#include "Point.hpp" #include "Line.hpp" #include "MultiPoint.hpp" #include "Int128.hpp" #include namespace Slic3r { std::string Point::wkt() const { std::ostringstream ss; ss << "POINT(" << this->x() << " " << this->y() << ")"; return ss.str(); } std::string Point::dump_perl() const { std::ostringstream ss; ss << "[" << this->x() << "," << this->y() << "]"; return ss.str(); } void Point::rotate(double angle) { double cur_x = (double)this->x(); double cur_y = (double)this->y(); double s = ::sin(angle); double c = ::cos(angle); this->x() = (coord_t)round(c * cur_x - s * cur_y); this->y() = (coord_t)round(c * cur_y + s * cur_x); } void Point::rotate(double angle, const Point ¢er) { double cur_x = (double)this->x(); double cur_y = (double)this->y(); double s = ::sin(angle); double c = ::cos(angle); double dx = cur_x - (double)center.x(); double dy = cur_y - (double)center.y(); this->x() = (coord_t)round( (double)center.x() + c * dx - s * dy ); this->y() = (coord_t)round( (double)center.y() + c * dy + s * dx ); } bool Point::coincides_with_epsilon(const Point &point) const { return std::abs(this->x() - point.x()) < SCALED_EPSILON && std::abs(this->y() - point.y()) < SCALED_EPSILON; } int Point::nearest_point_index(const Points &points) const { PointConstPtrs p; p.reserve(points.size()); for (Points::const_iterator it = points.begin(); it != points.end(); ++it) p.push_back(&*it); return this->nearest_point_index(p); } int Point::nearest_point_index(const PointConstPtrs &points) const { int idx = -1; double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) { /* If the X distance of the candidate is > than the total distance of the best previous candidate, we know we don't want it */ double d = sqr(this->x() - (*it)->x()); if (distance != -1 && d > distance) continue; /* If the Y distance of the candidate is > than the total distance of the best previous candidate, we know we don't want it */ d += sqr(this->y() - (*it)->y()); if (distance != -1 && d > distance) continue; idx = it - points.begin(); distance = d; if (distance < EPSILON) break; } return idx; } int Point::nearest_point_index(const PointPtrs &points) const { PointConstPtrs p; p.reserve(points.size()); for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it) p.push_back(*it); return this->nearest_point_index(p); } bool Point::nearest_point(const Points &points, Point* point) const { int idx = this->nearest_point_index(points); if (idx == -1) return false; *point = points.at(idx); return true; } /* distance to the closest point of line */ double Point::distance_to(const Line &line) const { const double dx = line.b.x() - line.a.x(); const double dy = line.b.y() - line.a.y(); const double l2 = dx*dx + dy*dy; // avoid a sqrt if (l2 == 0.0) return this->distance_to(line.a); // line.a == line.b case // Consider the line extending the segment, parameterized as line.a + t (line.b - line.a). // We find projection of this point onto the line. // It falls where t = [(this-line.a) . (line.b-line.a)] / |line.b-line.a|^2 const double t = ((this->x() - line.a.x()) * dx + (this->y() - line.a.y()) * dy) / l2; if (t < 0.0) return this->distance_to(line.a); // beyond the 'a' end of the segment else if (t > 1.0) return this->distance_to(line.b); // beyond the 'b' end of the segment Point projection( line.a.x() + t * dx, line.a.y() + t * dy ); return this->distance_to(projection); } double Point::perp_distance_to(const Line &line) const { if (line.a == line.b) return this->distance_to(line.a); double n = (double)(line.b.x() - line.a.x()) * (double)(line.a.y() - this->y()) - (double)(line.a.x() - this->x()) * (double)(line.b.y() - line.a.y()); return std::abs(n) / line.length(); } /* Three points are a counter-clockwise turn if ccw > 0, clockwise if * ccw < 0, and collinear if ccw = 0 because ccw is a determinant that * gives the signed area of the triangle formed by p1, p2 and this point. * In other words it is the 2D cross product of p1-p2 and p1-this, i.e. * z-component of their 3D cross product. * We return double because it must be big enough to hold 2*max(|coordinate|)^2 */ double Point::ccw(const Point &p1, const Point &p2) const { return (double)(p2.x() - p1.x())*(double)(this->y() - p1.y()) - (double)(p2.y() - p1.y())*(double)(this->x() - p1.x()); } double Point::ccw(const Line &line) const { return this->ccw(line.a, line.b); } // returns the CCW angle between this-p1 and this-p2 // i.e. this assumes a CCW rotation from p1 to p2 around this double Point::ccw_angle(const Point &p1, const Point &p2) const { double angle = atan2(p1.x() - this->x(), p1.y() - this->y()) - atan2(p2.x() - this->x(), p2.y() - this->y()); // we only want to return only positive angles return angle <= 0 ? angle + 2*PI : angle; } Point Point::projection_onto(const MultiPoint &poly) const { Point running_projection = poly.first_point(); double running_min = this->distance_to(running_projection); Lines lines = poly.lines(); for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) { Point point_temp = this->projection_onto(*line); if (this->distance_to(point_temp) < running_min) { running_projection = point_temp; running_min = this->distance_to(running_projection); } } return running_projection; } Point Point::projection_onto(const Line &line) const { if (line.a == line.b) return line.a; /* (Ported from VisiLibity by Karl J. Obermeyer) The projection of point_temp onto the line determined by line_segment_temp can be represented as an affine combination expressed in the form projection of Point = theta*line_segment_temp.first + (1.0-theta)*line_segment_temp.second. If theta is outside the interval [0,1], then one of the Line_Segment's endpoints must be closest to calling Point. */ double lx = (double)(line.b.x() - line.a.x()); double ly = (double)(line.b.y() - line.a.y()); double theta = ( (double)(line.b.x() - this->x())*lx + (double)(line.b.y()- this->y())*ly ) / ( sqr(lx) + sqr(ly) ); if (0.0 <= theta && theta <= 1.0) return theta * line.a + (1.0-theta) * line.b; // Else pick closest endpoint. if (this->distance_to(line.a) < this->distance_to(line.b)) { return line.a; } else { return line.b; } } std::ostream& operator<<(std::ostream &stm, const Pointf &pointf) { return stm << pointf.x() << "," << pointf.y(); } std::string Pointf::wkt() const { std::ostringstream ss; ss << "POINT(" << this->x() << " " << this->y() << ")"; return ss.str(); } std::string Pointf::dump_perl() const { std::ostringstream ss; ss << "[" << this->x() << "," << this->y() << "]"; return ss.str(); } void Pointf::rotate(double angle) { double cur_x = this->x(); double cur_y = this->y(); double s = ::sin(angle); double c = ::cos(angle); this->x() = c * cur_x - s * cur_y; this->y() = c * cur_y + s * cur_x; } void Pointf::rotate(double angle, const Pointf ¢er) { double cur_x = this->x(); double cur_y = this->y(); double s = ::sin(angle); double c = ::cos(angle); double dx = cur_x - center.x(); double dy = cur_y - center.y(); this->x() = center.x() + c * dx - s * dy; this->y() = center.y() + c * dy + s * dx; } namespace int128 { int orient(const Point &p1, const Point &p2, const Point &p3) { Slic3r::Vector v1(p2 - p1); Slic3r::Vector v2(p3 - p1); return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y()); } int cross(const Point &v1, const Point &v2) { return Int128::sign_determinant_2x2_filtered(v1.x(), v1.y(), v2.x(), v2.y()); } } }