Select the tool, set a speed override for soluble and flex materials. toolchange_Change(writer, tool, m_material[tool]); // Prime the tool. toolchange_Load(writer, cleaning_box); if (idx_tool + 1 == tools.size()) { // Last tool should not be unloaded, but it should be wiped enough to become of a pure color. if (last_wipe_inside_wipe_tower) { // Shrink the last wipe area to the area of the other purge areas, // remember the last initial wipe width to be purged into the 1st layer of the wipe tower. this->m_initial_extra_wipe = std::max(0.f, wipe_area - (y_end + 0.5f * m_line_width - cleaning_box.ld.y)); cleaning_box.lu.y -= this->m_initial_extra_wipe; cleaning_box.ru.y -= this->m_initial_extra_wipe; } toolchange_Wipe(writer, cleaning_box, false); } else { // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. writer.travel(writer.x(), writer.y() + m_perimeter_width, 7200); // Change the extruder temperature to the temperature of the next filament before starting the cooling moves. toolchange_Unload(writer, cleaning_box, m_material[m_current_tool], m_first_layer_temperature[tools[idx_tool+1]]); // Save the y end of the non-last priming area. y_end = writer.y(); cleaning_box.translate(prime_section_width, 0.f); writer.travel(cleaning_box.ld, 7200); } ++ m_num_tool_changes; } } // Reset the extruder current to a normal value. writer.set_extruder_trimpot(550) .feedrate(6000) .flush_planner_queue() .reset_extruder() .append("; CP PRIMING END\n" ";------------------\n" "\n\n"); // Force m_idx_tool_change_in_layer to -1, so that tool_change() will know to extrude the wipe tower brim. ///m_idx_tool_change_in_layer = (unsigned int)(-1); m_print_brim = true; ToolChangeResult result; result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos_rotated(); return result; } WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, bool last_in_layer, Purpose purpose) { // Either it is the last tool unload, // or there must be a nonzero wipe tower partitions available. // assert(tool < 0 || it_layer_tools->wipe_tower_partitions > 0); if ( m_print_brim ) { ///if (m_idx_tool_change_in_layer == (unsigned int)(-1)) { // First layer, prime the extruder. return toolchange_Brim(purpose); } float wipe_area = 0.f; /*if (++ m_idx_tool_change_in_layer < (unsigned int)m_max_color_changes && last_in_layer) { // This tool_change() call will be followed by a finish_layer() call. // Try to shrink the wipe_area to save material, as less than usual wipe is required // if this step is foolowed by finish_layer() extrusions wiping the same extruder. for (size_t iter = 0; iter < 3; ++ iter) { // Simulate the finish_layer() extrusions, summ the length of the extrusion. float e_length = 0.f; { unsigned int old_idx_tool_change = m_idx_tool_change_in_layer; float old_wipe_start_y = m_current_wipe_start_y; m_current_wipe_start_y += wipe_area; e_length = this->finish_layer(PURPOSE_EXTRUDE).total_extrusion_length_in_plane(); m_idx_tool_change_in_layer = old_idx_tool_change; m_current_wipe_start_y = old_wipe_start_y; } // Shrink wipe_area by the amount of extrusion extruded by the finish_layer(). // Y stepping of the wipe extrusions. float dy = m_line_width; // Number of whole wipe lines, that would be extruded to wipe as much material as the finish_layer(). float num_lines_extruded = floor(e_length / m_wipe_tower_width); // Minimum wipe area is 5mm wide. wipe_area = m_wipe_area - num_lines_extruded * dy; if (wipe_area < 5.) { wipe_area = 5.; break; } } }*/ // Finds this toolchange info if (tool != (unsigned int)(-1)) { for (const auto &b : m_layer_info->tool_changes) if ( b.new_tool == tool ) wipe_area = b.required_depth; } else { // Otherwise we are going to Unload only. And m_layer_info would be invalid. } box_coordinates cleaning_box( m_wipe_tower_pos + xy(0.f, m_current_wipe_start_y + 0.5f * m_perimeter_width), m_wipe_tower_width, wipe_area - m_perimeter_width); PrusaMultiMaterial::Writer writer; writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_layer_height(m_layer_height) .set_initial_tool(m_current_tool) .set_rotation(m_wipe_tower_pos,m_wipe_tower_width,m_wipe_tower_depth,m_wipe_tower_rotation_angle) .append(";--------------------\n" "; CP TOOLCHANGE START\n") .comment_with_value(" toolchange #", m_num_tool_changes) .comment_material(m_material[m_current_tool]) .append(";--------------------\n") .speed_override(100); xy initial_position = ((m_current_shape == SHAPE_NORMAL) ? cleaning_box.ld : cleaning_box.lu) + xy(m_perimeter_width, ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_perimeter_width); if (purpose == PURPOSE_MOVE_TO_TOWER || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { // Scaffold leaks terribly, reduce leaking by a full retract when going to the wipe tower. float initial_retract = ((m_material[m_current_tool] == SCAFF) ? 1.f : 0.5f) * m_retract; writer // Lift for a Z hop. .z_hop(m_zhop, 7200) // Additional retract on move to tower. .retract(initial_retract, 3600) // Move to a starting position, one perimeter width inside the cleaning box. .travel(initial_position, 7200) // Unlift for a Z hop. .z_hop_reset(7200) // Additional retract on move to tower. .load(initial_retract, 3600) .load(m_retract, 1500); } else { // Already at the initial position. writer.set_initial_position(initial_position); } if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { // Increase the extruder driver current to allow fast ramming. writer.set_extruder_trimpot(750); // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. if (tool != (unsigned int)-1) { toolchange_Unload(writer, cleaning_box, m_material[m_current_tool], m_is_first_layer ? m_first_layer_temperature[tool] : m_temperature[tool]); // This is not the last change. // Change the tool, set a speed override for soluble and flex materials. toolchange_Change(writer, tool, m_material[tool]); toolchange_Load(writer, cleaning_box); // Wipe the newly loaded filament until the end of the assigned wipe area. toolchange_Wipe(writer, cleaning_box, false); // Draw a perimeter around cleaning_box and wipe. box_coordinates box = cleaning_box; if (m_current_shape == SHAPE_REVERSED) { std::swap(box.lu, box.ld); std::swap(box.ru, box.rd); } // Draw a perimeter around cleaning_box. writer.travel(box.lu, 7000) .extrude(box.ld, 3200).extrude(box.rd) .extrude(box.ru).extrude(box.lu); // Wipe the nozzle. //if (purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) // Always wipe the nozzle with a long wipe to reduce stringing when moving away from the wipe tower. writer.travel(box.ru, 7200) .travel(box.lu); } else toolchange_Unload(writer, cleaning_box, m_material[m_current_tool], m_temperature[m_current_tool]); // Reset the extruder current to a normal value. writer.set_extruder_trimpot(550) .feedrate(6000) .flush_planner_queue() .reset_extruder() .append("; CP TOOLCHANGE END\n" ";------------------\n" "\n\n"); ++ m_num_tool_changes; m_current_wipe_start_y += wipe_area; } ToolChangeResult result; result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos_rotated(); return result; } WipeTower::ToolChangeResult WipeTowerPrusaMM::toolchange_Brim(Purpose purpose, bool sideOnly, float y_offset) { const box_coordinates wipeTower_box( m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth - m_perimeter_width / 2); PrusaMultiMaterial::Writer writer; writer.set_extrusion_flow(m_extrusion_flow * 1.1f) // Let the writer know the current Z position as a base for Z-hop. .set_z(m_z_pos) .set_layer_height(m_layer_height) .set_initial_tool(m_current_tool) .set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle) .append( ";-------------------------------------\n" "; CP WIPE TOWER FIRST LAYER BRIM START\n"); xy initial_position = wipeTower_box.lu - xy(m_perimeter_width * 6.f, 0); if (purpose == PURPOSE_MOVE_TO_TOWER || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) // Move with Z hop. writer.z_hop(m_zhop, 7200) .travel(initial_position, 6000) .z_hop_reset(7200); else writer.set_initial_position(initial_position); if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { // Prime the extruder 10*m_perimeter_width left along the vertical edge of the wipe tower. writer.extrude_explicit(wipeTower_box.ld - xy(m_perimeter_width * 6.f, 0), 1.5f * m_extrusion_flow * (wipeTower_box.lu.y - wipeTower_box.ld.y), 2400); // The tool is supposed to be active and primed at the time when the wipe tower brim is extruded. // toolchange_Change(writer, int(tool), m_material[tool]); if (sideOnly) { float x_offset = m_perimeter_width; for (size_t i = 0; i < 4; ++ i, x_offset += m_perimeter_width) writer.travel (wipeTower_box.ld + xy(- x_offset, y_offset), 7000) .extrude(wipeTower_box.lu + xy(- x_offset, - y_offset), 2100); writer.travel(wipeTower_box.rd + xy(x_offset, y_offset), 7000); x_offset = m_perimeter_width; for (size_t i = 0; i < 4; ++ i, x_offset += m_perimeter_width) writer.travel (wipeTower_box.rd + xy(x_offset, y_offset), 7000) .extrude(wipeTower_box.ru + xy(x_offset, - y_offset), 2100); } else { // Extrude 4 rounds of a brim around the future wipe tower. box_coordinates box(wipeTower_box); //FIXME why is the box shifted in +Y by 0.5f * m_perimeter_width? box.translate(0.f, 0.5f * m_perimeter_width); box.expand(0.5f * m_perimeter_width); for (size_t i = 0; i < 4; ++ i) { writer.travel (box.ld, 7000) .extrude(box.lu, 2100).extrude(box.ru) .extrude(box.rd ).extrude(box.ld); box.expand(m_perimeter_width); } } if (m_initial_extra_wipe > m_perimeter_width * 1.9f) { box_coordinates cleaning_box( m_wipe_tower_pos + xy(0.f, 0.5f * m_perimeter_width), m_wipe_tower_width, m_initial_extra_wipe - m_perimeter_width); writer.travel(cleaning_box.ld + xy(m_perimeter_width, 0.5f * m_perimeter_width), 6000); // Wipe the newly loaded filament until the end of the assigned wipe area. toolchange_Wipe(writer, cleaning_box, true); // Draw a perimeter around cleaning_box. writer.travel(cleaning_box.lu, 7000) .extrude(cleaning_box.ld, 3200).extrude(cleaning_box.rd) .extrude(cleaning_box.ru).extrude(cleaning_box.lu); m_current_wipe_start_y = m_initial_extra_wipe; } // Move to the front left corner. writer.travel(wipeTower_box.ld, 7000); //if (purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) // Wipe along the front edge. // Always wipe the nozzle with a long wipe to reduce stringing when moving away from the wipe tower. writer.travel(wipeTower_box.rd) .travel(wipeTower_box.ld); writer.append("; CP WIPE TOWER FIRST LAYER BRIM END\n" ";-----------------------------------\n"); // Mark the brim as extruded. ///m_idx_tool_change_in_layer = 0; m_print_brim = false; } ToolChangeResult result; result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos_rotated(); return result; } // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. void WipeTowerPrusaMM::toolchange_Unload( PrusaMultiMaterial::Writer &writer, const box_coordinates &cleaning_box, const material_type current_material, const int new_temperature) { float xl = cleaning_box.ld.x + 0.5f * m_perimeter_width; float xr = cleaning_box.rd.x - 0.5f * m_perimeter_width; writer.append("; CP TOOLCHANGE UNLOAD\n"); // Ram the hot material out of the extruder melt zone. // Current extruder position is on the left, one perimeter inside the cleaning box in both X and Y. //float e0 = m_perimeter_width * m_extrusion_flow; //float e = (xr - xl) * m_extrusion_flow; //float y_step = ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_perimeter_width * ramming_step_multiplicator; constexpr float ramming_step_multiplicator = 1.f; // extra spacing needed for some materials const float line_width = m_line_width * 1.5f; // desired ramming line thickness float y_step = (m_current_shape == SHAPE_NORMAL ? 1.f : -1.f) * // spacing between lines in mm line_width * ramming_step_multiplicator; int i = 0; // iterates through ramming_speed m_left_to_right = true; // current direction of ramming float remaining = xr - xl - 2 * m_perimeter_width; // keeps track of distance to the next turnaround float e_done = 0; // measures E move done from each segment writer.travel(xl + m_perimeter_width, writer.y() + y_step * 0.2); // move to starting position while (i < ramming_speed.size()) { const float x = (ramming_speed[i] * 0.25f) / // extrusion length to get desired line_width (m_layer_height * (line_width - m_layer_height * (1. - M_PI / 4.))); const float e = ramming_speed[i] * 0.25f / Filament_Area; // transform volume per sec to E move; const float dist = std::min(x - e_done, remaining); // distance to travel for the next 0.25s writer.ram(writer.x(), writer.x() + (m_left_to_right ? 1.f : -1.f) * dist, 0, 0, e * (dist / x), std::hypot(dist, e * (dist / x)) / (0.25 / 60.)); remaining -= dist; if ( remaining < WT_EPSILON ) { // we reached a turning point writer.travel(writer.x(), writer.y() + y_step); m_left_to_right = !m_left_to_right; remaining = xr - xl - 2 * m_perimeter_width; } e_done += dist; // subtract what was actually transversed if (e_done > x - WT_EPSILON) { // current segment finished ++i; e_done = 0; } } /*switch (current_material) { case ABS: // ramming start end y increment amount feedrate writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 0.2f, 0, 1.2f * e, 4000) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.2f, e0, 1.6f * e, 4600) .ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.2f, e0, 1.8f * e, 5000) .ram(xr - m_perimeter_width * 2, xl + m_perimeter_width * 2, y_step * 1.2f, e0, 1.8f * e, 5000); break; case PVA: // Used for the PrimaSelect PVA writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 0.2f, 0, 1.75f * e, 4000) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.5f, 0, 1.75f * e, 4500) .ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.5f, 0, 1.75f * e, 4800) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.5f, 0, 1.75f * e, 5000); break; case PET: //!!! SCAFF (PET only used for testing): writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 2.f, 0, 1.75f * e, 4000) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 3.f, 0, 2.34f * e, 4600) .ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 3.f, 0, 2.63f * e, 5200); break; default: // PLA, PLA/PHA and others // Used for the Verbatim BVOH, PET, NGEN, co-polyesters writer.ram(xl + m_perimeter_width * 2, xr - m_perimeter_width, y_step * 0.2f, 0, 1.60f * e, 4000) .ram(xr - m_perimeter_width, xl + m_perimeter_width, y_step * 1.2f, e0, 1.65f * e, 4600) .ram(xl + m_perimeter_width * 2, xr - m_perimeter_width * 2, y_step * 1.2f, e0, 1.74f * e, 5200); }*/ // Pull the filament end into a cooling tube. writer.retract(15, 5000).retract(50, 5400).retract(15, 3000).retract(12, 2000); if (new_temperature != 0) // Set the extruder temperature, but don't wait. writer.set_extruder_temp(new_temperature, false); // In case the current print head position is closer to the left edge, reverse the direction. if (std::abs(writer.x() - xl) < std::abs(writer.x() - xr)) std::swap(xl, xr); // Horizontal cooling moves will be performed at the following Y coordinate: /*writer.travel(xr, writer.y() + y_step * 0.8f, 7200) .suppress_preview();*/ /*constexpr float min_cool_speed = 1600; constexpr float max_cool_speed = 2400; const int num_of_intervals = 4; writer.travel(writer.x(), writer.y() + y_step) .retract(-3,min_cool_speed) .suppress_preview(); int filament_direction = -1; // retract first float cool_speed = min_cool_speed; // Numbers 12 (24) below fix velocity in E to 12 times less than in X (total move in X assumed to be >> move in E) for (int counter=0 ; counter < num_of_intervals ; ++counter) { float needed_e_move = cool_speed * (cooling_time / num_of_intervals) / 12.f; // distance yet to move in E axis do { remaining = ( left_to_right ? xr-m_perimeter_width-writer.x() : -xl-m_perimeter_width+writer.x()); // distance to the turning point float xmove = std::min( std::fabs(needed_e_move) * 12.f, remaining * 2.f); // distance to travel printf("posun z %f na %f",writer.x(),writer.x()+xmove / 2.f * (left_to_right ? 1 : -1)); writer.cool(writer.x() + xmove / 2.f * (left_to_right ? 1 : -1), writer.x(), filament_direction * xmove / 24.f, filament_direction * xmove / 24.f, cool_speed); printf(", E %f, rychlost %f\n\n",filament_direction * xmove /12.f,cool_speed); needed_e_move -= xmove/12.f; if (needed_e_move > WT_EPSILON) filament_direction *= -1; else left_to_right = !left_to_right; } while (needed_e_move > WT_EPSILON); if (filament_direction==-1) cool_speed += (max_cool_speed - min_cool_speed) / num_of_intervals; } writer.retract(3, max_cool_speed);*/ /*switch (current_material) { case PVA: writer.cool(xl, xr, 3, -5, 1600) .cool(xl, xr, 5, -5, 2000) .cool(xl, xr, 5, -5, 2200) .cool(xl, xr, 5, -5, 2400) .cool(xl, xr, 5, -5, 2400) .cool(xl, xr, 5, -3, 2400); break; case SCAFF: writer.cool(xl, xr, 3, -5, 1600) .cool(xl, xr, 5, -5, 2000) .cool(xl, xr, 5, -5, 2200) .cool(xl, xr, 5, -5, 2200) .cool(xl, xr, 5, -3, 2400); break; default: writer.cool(xl, xr, 3, -5, 1600) .cool(xl, xr, 5, -5, 2000) .cool(xl, xr, 5, -5, 2400) .cool(xl, xr, 5, -3, 2400); }*/ writer.resume_preview() .flush_planner_queue(); } // Change the tool, set a speed override for solube and flex materials. void WipeTowerPrusaMM::toolchange_Change( PrusaMultiMaterial::Writer &writer, const unsigned int new_tool, material_type new_material) { // Speed override for the material. Go slow for flex and soluble materials. int speed_override; switch (new_material) { case PVA: speed_override = (m_z_pos < 0.80f) ? 60 : 80; break; case SCAFF: speed_override = 35; break; case FLEX: speed_override = 35; break; default: speed_override = 100; } writer.set_tool(new_tool) .speed_override(speed_override) .flush_planner_queue(); m_current_tool = new_tool; } void WipeTowerPrusaMM::toolchange_Load( PrusaMultiMaterial::Writer &writer, const box_coordinates &cleaning_box) { float xl = cleaning_box.ld.x + m_perimeter_width * 0.75f; float xr = cleaning_box.rd.x - m_perimeter_width * 0.75f; //FIXME flipping left / right side, so that the following toolchange_Wipe will start // where toolchange_Load ends. //std::swap(xl, xr); /*writer.append("; CP TOOLCHANGE LOAD\n") // Load the filament while moving left / right, // so the excess material will not create a blob at a single position. .suppress_preview() // Accelerate the filament loading .load_move_x(xr, 20, 1400) // Fast loading phase .load_move_x(xl, 40, 3000) // Slowing down .load_move_x(xr, 20, 1600) .load_move_x(xl, 10, 1000) .resume_preview(); */ // Extrude first five lines (just three lines if colorInit is set). /*writer.extrude(xr, writer.y(), 1600); bool colorInit = false; size_t pass = colorInit ? 1 : 2; float dy = ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_line_width; for (int i = 0; i < pass; ++ i) { writer.travel (xr, writer.y() + dy, 7200); writer.extrude(xl, writer.y(), 2200); writer.travel (xl, writer.y() + dy, 7200); writer.extrude(xr, writer.y(), 2200); }*/ float dy = ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_line_width; float x = (loading_volume) / (Filament_Area * m_extrusion_flow); // extrusion length to extrude desired volume while (x > WT_EPSILON) { float remaining = (m_left_to_right ? xr - writer.x() : writer.x() - xl ); float dist = std::min(x, remaining); writer.extrude(writer.x() + (m_left_to_right ? 1.f : -1.f) * dist, writer.y(), 2200); x -= dist; if (x > WT_EPSILON) { // don't switch it for the last (unfinished) line m_left_to_right = !m_left_to_right; writer.travel(writer.x(), writer.y() + dy, 7200); } else // advance just a fraction for debugging (to see where the load ends) (FIXME - HAS to be deleted, can pass the edge) writer.travel(writer.x()+(m_left_to_right ? 0.1f : -0.1f),writer.y()); } // Reset the extruder current to the normal value. writer.set_extruder_trimpot(550); } // Wipe the newly loaded filament until the end of the assigned wipe area. void WipeTowerPrusaMM::toolchange_Wipe( PrusaMultiMaterial::Writer &writer, const box_coordinates &cleaning_box, bool skip_initial_y_move) { // Increase flow on first layer, slow down print. writer.set_extrusion_flow(m_extrusion_flow * (m_is_first_layer ? 1.18f : 1.f)) .append("; CP TOOLCHANGE WIPE\n"); float wipe_coeff = m_is_first_layer ? 0.5f : 1.f; const float& xl = cleaning_box.ld.x; // + 2.f * m_perimeter_width; const float& xr = cleaning_box.rd.x; // - 2.f * m_perimeter_width; // Wipe speed will increase up to 4800. float wipe_speed = 4200.f; float wipe_speed_inc = 50.f; float wipe_speed_max = 4800.f; // Y increment per wipe line. float dy = ((m_current_shape == SHAPE_NORMAL) ? 1.f : -1.f) * m_line_width; for ( int i = 0 ; true ; ++i ) { wipe_speed = std::min(wipe_speed_max, wipe_speed + wipe_speed_inc); if (m_left_to_right) writer.extrude(xr - (i % 4 == 0 ? 0 : m_perimeter_width), writer.y(), wipe_speed * wipe_coeff); else writer.extrude(xl + (i % 4 == 1 ? 0 : m_perimeter_width), writer.y(), wipe_speed * wipe_coeff); if ((m_current_shape == SHAPE_NORMAL) ? // in case next line would not fit (writer.y() > cleaning_box.lu.y - m_perimeter_width * 1.5f) : (writer.y() < cleaning_box.ld.y + m_perimeter_width * 1.5f)) break; // stepping to the next line: writer.extrude(writer.x() + (i % 4 == 0 ? -1.f : (i % 4 == 1 ? 1.f : 0.f)) * m_perimeter_width, writer.y() + dy); m_left_to_right = !m_left_to_right; } // Reset the extrusion flow. writer.set_extrusion_flow(m_extrusion_flow); } WipeTower::ToolChangeResult WipeTowerPrusaMM::finish_layer(Purpose purpose) { // This should only be called if the layer is not finished yet. // Otherwise the caller would likely travel to the wipe tower in vain. assert(! this->layer_finished()); PrusaMultiMaterial::Writer writer; writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_layer_height(m_layer_height) .set_initial_tool(m_current_tool) .set_rotation(m_wipe_tower_pos, m_wipe_tower_width, m_wipe_tower_depth, m_wipe_tower_rotation_angle) .append(";--------------------\n" "; CP EMPTY GRID START\n") // m_num_layer_changes is incremented by set_z, so it is 1 based. .comment_with_value(" layer #", m_num_layer_changes - 1); // Slow down on the 1st layer. float speed_factor = m_is_first_layer ? 0.5f : 1.f; float current_depth = m_wipe_tower_depth; if (m_is_first_layer) current_depth = m_wipe_tower_depth; else current_depth = m_layer_info->depth; box_coordinates fill_box(m_wipe_tower_pos + xy(0.f, m_current_wipe_start_y), m_wipe_tower_width, current_depth - m_current_wipe_start_y); fill_box.expand(0.f, - 0.5f * m_perimeter_width); if (purpose == PURPOSE_MOVE_TO_TOWER || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { if ( m_layer_info->tool_changes.size() == 0) { // There were no tool changes at all in this layer. writer.retract(m_retract * 1.5f, 3600) // Jump with retract to fill_box.ld + a random shift in +x. .z_hop(m_zhop, 7200) .travel(fill_box.ld + xy(5.f + 15.f * float(rand()) / RAND_MAX, 0.f), 7000) .z_hop_reset(7200) // Prime the extruder. .load_move_x(fill_box.ld.x, m_retract * 1.5f, 3600); } else { // Otherwise the extruder is already over the wipe tower. } } else { // The print head is inside the wipe tower. Rather move to the start of the following extrusion. // writer.set_initial_position(fill_box.ld); writer.set_initial_position(fill_box.ld); } if (purpose == PURPOSE_EXTRUDE || purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) { // Extrude the first perimeter. box_coordinates box = fill_box; writer.extrude(box.lu, 2400 * speed_factor) .extrude(box.ru) .extrude(box.rd) .extrude(box.ld + xy(m_perimeter_width / 2, 0)); // Extrude second perimeter. box.expand(- m_perimeter_width / 2); writer.extrude(box.lu, 3200 * speed_factor) .extrude(box.ru) .extrude(box.rd) .extrude(box.ld + xy(m_perimeter_width / 2, 0)); if (m_is_first_layer) { // Extrude a dense infill at the 1st layer to improve 1st layer adhesion of the wipe tower. box.expand(- m_perimeter_width / 2); box.ld.y -= 0.5f * m_perimeter_width; box.rd.y = box.ld.y; int nsteps = int(floor((box.lu.y - box.ld.y) / (2. * (1.0 * m_perimeter_width)))); float step = (box.lu.y - box.ld.y) / nsteps; //FIXME: if (nsteps >= 0) for (size_t i = 0; i < nsteps; ++i) { writer.extrude(box.ld.x, writer.y() + 0.5f * step); writer.extrude(box.rd.x, writer.y()); writer.extrude(box.rd.x, writer.y() + 0.5f * step); writer.extrude(box.ld.x, writer.y()); } } else { // Extrude a sparse infill to support the material to be printed above. // Extrude an inverse U at the left of the region. writer.extrude(box.ld + xy(m_perimeter_width / 2, m_perimeter_width / 2)) .extrude(fill_box.ld + xy(m_perimeter_width * 3, m_perimeter_width), 2900 * speed_factor) .extrude(fill_box.lu + xy(m_perimeter_width * 3, - m_perimeter_width)) .extrude(fill_box.lu + xy(m_perimeter_width * 6, - m_perimeter_width)) .extrude(fill_box.ld + xy(m_perimeter_width * 6, m_perimeter_width)); /*if (fill_box.lu.y - fill_box.ld.y > 4.f) { const float max_bridge_distance = 10.f; // in mm size_t zig_zags_num = int((m_wipe_tower_width - m_perimeter_width * 12.f) / ( max_bridge_distance * 2.f ) ) + 1 ; float step = (m_wipe_tower_width - m_perimeter_width * 12.f) / (zig_zags_num * 4); for (size_t i = 0; i < zig_zags_num; ++ i) { writer.extrude(writer.x() + step, fill_box.ld.y + m_perimeter_width * 8, 3200 * speed_factor); writer.extrude(writer.x() , fill_box.lu.y - m_perimeter_width * 8); writer.extrude(writer.x() + step, fill_box.lu.y - m_perimeter_width ); writer.extrude(writer.x() + step, fill_box.lu.y - m_perimeter_width * 8); writer.extrude(writer.x() , fill_box.ld.y + m_perimeter_width * 8); writer.extrude(writer.x() + step, fill_box.ld.y + m_perimeter_width ); } } // Extrude an inverse U at the left of the region. writer.extrude(fill_box.ru + xy(-m_perimeter_width * 6, -m_perimeter_width), 2900 * speed_factor) .extrude(fill_box.ru + xy(-m_perimeter_width * 3, -m_perimeter_width)) .extrude(fill_box.rd + xy(-m_perimeter_width * 3, m_perimeter_width)) .extrude(fill_box.rd + xy(-m_perimeter_width, m_perimeter_width));*/ const float dy = (fill_box.lu.y - fill_box.ld.y - 2.f * m_perimeter_width); if (dy > m_perimeter_width) { const float max_bridge_distance = 10.f; // in mm const size_t zig_zags_num = (fill_box.rd.x - fill_box.ld.x - m_perimeter_width * 12.f) / max_bridge_distance; const float step = (fill_box.rd.x - fill_box.ld.x - m_perimeter_width * 12.f) / (float)zig_zags_num; float offsetx = std::max(0.f, dy / m_last_infill_tan > step / 2.f ? step - dy / m_last_infill_tan : 0.f); float offsety = ( offsetx != 0 ? 0 : std::max(0.f, dy - m_last_infill_tan * (step - m_perimeter_width)) ); if (offsety < m_last_infill_tan * m_perimeter_width + WT_EPSILON || offsety > dy / 2.f) offsety = 0.f; for (size_t i = 0; i < zig_zags_num; ++i) { writer.extrude(writer.x() + offsetx, writer.y(), 3200 * speed_factor); if ( offsety != 0 ) { writer.extrude(writer.x() + m_perimeter_width, writer.y()); writer.extrude(writer.x(), writer.y() + offsety); } writer.extrude(writer.x() + step - offsetx - (offsety==0 ? 0 : m_perimeter_width), fill_box.lu.y - m_perimeter_width); writer.extrude(writer.x() , fill_box.ld.y + m_perimeter_width); } m_last_infill_tan = (dy - offsety) / (step - offsetx - (offsety==0 ? 0 : m_perimeter_width)); } // Extrude an inverse U at the left of the region. writer.extrude(fill_box.rd + xy(-m_perimeter_width * 6, m_perimeter_width), 2900 * speed_factor) .extrude(fill_box.rd + xy(-m_perimeter_width * 3, m_perimeter_width)) .extrude(fill_box.ru + xy(-m_perimeter_width * 3, -m_perimeter_width)) .extrude(fill_box.ru + xy(-m_perimeter_width, -m_perimeter_width)); } // if (purpose == PURPOSE_MOVE_TO_TOWER_AND_EXTRUDE) if (true) // Wipe along the front side of the current wiping box. // Always wipe the nozzle with a long wipe to reduce stringing when moving away from the wipe tower. writer.travel(fill_box.ld + xy( m_perimeter_width, m_perimeter_width / 2), 7200) .travel(fill_box.rd + xy(- m_perimeter_width, m_perimeter_width / 2)); else writer.feedrate(7200); writer.append("; CP EMPTY GRID END\n" ";------------------\n\n\n\n\n\n\n"); // Indicate that this wipe tower layer is fully covered. m_current_wipe_start_y = m_wipe_tower_depth; ///m_idx_tool_change_in_layer = (unsigned int)m_max_color_changes; } ToolChangeResult result; result.print_z = this->m_z_pos; result.layer_height = this->m_layer_height; result.gcode = writer.gcode(); result.elapsed_time = writer.elapsed_time(); result.extrusions = writer.extrusions(); result.start_pos = writer.start_pos_rotated(); result.end_pos = writer.pos_rotated(); return result; } // Appends a toolchange into m_plan and calculates neccessary depth of the corresponding box void WipeTowerPrusaMM::plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool,bool brim) { assert(m_plan.back().z <= z_par); // refuse to add a layer below the last one // volumes in mm^3 required for wipe: {{from 0 to ...},{from 1 to ...},{from 2 to ...},{from 3 to ...}}, usage [from][to] const std::vector> wipe_volumes = {{ 0, 40, 60,100}, {100, 0,130,100}, { 80, 90, 0,110}, { 50, 40, 60, 0}}; float depth = (wipe_volumes[old_tool][new_tool]) / (extrusion_flow(layer_height_par) * Filament_Area); // length of extrusion depth += 6 * 59; // reserved for ramming depth += 2 * 59; // reserved for loading depth -= 2 * 59; // we will also print borders depth = floor(depth / m_wipe_tower_width + 1); // number of lines to extrude depth *= m_line_width; // conversion to distance if (m_plan.empty() || m_plan.back().z + WT_EPSILON < z_par) // if we moved to a new layer, we'll add it to m_plan along with the first toolchange m_plan.push_back(WipeTowerInfo(z_par, layer_height_par)); if ( brim || old_tool != new_tool ) { if (brim) // this toolchange prints brim, we need it in m_plan, but not to count its depth depth = 0.f; m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, depth)); } // Calculate m_wipe_tower (maximum depth for all the layers) and propagate depths downwards // Could be only called when a layer is changed, but do not forget about the last one float this_layer_depth = m_plan.back().toolchanges_depth(); m_plan.back().depth = this_layer_depth; if (this_layer_depth > m_wipe_tower_depth) m_wipe_tower_depth = this_layer_depth; for (int i = m_plan.size() - 2; i >= 0 && m_plan[i].depth < this_layer_depth; i-- ) { if ( this_layer_depth - m_plan[i].depth < min_layer_difference && !m_plan[i].tool_changes.empty()) m_plan[i].tool_changes.back().required_depth += this_layer_depth - m_plan[i].depth; m_plan[i].depth = this_layer_depth; } } // Processes vector m_plan and calls respective function to generate G-code for the wipe tower // Resulting ToolChangeResults are appended into container passed by "result" reference void WipeTowerPrusaMM::generate(std::vector> &result) { std::vector layer_result; for (auto layer : m_plan) { set_layer(layer.z,layer.height,0,layer.z == m_plan.front().z,layer.z == m_plan.back().z); for (const auto &toolchange : layer.tool_changes) layer_result.emplace_back(tool_change(toolchange.new_tool, false, WipeTower::PURPOSE_EXTRUDE)); if (! layer_finished()) { layer_result.emplace_back(finish_layer(WipeTower::PURPOSE_EXTRUDE)); if (layer_result.size() > 1) { // Merge the two last tool changes into one. WipeTower::ToolChangeResult &tc1 = layer_result[layer_result.size() - 2]; WipeTower::ToolChangeResult &tc2 = layer_result.back(); if (tc1.end_pos != tc2.start_pos) { // Add a travel move from tc1.end_pos to tc2.start_pos. char buf[2048]; sprintf(buf, "G1 X%.3f Y%.3f F7200\n", tc2.start_pos.x, tc2.start_pos.y); tc1.gcode += buf; } tc1.gcode += tc2.gcode; tc1.extrusions.insert(tc1.extrusions.end(), tc2.extrusions.begin(), tc2.extrusions.end()); tc1.end_pos = tc2.end_pos; layer_result.pop_back(); } } else m_last_infill_tan = 1000.f; //if the layer was dense, no worries about infill continuity on the next result.emplace_back(std::move(layer_result)); m_is_first_layer = false; } } }; // namespace Slic3r