/* ADMesh -- process triangulated solid meshes * Copyright (C) 1995, 1996 Anthony D. Martin * Copyright (C) 2013, 2014 several contributors, see AUTHORS * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Questions, comments, suggestions, etc to * https://github.com/admesh/admesh/issues */ #ifndef __admesh_stl__ #define __admesh_stl__ #include #include #include #include #include // Size of the binary STL header, free form. #define LABEL_SIZE 80 // Binary STL, length of the "number of faces" counter. #define NUM_FACET_SIZE 4 // Binary STL, sizeof header + number of faces. #define HEADER_SIZE 84 #define STL_MIN_FILE_SIZE 284 #define ASCII_LINES_PER_FACET 7 typedef Eigen::Matrix stl_vertex; typedef Eigen::Matrix stl_normal; typedef Eigen::Matrix stl_triangle_vertex_indices; static_assert(sizeof(stl_vertex) == 12, "size of stl_vertex incorrect"); static_assert(sizeof(stl_normal) == 12, "size of stl_normal incorrect"); struct stl_facet { stl_normal normal; stl_vertex vertex[3]; char extra[2]; stl_facet rotated(const Eigen::Quaternion &rot) const { stl_facet out; out.normal = rot * this->normal; out.vertex[0] = rot * this->vertex[0]; out.vertex[1] = rot * this->vertex[1]; out.vertex[2] = rot * this->vertex[2]; return out; } }; #define SIZEOF_STL_FACET 50 static_assert(offsetof(stl_facet, normal) == 0, "stl_facet.normal has correct offset"); static_assert(offsetof(stl_facet, vertex) == 12, "stl_facet.vertex has correct offset"); static_assert(offsetof(stl_facet, extra ) == 48, "stl_facet.extra has correct offset"); static_assert(sizeof(stl_facet) >= SIZEOF_STL_FACET, "size of stl_facet incorrect"); typedef enum {binary, ascii, inmemory} stl_type; struct stl_neighbors { stl_neighbors() { reset(); } void reset() { neighbor[0] = -1; neighbor[1] = -1; neighbor[2] = -1; which_vertex_not[0] = -1; which_vertex_not[1] = -1; which_vertex_not[2] = -1; } int num_neighbors() const { return 3 - ((this->neighbor[0] == -1) + (this->neighbor[1] == -1) + (this->neighbor[2] == -1)); } // Index of a neighbor facet. int neighbor[3]; // Index of an opposite vertex at the neighbor face. char which_vertex_not[3]; }; struct stl_stats { stl_stats() { memset(&header, 0, 81); } char header[81]; stl_type type = (stl_type)0; // Should always match the number of facets stored inside stl_file::facet_start. uint32_t number_of_facets = 0; // Bounding box. stl_vertex max = stl_vertex::Zero(); stl_vertex min = stl_vertex::Zero(); stl_vertex size = stl_vertex::Zero(); float bounding_diameter = 0.f; float shortest_edge = 0.f; // After repair, the volume shall always be positive. float volume = -1.f; // Number of face edges connected to another face. // Don't use this statistics after repair, use the connected_facets_1/2/3_edge instead! int connected_edges = 0; // Faces with >=1, >=2 and 3 edges connected to another face. int connected_facets_1_edge = 0; int connected_facets_2_edge = 0; int connected_facets_3_edge = 0; // Faces with 1, 2 and 3 open edges after exact chaining, but before repair. int facets_w_1_bad_edge = 0; int facets_w_2_bad_edge = 0; int facets_w_3_bad_edge = 0; // Number of faces read form an STL file. int original_num_facets = 0; // Number of edges connected one to another by snapping their end vertices. int edges_fixed = 0; // Number of faces removed because they were degenerated. int degenerate_facets = 0; // Total number of facets removed: Degenerate faces and unconnected faces. int facets_removed = 0; // Number of faces added by hole filling. int facets_added = 0; // Number of faces reversed because of negative volume or because one patch was connected to another patch with incompatible normals. int facets_reversed = 0; // Number of incompatible edges remaining after the patches were connected together and possibly their normals flipped. int backwards_edges = 0; // Number of triangles, which were flipped during the fixing process. int normals_fixed = 0; // Number of connected triangle patches. int number_of_parts = 0; void clear() { *this = stl_stats(); } }; struct stl_file { stl_file() {} void clear() { this->facet_start.clear(); this->neighbors_start.clear(); this->stats.clear(); } size_t memsize() const { return sizeof(*this) + sizeof(stl_facet) * facet_start.size() + sizeof(stl_neighbors) * neighbors_start.size(); } std::vector facet_start; std::vector neighbors_start; // Statistics stl_stats stats; }; struct indexed_triangle_set { void clear() { indices.clear(); vertices.clear(); } size_t memsize() const { return sizeof(*this) + sizeof(stl_triangle_vertex_indices) * indices.size() + sizeof(stl_vertex) * vertices.size(); } std::vector indices; std::vector vertices; bool empty() const { return indices.empty() || vertices.empty(); } }; extern bool stl_open(stl_file *stl, const char *file); extern void stl_stats_out(stl_file *stl, FILE *file, char *input_file); extern bool stl_print_neighbors(stl_file *stl, char *file); extern bool stl_write_ascii(stl_file *stl, const char *file, const char *label); extern bool stl_write_binary(stl_file *stl, const char *file, const char *label); extern void stl_check_facets_exact(stl_file *stl); extern void stl_check_facets_nearby(stl_file *stl, float tolerance); extern void stl_remove_unconnected_facets(stl_file *stl); extern void stl_write_vertex(stl_file *stl, int facet, int vertex); extern void stl_write_facet(stl_file *stl, char *label, int facet); extern void stl_write_neighbor(stl_file *stl, int facet); extern bool stl_write_quad_object(stl_file *stl, char *file); extern void stl_verify_neighbors(stl_file *stl); extern void stl_fill_holes(stl_file *stl); extern void stl_fix_normal_directions(stl_file *stl); extern void stl_fix_normal_values(stl_file *stl); extern void stl_reverse_all_facets(stl_file *stl); extern void stl_translate(stl_file *stl, float x, float y, float z); extern void stl_translate_relative(stl_file *stl, float x, float y, float z); extern void stl_scale_versor(stl_file *stl, const stl_vertex &versor); inline void stl_scale(stl_file *stl, float factor) { stl_scale_versor(stl, stl_vertex(factor, factor, factor)); } extern void stl_rotate_x(stl_file *stl, float angle); extern void stl_rotate_y(stl_file *stl, float angle); extern void stl_rotate_z(stl_file *stl, float angle); extern void stl_mirror_xy(stl_file *stl); extern void stl_mirror_yz(stl_file *stl); extern void stl_mirror_xz(stl_file *stl); extern void stl_get_size(stl_file *stl); // the following function is not used /* template extern void stl_transform(stl_file *stl, T *trafo3x4) { Eigen::Matrix trafo3x3; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { trafo3x3(i, j) = (i * 4) + j; } } Eigen::Matrix r = trafo3x3.inverse().transpose(); for (uint32_t i_face = 0; i_face < stl->stats.number_of_facets; ++ i_face) { stl_facet &face = stl->facet_start[i_face]; for (int i_vertex = 0; i_vertex < 3; ++ i_vertex) { stl_vertex &v_dst = face.vertex[i_vertex]; stl_vertex v_src = v_dst; v_dst(0) = T(trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2) + trafo3x4[3]); v_dst(1) = T(trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2) + trafo3x4[7]); v_dst(2) = T(trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2) + trafo3x4[11]); } face.normal = (r * face.normal.template cast()).template cast().eval(); } stl_get_size(stl); } */ template inline void stl_transform(stl_file *stl, const Eigen::Transform& t) { const Eigen::Matrix r = t.matrix().template block<3, 3>(0, 0).inverse().transpose(); for (size_t i = 0; i < stl->stats.number_of_facets; ++ i) { stl_facet &f = stl->facet_start[i]; for (size_t j = 0; j < 3; ++j) f.vertex[j] = (t * f.vertex[j].template cast()).template cast().eval(); f.normal = (r * f.normal.template cast()).template cast().eval(); } stl_get_size(stl); } template inline void stl_transform(stl_file *stl, const Eigen::Matrix& m) { const Eigen::Matrix r = m.inverse().transpose(); for (size_t i = 0; i < stl->stats.number_of_facets; ++ i) { stl_facet &f = stl->facet_start[i]; for (size_t j = 0; j < 3; ++j) f.vertex[j] = (m * f.vertex[j].template cast()).template cast().eval(); f.normal = (r * f.normal.template cast()).template cast().eval(); } stl_get_size(stl); } template inline void its_translate(indexed_triangle_set &its, const V v) { for (stl_vertex &v_dst : its.vertices) v_dst += v; } template inline void its_transform(indexed_triangle_set &its, T *trafo3x4) { for (stl_vertex &v_dst : its.vertices) { stl_vertex v_src = v_dst; v_dst(0) = T(trafo3x4[0] * v_src(0) + trafo3x4[1] * v_src(1) + trafo3x4[2] * v_src(2) + trafo3x4[3]); v_dst(1) = T(trafo3x4[4] * v_src(0) + trafo3x4[5] * v_src(1) + trafo3x4[6] * v_src(2) + trafo3x4[7]); v_dst(2) = T(trafo3x4[8] * v_src(0) + trafo3x4[9] * v_src(1) + trafo3x4[10] * v_src(2) + trafo3x4[11]); } } template inline void its_transform(indexed_triangle_set &its, const Eigen::Transform& t, bool fix_left_handed = false) { //const Eigen::Matrix r = t.matrix().template block<3, 3>(0, 0); for (stl_vertex &v : its.vertices) v = (t * v.template cast()).template cast().eval(); if (fix_left_handed && t.matrix().block(0, 0, 3, 3).determinant() < 0.) for (stl_triangle_vertex_indices &i : its.indices) std::swap(i[0], i[1]); } template inline void its_transform(indexed_triangle_set &its, const Eigen::Matrix& m, bool fix_left_handed = false) { for (stl_vertex &v : its.vertices) v = (m * v.template cast()).template cast().eval(); if (fix_left_handed && m.determinant() < 0.) for (stl_triangle_vertex_indices &i : its.indices) std::swap(i[0], i[1]); } extern void its_rotate_x(indexed_triangle_set &its, float angle); extern void its_rotate_y(indexed_triangle_set &its, float angle); extern void its_rotate_z(indexed_triangle_set &its, float angle); extern void stl_generate_shared_vertices(stl_file *stl, indexed_triangle_set &its); extern bool its_write_obj(const indexed_triangle_set &its, const char *file); extern bool its_write_off(const indexed_triangle_set &its, const char *file); extern bool its_write_vrml(const indexed_triangle_set &its, const char *file); typedef Eigen::Matrix obj_color; // Vec3f /// /// write idexed triangle set into obj file with color /// /// input model /// color of stored model /// define place to store /// True on success otherwise FALSE extern bool its_write_obj(const indexed_triangle_set& its, const std::vector &color, const char* file); extern bool stl_write_dxf(stl_file *stl, const char *file, char *label); inline void stl_calculate_normal(stl_normal &normal, stl_facet *facet) { normal = (facet->vertex[1] - facet->vertex[0]).cross(facet->vertex[2] - facet->vertex[0]); } inline void stl_normalize_vector(stl_normal &normal) { double length = normal.cast().norm(); if (length < 0.000000000001) normal = stl_normal::Zero(); else normal *= float(1.0 / length); } extern void stl_calculate_volume(stl_file *stl); extern void stl_repair(stl_file *stl, bool fixall_flag, bool exact_flag, bool tolerance_flag, float tolerance, bool increment_flag, float increment, bool nearby_flag, int iterations, bool remove_unconnected_flag, bool fill_holes_flag, bool normal_directions_flag, bool normal_values_flag, bool reverse_all_flag, bool verbose_flag); extern void stl_allocate(stl_file *stl); extern void stl_read(stl_file *stl, int first_facet, bool first); extern void stl_facet_stats(stl_file *stl, stl_facet facet, bool &first); extern void stl_reallocate(stl_file *stl); extern void stl_add_facet(stl_file *stl, const stl_facet *new_facet); // Validate the mesh, assert on error. extern bool stl_validate(const stl_file *stl); extern bool stl_validate(const stl_file *stl, const indexed_triangle_set &its); #endif