#include "Config.hpp" #include // for setenv() #include #include #if defined(_WIN32) && !defined(setenv) && defined(_putenv_s) #define setenv(k, v, o) _putenv_s(k, v) #endif namespace Slic3r { std::string escape_string_cstyle(const std::string &str) { // Allocate a buffer twice the input string length, // so the output will fit even if all input characters get escaped. std::vector out(str.size() * 2, 0); char *outptr = out.data(); for (size_t i = 0; i < str.size(); ++ i) { char c = str[i]; if (c == '\n' || c == '\r') { (*outptr ++) = '\\'; (*outptr ++) = 'n'; } else (*outptr ++) = c; } return std::string(out.data(), outptr - out.data()); } std::string escape_strings_cstyle(const std::vector &strs) { // 1) Estimate the output buffer size to avoid buffer reallocation. size_t outbuflen = 0; for (size_t i = 0; i < strs.size(); ++ i) // Reserve space for every character escaped + quotes + semicolon. outbuflen += strs[i].size() * 2 + 3; // 2) Fill in the buffer. std::vector out(outbuflen, 0); char *outptr = out.data(); for (size_t j = 0; j < strs.size(); ++ j) { if (j > 0) // Separate the strings. (*outptr ++) = ';'; const std::string &str = strs[j]; // Is the string simple or complex? Complex string contains spaces, tabs, new lines and other // escapable characters. Empty string shall be quoted as well, if it is the only string in strs. bool should_quote = strs.size() == 1 && str.empty(); for (size_t i = 0; i < str.size(); ++ i) { char c = str[i]; if (c == ' ' || c == '\t' || c == '\\' || c == '"' || c == '\r' || c == '\n') { should_quote = true; break; } } if (should_quote) { (*outptr ++) = '"'; for (size_t i = 0; i < str.size(); ++ i) { char c = str[i]; if (c == '\\' || c == '"') { (*outptr ++) = '\\'; (*outptr ++) = c; } else if (c == '\n' || c == '\r') { (*outptr ++) = '\\'; (*outptr ++) = 'n'; } else (*outptr ++) = c; } (*outptr ++) = '"'; } else { memcpy(outptr, str.data(), str.size()); outptr += str.size(); } } return std::string(out.data(), outptr - out.data()); } bool unescape_string_cstyle(const std::string &str, std::string &str_out) { std::vector out(str.size(), 0); char *outptr = out.data(); for (size_t i = 0; i < str.size(); ++ i) { char c = str[i]; if (c == '\\') { if (++ i == str.size()) return false; c = str[i]; if (c == 'n') (*outptr ++) = '\n'; } else (*outptr ++) = c; } str_out.assign(out.data(), outptr - out.data()); return true; } bool unescape_strings_cstyle(const std::string &str, std::vector &out) { out.clear(); if (str.empty()) return true; size_t i = 0; for (;;) { // Skip white spaces. char c = str[i]; while (c == ' ' || c == '\t') { if (++ i == str.size()) return true; c = str[i]; } // Start of a word. std::vector buf; buf.reserve(16); // Is it enclosed in quotes? c = str[i]; if (c == '"') { // Complex case, string is enclosed in quotes. for (++ i; i < str.size(); ++ i) { c = str[i]; if (c == '"') { // End of string. break; } if (c == '\\') { if (++ i == str.size()) return false; c = str[i]; if (c == 'n') c = '\n'; } buf.push_back(c); } if (i == str.size()) return false; ++ i; } else { for (; i < str.size(); ++ i) { c = str[i]; if (c == ';') break; buf.push_back(c); } } // Store the string into the output vector. out.push_back(std::string(buf.data(), buf.size())); if (i == str.size()) return true; // Skip white spaces. c = str[i]; while (c == ' ' || c == '\t') { if (++ i == str.size()) // End of string. This is correct. return true; c = str[i]; } if (c != ';') return false; if (++ i == str.size()) { // Emit one additional empty string. out.push_back(std::string()); return true; } } } bool operator== (const ConfigOption &a, const ConfigOption &b) { return a.serialize().compare(b.serialize()) == 0; } bool operator!= (const ConfigOption &a, const ConfigOption &b) { return !(a == b); } ConfigDef::~ConfigDef() { for (t_optiondef_map::iterator it = this->options.begin(); it != this->options.end(); ++it) { if (it->second.default_value != NULL) delete it->second.default_value; } } ConfigOptionDef* ConfigDef::add(const t_config_option_key &opt_key, ConfigOptionType type) { ConfigOptionDef* opt = &this->options[opt_key]; opt->type = type; return opt; } const ConfigOptionDef* ConfigDef::get(const t_config_option_key &opt_key) const { t_optiondef_map::iterator it = const_cast(this)->options.find(opt_key); return (it == this->options.end()) ? NULL : &it->second; } bool ConfigBase::has(const t_config_option_key &opt_key) { return (this->option(opt_key, false) != NULL); } void ConfigBase::apply(const ConfigBase &other, bool ignore_nonexistent) { // get list of option keys to apply t_config_option_keys opt_keys = other.keys(); // loop through options and apply them for (t_config_option_keys::const_iterator it = opt_keys.begin(); it != opt_keys.end(); ++it) { ConfigOption* my_opt = this->option(*it, true); if (my_opt == NULL) { if (ignore_nonexistent == false) throw "Attempt to apply non-existent option"; continue; } // not the most efficient way, but easier than casting pointers to subclasses bool res = my_opt->deserialize( other.option(*it)->serialize() ); if (!res) { std::string error = "Unexpected failure when deserializing serialized value for " + *it; CONFESS(error.c_str()); } } } bool ConfigBase::equals(ConfigBase &other) { return this->diff(other).empty(); } // this will *ignore* options not present in both configs t_config_option_keys ConfigBase::diff(ConfigBase &other) { t_config_option_keys diff; t_config_option_keys my_keys = this->keys(); for (t_config_option_keys::const_iterator opt_key = my_keys.begin(); opt_key != my_keys.end(); ++opt_key) { if (other.has(*opt_key) && other.serialize(*opt_key) != this->serialize(*opt_key)) { diff.push_back(*opt_key); } } return diff; } std::string ConfigBase::serialize(const t_config_option_key &opt_key) const { const ConfigOption* opt = this->option(opt_key); assert(opt != NULL); return opt->serialize(); } bool ConfigBase::set_deserialize(const t_config_option_key &opt_key, std::string str) { const ConfigOptionDef* optdef = this->def->get(opt_key); if (optdef == NULL) throw "Calling set_deserialize() on unknown option"; if (!optdef->shortcut.empty()) { for (std::vector::const_iterator it = optdef->shortcut.begin(); it != optdef->shortcut.end(); ++it) { if (!this->set_deserialize(*it, str)) return false; } return true; } ConfigOption* opt = this->option(opt_key, true); assert(opt != NULL); return opt->deserialize(str); } // Return an absolute value of a possibly relative config variable. // For example, return absolute infill extrusion width, either from an absolute value, or relative to the layer height. double ConfigBase::get_abs_value(const t_config_option_key &opt_key) const { const ConfigOption* opt = this->option(opt_key); if (const ConfigOptionFloatOrPercent* optv = dynamic_cast(opt)) { // get option definition const ConfigOptionDef* def = this->def->get(opt_key); assert(def != NULL); // compute absolute value over the absolute value of the base option return optv->get_abs_value(this->get_abs_value(def->ratio_over)); } else if (const ConfigOptionFloat* optv = dynamic_cast(opt)) { return optv->value; } else { throw "Not a valid option type for get_abs_value()"; } } // Return an absolute value of a possibly relative config variable. // For example, return absolute infill extrusion width, either from an absolute value, or relative to a provided value. double ConfigBase::get_abs_value(const t_config_option_key &opt_key, double ratio_over) const { // get stored option value const ConfigOptionFloatOrPercent* opt = dynamic_cast(this->option(opt_key)); assert(opt != NULL); // compute absolute value return opt->get_abs_value(ratio_over); } void ConfigBase::setenv_() { #ifdef setenv t_config_option_keys opt_keys = this->keys(); for (t_config_option_keys::const_iterator it = opt_keys.begin(); it != opt_keys.end(); ++it) { // prepend the SLIC3R_ prefix std::ostringstream ss; ss << "SLIC3R_"; ss << *it; std::string envname = ss.str(); // capitalize environment variable name for (size_t i = 0; i < envname.size(); ++i) envname[i] = (envname[i] <= 'z' && envname[i] >= 'a') ? envname[i]-('a'-'A') : envname[i]; setenv(envname.c_str(), this->serialize(*it).c_str(), 1); } #endif } const ConfigOption* ConfigBase::option(const t_config_option_key &opt_key) const { return const_cast(this)->option(opt_key, false); } ConfigOption* ConfigBase::option(const t_config_option_key &opt_key, bool create) { return this->optptr(opt_key, create); } DynamicConfig& DynamicConfig::operator= (DynamicConfig other) { this->swap(other); return *this; } void DynamicConfig::swap(DynamicConfig &other) { std::swap(this->def, other.def); std::swap(this->options, other.options); } DynamicConfig::~DynamicConfig () { for (t_options_map::iterator it = this->options.begin(); it != this->options.end(); ++it) { ConfigOption* opt = it->second; if (opt != NULL) delete opt; } } DynamicConfig::DynamicConfig (const DynamicConfig& other) { this->def = other.def; this->apply(other, false); } ConfigOption* DynamicConfig::optptr(const t_config_option_key &opt_key, bool create) { t_options_map::iterator it = options.find(opt_key); if (it == options.end()) { if (create) { const ConfigOptionDef* optdef = this->def->get(opt_key); assert(optdef != NULL); ConfigOption* opt; if (optdef->type == coFloat) { opt = new ConfigOptionFloat (); } else if (optdef->type == coFloats) { opt = new ConfigOptionFloats (); } else if (optdef->type == coInt) { opt = new ConfigOptionInt (); } else if (optdef->type == coInts) { opt = new ConfigOptionInts (); } else if (optdef->type == coString) { opt = new ConfigOptionString (); } else if (optdef->type == coStrings) { opt = new ConfigOptionStrings (); } else if (optdef->type == coPercent) { opt = new ConfigOptionPercent (); } else if (optdef->type == coFloatOrPercent) { opt = new ConfigOptionFloatOrPercent (); } else if (optdef->type == coPoint) { opt = new ConfigOptionPoint (); } else if (optdef->type == coPoints) { opt = new ConfigOptionPoints (); } else if (optdef->type == coBool) { opt = new ConfigOptionBool (); } else if (optdef->type == coBools) { opt = new ConfigOptionBools (); } else if (optdef->type == coEnum) { ConfigOptionEnumGeneric* optv = new ConfigOptionEnumGeneric (); optv->keys_map = &optdef->enum_keys_map; opt = static_cast(optv); } else { throw "Unknown option type"; } this->options[opt_key] = opt; return opt; } else { return NULL; } } return it->second; } template T* DynamicConfig::opt(const t_config_option_key &opt_key, bool create) { return dynamic_cast(this->option(opt_key, create)); } template ConfigOptionInt* DynamicConfig::opt(const t_config_option_key &opt_key, bool create); template ConfigOptionBool* DynamicConfig::opt(const t_config_option_key &opt_key, bool create); template ConfigOptionBools* DynamicConfig::opt(const t_config_option_key &opt_key, bool create); template ConfigOptionPercent* DynamicConfig::opt(const t_config_option_key &opt_key, bool create); t_config_option_keys DynamicConfig::keys() const { t_config_option_keys keys; for (t_options_map::const_iterator it = this->options.begin(); it != this->options.end(); ++it) keys.push_back(it->first); return keys; } void DynamicConfig::erase(const t_config_option_key &opt_key) { this->options.erase(opt_key); } void StaticConfig::set_defaults() { // use defaults from definition if (this->def == NULL) return; t_config_option_keys keys = this->keys(); for (t_config_option_keys::const_iterator it = keys.begin(); it != keys.end(); ++it) { const ConfigOptionDef* def = this->def->get(*it); if (def->default_value != NULL) this->option(*it)->set(*def->default_value); } } t_config_option_keys StaticConfig::keys() const { t_config_option_keys keys; assert(this->def != NULL); for (t_optiondef_map::const_iterator it = this->def->options.begin(); it != this->def->options.end(); ++it) { const ConfigOption* opt = this->option(it->first); if (opt != NULL) keys.push_back(it->first); } return keys; } }