package Slic3r::Print::Object; use Moo; use List::Util qw(min); use Slic3r::ExtrusionPath ':roles'; use Slic3r::Geometry qw(Z PI scale unscale deg2rad rad2deg scaled_epsilon); use Slic3r::Geometry::Clipper qw(diff_ex intersection_ex union_ex); use Slic3r::Surface ':types'; has 'print' => (is => 'ro', weak_ref => 1, required => 1); has 'input_file' => (is => 'rw', required => 0); has 'meshes' => (is => 'rw', default => sub { [] }); # by region_id has 'size' => (is => 'rw', required => 1); has 'copies' => (is => 'rw', default => sub {[ [0,0] ]}); has 'layers' => (is => 'rw', default => sub { [] }); sub BUILD { my $self = shift; # make layers while (!@{$self->layers} || $self->layers->[-1]->slice_z < $self->size->[Z]) { push @{$self->layers}, Slic3r::Layer->new( object => $self, id => $#{$self->layers} + 1, ); } } sub layer_count { my $self = shift; return scalar @{ $self->layers }; } sub get_layer_range { my $self = shift; my ($min_z, $max_z) = @_; # $min_layer is the uppermost layer having slice_z <= $min_z # $max_layer is the lowermost layer having slice_z >= $max_z my ($min_layer, $max_layer) = (0, undef); for my $i (0 .. $#{$self->layers}) { if ($self->layers->[$i]->slice_z >= $min_z) { $min_layer = $i - 1; for my $k ($i .. $#{$self->layers}) { if ($self->layers->[$k]->slice_z >= $max_z) { $max_layer = $k - 1; last; } } last; } } return ($min_layer, $max_layer); } sub slice { my $self = shift; my %params = @_; # process facets for my $region_id (0 .. $#{$self->meshes}) { my $mesh = $self->meshes->[$region_id]; # ignore undef meshes my $apply_lines = sub { my $lines = shift; foreach my $layer_id (keys %$lines) { my $layerm = $self->layers->[$layer_id]->region($region_id); push @{$layerm->lines}, @{$lines->{$layer_id}}; } }; Slic3r::parallelize( disable => ($#{$mesh->facets} < 500), # don't parallelize when too few facets items => [ 0..$#{$mesh->facets} ], thread_cb => sub { my $q = shift; my $result_lines = {}; while (defined (my $facet_id = $q->dequeue)) { my $lines = $mesh->slice_facet($self, $facet_id); foreach my $layer_id (keys %$lines) { $result_lines->{$layer_id} ||= []; push @{ $result_lines->{$layer_id} }, @{ $lines->{$layer_id} }; } } return $result_lines; }, collect_cb => sub { $apply_lines->($_[0]); }, no_threads_cb => sub { for (0..$#{$mesh->facets}) { my $lines = $mesh->slice_facet($self, $_); $apply_lines->($lines); } }, ); } die "Invalid input file\n" if !@{$self->layers}; # free memory $self->meshes(undef) unless $params{keep_meshes}; # remove last layer if empty # (we might have created it because of the $max_layer = ... + 1 code in TriangleMesh) pop @{$self->layers} if !map @{$_->lines}, @{$self->layers->[-1]->regions}; foreach my $layer (@{ $self->layers }) { # make sure all layers contain layer region objects for all regions $layer->region($_) for 0 .. ($self->print->regions_count-1); Slic3r::debugf "Making surfaces for layer %d (slice z = %f):\n", $layer->id, unscale $layer->slice_z if $Slic3r::debug; # layer currently has many lines representing intersections of # model facets with the layer plane. there may also be lines # that we need to ignore (for example, when two non-horizontal # facets share a common edge on our plane, we get a single line; # however that line has no meaning for our layer as it's enclosed # inside a closed polyline) # build surfaces from sparse lines foreach my $layerm (@{$layer->regions}) { my ($slicing_errors, $loops) = Slic3r::TriangleMesh::make_loops($layerm->lines); $layer->slicing_errors(1) if $slicing_errors; $layerm->make_surfaces($loops); # free memory $layerm->lines(undef); } # merge all regions' slices to get islands $layer->make_slices; } # detect slicing errors my $warning_thrown = 0; for my $i (0 .. $#{$self->layers}) { my $layer = $self->layers->[$i]; next unless $layer->slicing_errors; if (!$warning_thrown) { warn "The model has overlapping or self-intersecting facets. I tried to repair it, " . "however you might want to check the results or repair the input file and retry.\n"; $warning_thrown = 1; } # try to repair the layer surfaces by merging all contours and all holes from # neighbor layers Slic3r::debugf "Attempting to repair layer %d\n", $i; foreach my $region_id (0 .. $#{$layer->regions}) { my $layerm = $layer->region($region_id); my (@upper_surfaces, @lower_surfaces); for (my $j = $i+1; $j <= $#{$self->layers}; $j++) { if (!$self->layers->[$j]->slicing_errors) { @upper_surfaces = @{$self->layers->[$j]->region($region_id)->slices}; last; } } for (my $j = $i-1; $j >= 0; $j--) { if (!$self->layers->[$j]->slicing_errors) { @lower_surfaces = @{$self->layers->[$j]->region($region_id)->slices}; last; } } my $union = union_ex([ map $_->expolygon->contour, @upper_surfaces, @lower_surfaces, ]); my $diff = diff_ex( [ map @$_, @$union ], [ map $_->expolygon->holes, @upper_surfaces, @lower_surfaces, ], ); @{$layerm->slices} = map Slic3r::Surface->new (expolygon => $_, surface_type => S_TYPE_INTERNAL), @$diff; } # update layer slices after repairing the single regions $layer->make_slices; } # remove empty layers from bottom my $first_object_layer_id = $Slic3r::Config->raft_layers; while (@{$self->layers} && !@{$self->layers->[$first_object_layer_id]->slices} && !map @{$_->thin_walls}, @{$self->layers->[$first_object_layer_id]->regions}) { splice @{$self->layers}, $first_object_layer_id, 1; for (my $i = $first_object_layer_id; $i <= $#{$self->layers}; $i++) { $self->layers->[$i]->id($i); } } warn "No layers were detected. You might want to repair your STL file and retry.\n" if !@{$self->layers}; } sub make_perimeters { my $self = shift; # compare each layer to the one below, and mark those slices needing # one additional inner perimeter, like the top of domed objects- # this algorithm makes sure that at least one perimeter is overlapping # but we don't generate any extra perimeter if fill density is zero, as they would be floating # inside the object - infill_only_where_needed should be the method of choice for printing # hollow objects if ($Slic3r::Config->extra_perimeters && $Slic3r::Config->perimeters > 0 && $Slic3r::Config->fill_density > 0) { for my $region_id (0 .. ($self->print->regions_count-1)) { for my $layer_id (0 .. $self->layer_count-2) { my $layerm = $self->layers->[$layer_id]->regions->[$region_id]; my $upper_layerm = $self->layers->[$layer_id+1]->regions->[$region_id]; my $perimeter_flow = $layerm->perimeter_flow; my $overlap = $perimeter_flow->scaled_spacing; # one perimeter # compute polygons representing the thickness of the first external perimeter of # the upper layer slices my $upper = diff_ex( [ map @$_, map $_->expolygon->offset_ex(+ 0.5 * $perimeter_flow->scaled_spacing), @{$upper_layerm->slices} ], [ map @$_, map $_->expolygon->offset_ex(- $overlap + (0.5 * $perimeter_flow->scaled_spacing)), @{$upper_layerm->slices} ], ); next if !@$upper; # we need to limit our detection to the areas which would actually benefit from # more perimeters. so, let's compute the area we want to ignore my $ignore = []; { my $diff = diff_ex( [ map @$_, map $_->expolygon->offset_ex(- ($Slic3r::Config->perimeters-0.5) * $perimeter_flow->scaled_spacing), @{$layerm->slices} ], [ map @{$_->expolygon}, @{$upper_layerm->slices} ], ); $ignore = [ map @$_, map $_->offset_ex($perimeter_flow->scaled_spacing), @$diff ]; } foreach my $slice (@{$layerm->slices}) { my $hypothetical_perimeter_num = $Slic3r::Config->perimeters + 1; CYCLE: while (1) { # compute polygons representing the thickness of the hypotetical new internal perimeter # of our slice my $hypothetical_perimeter; { my $outer = [ map @$_, $slice->expolygon->offset_ex(- ($hypothetical_perimeter_num-1.5) * $perimeter_flow->scaled_spacing - scaled_epsilon) ]; last CYCLE if !@$outer; my $inner = [ map @$_, $slice->expolygon->offset_ex(- ($hypothetical_perimeter_num-0.5) * $perimeter_flow->scaled_spacing) ]; last CYCLE if !@$inner; $hypothetical_perimeter = diff_ex($outer, $inner); } last CYCLE if !@$hypothetical_perimeter; my $intersection = intersection_ex([ map @$_, @$upper ], [ map @$_, @$hypothetical_perimeter ]); $intersection = diff_ex([ map @$_, @$intersection ], $ignore) if @$ignore; last CYCLE if !@{ $intersection }; Slic3r::debugf " adding one more perimeter at layer %d\n", $layer_id; $slice->additional_inner_perimeters(($slice->additional_inner_perimeters || 0) + 1); $hypothetical_perimeter_num++; } } } } } Slic3r::parallelize( items => sub { 0 .. ($self->layer_count-1) }, thread_cb => sub { my $q = shift; $Slic3r::Geometry::Clipper::clipper = Math::Clipper->new; my $result = {}; while (defined (my $layer_id = $q->dequeue)) { my $layer = $self->layers->[$layer_id]; $layer->make_perimeters; $result->{$layer_id} ||= {}; foreach my $region_id (0 .. $#{$layer->regions}) { my $layerm = $layer->regions->[$region_id]; $result->{$layer_id}{$region_id} = { perimeters => $layerm->perimeters, fill_surfaces => $layerm->fill_surfaces, thin_fills => $layerm->thin_fills, }; } } return $result; }, collect_cb => sub { my $result = shift; foreach my $layer_id (keys %$result) { foreach my $region_id (keys %{$result->{$layer_id}}) { $self->layers->[$layer_id]->regions->[$region_id]->$_($result->{$layer_id}{$region_id}{$_}) for qw(perimeters fill_surfaces thin_fills); } } }, no_threads_cb => sub { $_->make_perimeters for @{$self->layers}; }, ); } sub detect_surfaces_type { my $self = shift; Slic3r::debugf "Detecting solid surfaces...\n"; # prepare a reusable subroutine to make surface differences my $surface_difference = sub { my ($subject_surfaces, $clip_surfaces, $result_type, $layerm) = @_; my $expolygons = diff_ex( [ map { ref $_ eq 'ARRAY' ? $_ : ref $_ eq 'Slic3r::ExPolygon' ? @$_ : $_->p } @$subject_surfaces ], [ map { ref $_ eq 'ARRAY' ? $_ : ref $_ eq 'Slic3r::ExPolygon' ? @$_ : $_->p } @$clip_surfaces ], 1, ); return grep $_->contour->is_printable($layerm->infill_flow), map Slic3r::Surface->new(expolygon => $_, surface_type => $result_type), @$expolygons; }; for my $region_id (0 .. ($self->print->regions_count-1)) { for (my $i = 0; $i < $self->layer_count; $i++) { my $layerm = $self->layers->[$i]->regions->[$region_id]; # comparison happens against the *full* slices (considering all regions) my $upper_layer = $self->layers->[$i+1]; my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef; my (@bottom, @top, @internal) = (); # find top surfaces (difference between current surfaces # of current layer and upper one) if ($upper_layer) { @top = $surface_difference->($layerm->slices, $upper_layer->slices, S_TYPE_TOP, $layerm); } else { # if no upper layer, all surfaces of this one are solid @top = @{$layerm->slices}; $_->surface_type(S_TYPE_TOP) for @top; } # find bottom surfaces (difference between current surfaces # of current layer and lower one) if ($lower_layer) { @bottom = $surface_difference->($layerm->slices, $lower_layer->slices, S_TYPE_BOTTOM, $layerm); } else { # if no lower layer, all surfaces of this one are solid @bottom = @{$layerm->slices}; $_->surface_type(S_TYPE_BOTTOM) for @bottom; } # now, if the object contained a thin membrane, we could have overlapping bottom # and top surfaces; let's do an intersection to discover them and consider them # as bottom surfaces (to allow for bridge detection) if (@top && @bottom) { my $overlapping = intersection_ex([ map $_->p, @top ], [ map $_->p, @bottom ]); Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->id, scalar(@$overlapping); @top = $surface_difference->([@top], $overlapping, S_TYPE_TOP, $layerm); } # find internal surfaces (difference between top/bottom surfaces and others) @internal = $surface_difference->($layerm->slices, [@top, @bottom], S_TYPE_INTERNAL, $layerm); # save surfaces to layer @{$layerm->slices} = (@bottom, @top, @internal); Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n", $layerm->id, scalar(@bottom), scalar(@top), scalar(@internal); } # clip surfaces to the fill boundaries foreach my $layer (@{$self->layers}) { my $layerm = $layer->regions->[$region_id]; my $fill_boundaries = [ map @$_, @{$layerm->fill_surfaces} ]; @{$layerm->fill_surfaces} = (); foreach my $surface (@{$layerm->slices}) { my $intersection = intersection_ex( [ $surface->p ], $fill_boundaries, ); push @{$layerm->fill_surfaces}, map Slic3r::Surface->new (expolygon => $_, surface_type => $surface->surface_type), @$intersection; } } } } sub clip_fill_surfaces { my $self = shift; return unless $Slic3r::Config->infill_only_where_needed; # We only want infill under ceilings; this is almost like an # internal support material. my $additional_margin = scale 3; my @overhangs = (); for my $layer_id (reverse 0..$#{$self->layers}) { my $layer = $self->layers->[$layer_id]; # clip this layer's internal surfaces to @overhangs foreach my $layerm (@{$layer->regions}) { my @new_internal = map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNAL, ), @{intersection_ex( [ map @$_, @overhangs ], [ map @{$_->expolygon}, grep $_->surface_type == S_TYPE_INTERNAL, @{$layerm->fill_surfaces} ], )}; @{$layerm->fill_surfaces} = ( @new_internal, (grep $_->surface_type != S_TYPE_INTERNAL, @{$layerm->fill_surfaces}), ); } # get this layer's overhangs if ($layer_id > 0) { my $lower_layer = $self->layers->[$layer_id-1]; # loop through layer regions so that we can use each region's # specific overhang width foreach my $layerm (@{$layer->regions}) { my $overhang_width = $layerm->overhang_width; # we want to support any solid surface, not just tops # (internal solids might have been generated) push @overhangs, map $_->offset_ex($additional_margin), @{intersection_ex( [ map @{$_->expolygon}, grep $_->surface_type != S_TYPE_INTERNAL, @{$layerm->fill_surfaces} ], [ map @$_, map $_->offset_ex(-$overhang_width), @{$lower_layer->slices} ], )}; } } } } sub discover_horizontal_shells { my $self = shift; Slic3r::debugf "==> DISCOVERING HORIZONTAL SHELLS\n"; for my $region_id (0 .. ($self->print->regions_count-1)) { for (my $i = 0; $i < $self->layer_count; $i++) { my $layerm = $self->layers->[$i]->regions->[$region_id]; if ($Slic3r::Config->solid_infill_every_layers && ($i % $Slic3r::Config->solid_infill_every_layers) == 0) { $_->surface_type(S_TYPE_INTERNALSOLID) for grep $_->surface_type == S_TYPE_INTERNAL, @{$layerm->fill_surfaces}; } foreach my $type (S_TYPE_TOP, S_TYPE_BOTTOM) { # find slices of current type for current layer my @surfaces = grep $_->surface_type == $type, @{$layerm->slices} or next; my $surfaces_p = [ map $_->p, @surfaces ]; Slic3r::debugf "Layer %d has %d surfaces of type '%s'\n", $i, scalar(@surfaces), ($type == S_TYPE_TOP ? 'top' : 'bottom'); my $solid_layers = ($type == S_TYPE_TOP) ? $Slic3r::Config->top_solid_layers : $Slic3r::Config->bottom_solid_layers; for (my $n = $type == S_TYPE_TOP ? $i-1 : $i+1; abs($n - $i) <= $solid_layers-1; $type == S_TYPE_TOP ? $n-- : $n++) { next if $n < 0 || $n >= $self->layer_count; Slic3r::debugf " looking for neighbors on layer %d...\n", $n; my @neighbor_fill_surfaces = @{$self->layers->[$n]->regions->[$region_id]->fill_surfaces}; # find intersection between neighbor and current layer's surfaces # intersections have contours and holes my $new_internal_solid = intersection_ex( $surfaces_p, [ map $_->p, grep { $_->surface_type == S_TYPE_INTERNAL || $_->surface_type == S_TYPE_INTERNALSOLID } @neighbor_fill_surfaces ], undef, 1, ); next if !@$new_internal_solid; # internal-solid are the union of the existing internal-solid surfaces # and new ones my $internal_solid = union_ex([ ( map $_->p, grep $_->surface_type == S_TYPE_INTERNALSOLID, @neighbor_fill_surfaces ), ( map @$_, @$new_internal_solid ), ]); # subtract intersections from layer surfaces to get resulting inner surfaces my $internal = diff_ex( [ map $_->p, grep $_->surface_type == S_TYPE_INTERNAL, @neighbor_fill_surfaces ], [ map @$_, @$internal_solid ], 1, ); Slic3r::debugf " %d internal-solid and %d internal surfaces found\n", scalar(@$internal_solid), scalar(@$internal); # Note: due to floating point math we're going to get some very small # polygons as $internal; they will be removed by removed_small_features() # assign resulting inner surfaces to layer my $neighbor_fill_surfaces = $self->layers->[$n]->regions->[$region_id]->fill_surfaces; @$neighbor_fill_surfaces = (); push @$neighbor_fill_surfaces, Slic3r::Surface->new (expolygon => $_, surface_type => S_TYPE_INTERNAL) for @$internal; # assign new internal-solid surfaces to layer push @$neighbor_fill_surfaces, Slic3r::Surface->new (expolygon => $_, surface_type => S_TYPE_INTERNALSOLID) for @$internal_solid; # assign top and bottom surfaces to layer foreach my $s (Slic3r::Surface->group(grep { $_->surface_type == S_TYPE_TOP || $_->surface_type == S_TYPE_BOTTOM } @neighbor_fill_surfaces)) { my $solid_surfaces = diff_ex( [ map $_->p, @$s ], [ map @$_, @$internal_solid, @$internal ], 1, ); push @$neighbor_fill_surfaces, Slic3r::Surface->new (expolygon => $_, surface_type => $s->[0]->surface_type, bridge_angle => $s->[0]->bridge_angle) for @$solid_surfaces; } } } my $area_threshold = $layerm->infill_area_threshold; @{$layerm->fill_surfaces} = grep $_->expolygon->area > $area_threshold, @{$layerm->fill_surfaces}; } for (my $i = 0; $i < $self->layer_count; $i++) { my $layerm = $self->layers->[$i]->regions->[$region_id]; # if hollow object is requested, remove internal surfaces if ($Slic3r::Config->fill_density == 0) { @{$layerm->fill_surfaces} = grep $_->surface_type != S_TYPE_INTERNAL, @{$layerm->fill_surfaces}; } } } } # combine fill surfaces across layers sub combine_infill { my $self = shift; return unless $Slic3r::Config->infill_every_layers > 1 && $Slic3r::Config->fill_density > 0; my $layer_count = $self->layer_count; for my $region_id (0 .. ($self->print->regions_count-1)) { # limit the number of combined layers to the maximum height allowed by this regions' nozzle my $every = min( $Slic3r::Config->infill_every_layers, int($self->print->regions->[$region_id]->extruders->{infill}->nozzle_diameter/$Slic3r::Config->layer_height), ); Slic3r::debugf "Infilling every %d layers\n", $every; # skip bottom layer for (my $layer_id = $every; $layer_id <= $layer_count-1; $layer_id += $every) { # get the layers whose infill we want to combine (bottom-up) my @layerms = map $self->layers->[$_]->regions->[$region_id], ($layer_id - ($every-1)) .. $layer_id; # process internal and internal-solid infill separately for my $type (S_TYPE_INTERNAL, S_TYPE_INTERNALSOLID) { # we need to perform a multi-layer intersection, so let's split it in pairs # initialize the intersection with the candidates of the lowest layer my $intersection = [ map $_->expolygon, grep $_->surface_type == $type, @{$layerms[0]->fill_surfaces} ]; # start looping from the second layer and intersect the current intersection with it for my $layerm (@layerms[1 .. $#layerms]) { $intersection = intersection_ex( [ map @$_, @$intersection ], [ map @{$_->expolygon}, grep $_->surface_type == $type, @{$layerm->fill_surfaces} ], ); } my $area_threshold = $layerms[0]->infill_area_threshold; @$intersection = grep $_->area > $area_threshold, @$intersection; next if !@$intersection; Slic3r::debugf " combining %d %s regions from layers %d-%d\n", scalar(@$intersection), ($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'), $layer_id-($every-1), $layer_id; # $intersection now contains the regions that can be combined across the full amount of layers # so let's remove those areas from all layers my @intersection_with_clearance = map $_->offset( $layerms[-1]->infill_flow->scaled_width / 2 + $layerms[-1]->perimeter_flow->scaled_width / 2 # Because fill areas for rectilinear and honeycomb are grown # later to overlap perimeters, we need to counteract that too. + (($type == S_TYPE_INTERNALSOLID || $Slic3r::Config->fill_pattern =~ /(rectilinear|honeycomb)/) ? $layerms[-1]->infill_flow->scaled_width * &Slic3r::PERIMETER_INFILL_OVERLAP_OVER_SPACING : 0) ), @$intersection; foreach my $layerm (@layerms) { my @this_type = grep $_->surface_type == $type, @{$layerm->fill_surfaces}; my @other_types = grep $_->surface_type != $type, @{$layerm->fill_surfaces}; @this_type = map Slic3r::Surface->new(expolygon => $_, surface_type => $type), @{diff_ex( [ map @{$_->expolygon}, @this_type ], [ @intersection_with_clearance ], )}; # apply surfaces back with adjusted depth to the uppermost layer if ($layerm->id == $layer_id) { push @this_type, map Slic3r::Surface->new(expolygon => $_, surface_type => $type, depth_layers => $every), @$intersection; } @{$layerm->fill_surfaces} = (@this_type, @other_types); } } } } } sub generate_support_material { my $self = shift; return if $self->layer_count < 2; my $overhang_width; if ($Slic3r::Config->support_material_threshold) { my $threshold_rad = deg2rad($Slic3r::Config->support_material_threshold + 1); # +1 makes the threshold inclusive Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad); $overhang_width = scale $Slic3r::Config->layer_height * ((cos $threshold_rad) / (sin $threshold_rad)); } else { $overhang_width = $self->layers->[1]->regions->[0]->overhang_width; } my $flow = $self->print->support_material_flow; my $distance_from_object = 1.5 * $flow->scaled_width; my $pattern_spacing = ($Slic3r::Config->support_material_spacing > $flow->spacing) ? $Slic3r::Config->support_material_spacing : $flow->spacing; # determine support regions in each layer (for upper layers) Slic3r::debugf "Detecting regions\n"; my %layers = (); # this represents the areas of each layer having to support upper layers (excluding interfaces) my %layers_interfaces = (); # this represents the areas of each layer to be filled with interface pattern, excluding the contact areas which are stored separately my %layers_contact_areas = (); # this represents the areas of each layer having an overhang in the immediately upper layer { my @current_support_regions = (); # expolygons we've started to support (i.e. below the empty interface layers) my @upper_layers_overhangs = (map [], 1..$Slic3r::Config->support_material_interface_layers); for my $i (reverse 0 .. $#{$self->layers}) { next unless $Slic3r::Config->support_material || ($i <= $Slic3r::Config->raft_layers) # <= because we need to start from the first non-raft layer || ($i <= $Slic3r::Config->support_material_enforce_layers + $Slic3r::Config->raft_layers); my $layer = $self->layers->[$i]; my $lower_layer = $i > 0 ? $self->layers->[$i-1] : undef; my @current_layer_offsetted_slices = map $_->offset_ex($distance_from_object), @{$layer->slices}; # $upper_layers_overhangs[-1] contains the overhangs of the upper layer, regardless of any interface layers # $upper_layers_overhangs[0] contains the overhangs of the first upper layer above the interface layers # we only consider the overhangs of the upper layer to define contact areas of the current one $layers_contact_areas{$i} = diff_ex( [ map @$_, @{ $upper_layers_overhangs[-1] || [] } ], [ map @$_, @current_layer_offsetted_slices ], ); $_->simplify($flow->scaled_spacing) for @{$layers_contact_areas{$i}}; # to define interface regions of this layer we consider the overhangs of all the upper layers # minus the first one $layers_interfaces{$i} = diff_ex( [ map @$_, map @$_, @upper_layers_overhangs[0 .. $#upper_layers_overhangs-1] ], [ (map @$_, @current_layer_offsetted_slices), (map @$_, @{ $layers_contact_areas{$i} }), ], ); $_->simplify($flow->scaled_spacing) for @{$layers_interfaces{$i}}; # generate support material in current layer (for upper layers) @current_support_regions = @{diff_ex( [ (map @$_, @current_support_regions), (map @$_, @{ $upper_layers_overhangs[-1] || [] }), # only considering -1 instead of the whole array contents is just an optimization ], [ map @$_, @{$layer->slices} ], )}; shift @upper_layers_overhangs; $layers{$i} = diff_ex( [ map @$_, @current_support_regions ], [ (map @$_, @current_layer_offsetted_slices), (map @$_, @{ $layers_interfaces{$i} }), ], ); $_->simplify($flow->scaled_spacing) for @{$layers{$i}}; # get layer overhangs and put them into queue for adding support inside lower layers; # we need an angle threshold for this my @overhangs = (); if ($lower_layer) { # consider all overhangs regardless of their angle if we're told to enforce support on this layer my $distance = $i <= ($Slic3r::Config->support_material_enforce_layers + $Slic3r::Config->raft_layers) ? 0 : $overhang_width; @overhangs = map $_->offset_ex(2 * $distance), @{diff_ex( [ map @$_, map $_->offset_ex(-$distance), @{$layer->slices} ], [ map @$_, @{$lower_layer->slices} ], 1, )}; } push @upper_layers_overhangs, [@overhangs]; if ($Slic3r::debug) { printf "Layer %d (z = %.2f) has %d generic support areas, %d normal interface areas, %d contact areas\n", $i, unscale($layer->print_z), scalar(@{$layers{$i}}), scalar(@{$layers_interfaces{$i}}), scalar(@{$layers_contact_areas{$i}}); } } } return if !map @$_, values %layers; # generate paths for the pattern that we're going to use Slic3r::debugf "Generating patterns\n"; my $support_patterns = []; my $support_interface_patterns = []; { # 0.5 ensures the paths don't get clipped externally when applying them to layers my @areas = map $_->offset_ex(- 0.5 * $flow->scaled_width), @{union_ex([ map $_->contour, map @$_, values %layers ])}; my $pattern = $Slic3r::Config->support_material_pattern; my @angles = ($Slic3r::Config->support_material_angle); if ($pattern eq 'rectilinear-grid') { $pattern = 'rectilinear'; push @angles, $angles[0] + 90; } my $filler = Slic3r::Fill->filler($pattern); my $make_pattern = sub { my ($expolygon, $density) = @_; my @paths = $filler->fill_surface( Slic3r::Surface->new(expolygon => $expolygon), density => $density, flow_spacing => $flow->spacing, ); my $params = shift @paths; return map Slic3r::ExtrusionPath->new( polyline => Slic3r::Polyline->new(@$_), role => EXTR_ROLE_SUPPORTMATERIAL, height => undef, flow_spacing => $params->{flow_spacing}, ), @paths; }; foreach my $angle (@angles) { $filler->angle($angle); { my $density = $flow->spacing / $pattern_spacing; push @$support_patterns, [ map $make_pattern->($_, $density), @areas ]; } if ($Slic3r::Config->support_material_interface_layers > 0) { # if pattern is not cross-hatched, rotate the interface pattern by 90° degrees $filler->angle($angle + 90) if @angles == 1; my $spacing = $Slic3r::Config->support_material_interface_spacing; my $density = $spacing == 0 ? 1 : $flow->spacing / $spacing; push @$support_interface_patterns, [ map $make_pattern->($_, $density), @areas ]; } } if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output("support_$_.svg", polylines => [ map $_->polyline, map @$_, $support_patterns->[$_] ], red_polylines => [ map $_->polyline, map @$_, $support_interface_patterns->[$_] ], polygons => [ map @$_, @areas ], ) for 0 .. $#$support_patterns; } } # apply the pattern to layers Slic3r::debugf "Applying patterns\n"; { my $clip_pattern = sub { my ($layer_id, $expolygons, $height, $is_interface) = @_; my @paths = (); foreach my $expolygon (@$expolygons) { push @paths, map $_->pack, map { $_->height($height); # useless line because this coderef isn't called for layer 0 anymore; # let's keep it here just in case we want to make the base flange optional # in the future $_->flow_spacing($self->print->first_layer_support_material_flow->spacing) if $layer_id == 0; $_; } map $_->clip_with_expolygon($expolygon), ###map $_->clip_with_polygon($expolygon->bounding_box_polygon), # currently disabled as a workaround for Boost failing at being idempotent ($is_interface && @$support_interface_patterns) ? @{$support_interface_patterns->[ $layer_id % @$support_interface_patterns ]} : @{$support_patterns->[ $layer_id % @$support_patterns ]}; }; return @paths; }; my %layer_paths = (); my %layer_contact_paths = (); my %layer_islands = (); my $process_layer = sub { my ($layer_id) = @_; my $layer = $self->layers->[$layer_id]; my ($paths, $contact_paths) = ([], []); my $islands = union_ex([ map @$_, map @$_, $layers{$layer_id}, $layers_contact_areas{$layer_id} ]); # make a solid base on bottom layer if ($layer_id == 0) { my $filler = Slic3r::Fill->filler('rectilinear'); $filler->angle($Slic3r::Config->support_material_angle + 90); foreach my $expolygon (@$islands) { my @paths = $filler->fill_surface( Slic3r::Surface->new(expolygon => $expolygon), density => 0.5, flow_spacing => $self->print->first_layer_support_material_flow->spacing, ); my $params = shift @paths; push @$paths, map Slic3r::ExtrusionPath->new( polyline => Slic3r::Polyline->new(@$_), role => EXTR_ROLE_SUPPORTMATERIAL, height => undef, flow_spacing => $params->{flow_spacing}, ), @paths; } } else { $paths = [ $clip_pattern->($layer_id, $layers{$layer_id}, $layer->height), $clip_pattern->($layer_id, $layers_interfaces{$layer_id}, $layer->height, 1), ]; $contact_paths = [ $clip_pattern->($layer_id, $layers_contact_areas{$layer_id}, $layer->support_material_contact_height, 1) ]; } return ($paths, $contact_paths, $islands); }; Slic3r::parallelize( items => [ keys %layers ], thread_cb => sub { my $q = shift; $Slic3r::Geometry::Clipper::clipper = Math::Clipper->new; my $result = {}; while (defined (my $layer_id = $q->dequeue)) { $result->{$layer_id} = [ $process_layer->($layer_id) ]; } return $result; }, collect_cb => sub { my $result = shift; ($layer_paths{$_}, $layer_contact_paths{$_}, $layer_islands{$_}) = @{$result->{$_}} for keys %$result; }, no_threads_cb => sub { ($layer_paths{$_}, $layer_contact_paths{$_}, $layer_islands{$_}) = $process_layer->($_) for keys %layers; }, ); foreach my $layer_id (keys %layer_paths) { my $layer = $self->layers->[$layer_id]; $layer->support_islands($layer_islands{$layer_id}); $layer->support_fills(Slic3r::ExtrusionPath::Collection->new); $layer->support_contact_fills(Slic3r::ExtrusionPath::Collection->new); push @{$layer->support_fills->paths}, @{$layer_paths{$layer_id}}; push @{$layer->support_contact_fills->paths}, @{$layer_contact_paths{$layer_id}}; } } } 1;