#include #include #include "libslic3r/ExtrusionEntityCollection.hpp" #include "libslic3r/ExtrusionEntity.hpp" #include "libslic3r/Point.hpp" #include "libslic3r/ShortestPath.hpp" #include "libslic3r/libslic3r.h" #include "test_data.hpp" using namespace Slic3r; static inline Slic3r::Point random_point(float LO=-50, float HI=50) { Vec2f pt = Vec2f(LO, LO) + (Vec2d(rand(), rand()) * (HI-LO) / RAND_MAX).cast(); return pt.cast(); } // build a sample extrusion entity collection with random start and end points. static Slic3r::ExtrusionPath random_path(size_t length = 20, float LO = -50, float HI = 50) { ExtrusionPath t {erPerimeter, 1.0, 1.0, 1.0}; for (size_t j = 0; j < length; ++ j) t.polyline.append(random_point(LO, HI)); return t; } static Slic3r::ExtrusionPaths random_paths(size_t count = 10, size_t length = 20, float LO = -50, float HI = 50) { Slic3r::ExtrusionPaths p; for (size_t i = 0; i < count; ++ i) p.push_back(random_path(length, LO, HI)); return p; } SCENARIO("ExtrusionPath", "[ExtrusionEntity]") { GIVEN("Simple path") { Slic3r::ExtrusionPath path{ erExternalPerimeter }; path.polyline = { { 100, 100 }, { 200, 100 }, { 200, 200 } }; path.mm3_per_mm = 1.; THEN("first point") { REQUIRE(path.first_point() == path.polyline.front()); } THEN("cloned") { auto cloned = std::unique_ptr(path.clone()); REQUIRE(cloned->role() == path.role()); } } } static ExtrusionPath new_extrusion_path(const Polyline &polyline, ExtrusionRole role, double mm3_per_mm) { ExtrusionPath path(role); path.polyline = polyline; path.mm3_per_mm = 1.; return path; } SCENARIO("ExtrusionLoop", "[ExtrusionEntity]") { GIVEN("Square") { Polygon square { { 100, 100 }, { 200, 100 }, { 200, 200 }, { 100, 200 } }; ExtrusionLoop loop; loop.paths.emplace_back(new_extrusion_path(square.split_at_first_point(), erExternalPerimeter, 1.)); THEN("polygon area") { REQUIRE(loop.polygon().area() == Approx(square.area())); } THEN("loop length") { REQUIRE(loop.length() == Approx(square.length())); } WHEN("cloned") { auto loop2 = std::unique_ptr(dynamic_cast(loop.clone())); THEN("cloning worked") { REQUIRE(loop2 != nullptr); } THEN("loop contains one path") { REQUIRE(loop2->paths.size() == 1); } THEN("cloned role") { REQUIRE(loop2->paths.front().role() == erExternalPerimeter); } } WHEN("cloned and split") { auto loop2 = std::unique_ptr(dynamic_cast(loop.clone())); loop2->split_at_vertex(square.points[2]); THEN("splitting a single-path loop results in a single path") { REQUIRE(loop2->paths.size() == 1); } THEN("path has correct number of points") { REQUIRE(loop2->paths.front().size() == 5); } THEN("expected point order") { REQUIRE(loop2->paths.front().polyline[0] == square.points[2]); REQUIRE(loop2->paths.front().polyline[1] == square.points[3]); REQUIRE(loop2->paths.front().polyline[2] == square.points[0]); REQUIRE(loop2->paths.front().polyline[3] == square.points[1]); REQUIRE(loop2->paths.front().polyline[4] == square.points[2]); } } } GIVEN("Loop with two pieces") { Polyline polyline1 { { 100, 100 }, { 200, 100 }, { 200, 200 } }; Polyline polyline2 { { 200, 200 }, { 100, 200 }, { 100, 100 } }; ExtrusionLoop loop; loop.paths.emplace_back(new_extrusion_path(polyline1, erExternalPerimeter, 1.)); loop.paths.emplace_back(new_extrusion_path(polyline2, erOverhangPerimeter, 1.)); double tot_len = polyline1.length() + polyline2.length(); THEN("length") { REQUIRE(loop.length() == Approx(tot_len)); } WHEN("splitting at intermediate point") { auto loop2 = std::unique_ptr(dynamic_cast(loop.clone())); loop2->split_at_vertex(polyline1.points[1]); THEN("length after splitting is unchanged") { REQUIRE(loop2->length() == Approx(tot_len)); } THEN("loop contains three paths after splitting") { REQUIRE(loop2->paths.size() == 3); } THEN("expected starting point") { REQUIRE(loop2->paths.front().polyline.front() == polyline1.points[1]); } THEN("expected ending point") { REQUIRE(loop2->paths.back().polyline.back() == polyline1.points[1]); } THEN("paths have common point") { REQUIRE(loop2->paths.front().polyline.back() == loop2->paths[1].polyline.front()); REQUIRE(loop2->paths[1].polyline.back() == loop2->paths[2].polyline.front()); } THEN("expected order after splitting") { REQUIRE(loop2->paths.front().role() == erExternalPerimeter); REQUIRE(loop2->paths[1].role() == erOverhangPerimeter); REQUIRE(loop2->paths[2].role() == erExternalPerimeter); } THEN("path has correct number of points") { REQUIRE(loop2->paths.front().polyline.size() == 2); REQUIRE(loop2->paths[1].polyline.size() == 3); REQUIRE(loop2->paths[2].polyline.size() == 2); } THEN("clipped path has expected length") { double l = loop2->length(); ExtrusionPaths paths; loop2->clip_end(3, &paths); double l2 = 0; for (const ExtrusionPath &p : paths) l2 += p.length(); REQUIRE(l2 == Approx(l - 3.)); } } WHEN("splitting at endpoint") { auto loop2 = std::unique_ptr(dynamic_cast(loop.clone())); loop2->split_at_vertex(polyline2.points.front()); THEN("length after splitting is unchanged") { REQUIRE(loop2->length() == Approx(tot_len)); } THEN("loop contains two paths after splitting") { REQUIRE(loop2->paths.size() == 2); } THEN("expected starting point") { REQUIRE(loop2->paths.front().polyline.front() == polyline2.points.front()); } THEN("expected ending point") { REQUIRE(loop2->paths.back().polyline.back() == polyline2.points.front()); } THEN("paths have common point") { REQUIRE(loop2->paths.front().polyline.back() == loop2->paths[1].polyline.front()); REQUIRE(loop2->paths[1].polyline.back() == loop2->paths.front().polyline.front()); } THEN("expected order after splitting") { REQUIRE(loop2->paths.front().role() == erOverhangPerimeter); REQUIRE(loop2->paths[1].role() == erExternalPerimeter); } THEN("path has correct number of points") { REQUIRE(loop2->paths.front().polyline.size() == 3); REQUIRE(loop2->paths[1].polyline.size() == 3); } } WHEN("splitting at an edge") { Point point(250, 150); auto loop2 = std::unique_ptr(dynamic_cast(loop.clone())); loop2->split_at(point, false, 0); THEN("length after splitting is unchanged") { REQUIRE(loop2->length() == Approx(tot_len)); } Point expected_start_point(200, 150); THEN("expected starting point") { REQUIRE(loop2->paths.front().polyline.front() == expected_start_point); } THEN("expected ending point") { REQUIRE(loop2->paths.back().polyline.back() == expected_start_point); } } } GIVEN("Loop with four pieces") { Polyline polyline1 { { 59312736, 4821067 }, { 64321068, 4821067 }, { 64321068, 4821067 }, { 64321068, 9321068 }, { 59312736, 9321068 } }; Polyline polyline2 { { 59312736, 9321068 }, { 9829401, 9321068 } }; Polyline polyline3 { { 9829401, 9321068 }, { 4821067, 9321068 }, { 4821067, 4821067 }, { 9829401, 4821067 } }; Polyline polyline4 { { 9829401, 4821067 }, { 59312736,4821067 } }; ExtrusionLoop loop; loop.paths.emplace_back(new_extrusion_path(polyline1, erExternalPerimeter, 1.)); loop.paths.emplace_back(new_extrusion_path(polyline2, erOverhangPerimeter, 1.)); loop.paths.emplace_back(new_extrusion_path(polyline3, erExternalPerimeter, 1.)); loop.paths.emplace_back(new_extrusion_path(polyline4, erOverhangPerimeter, 1.)); double len = loop.length(); WHEN("splitting at vertex") { Point point(4821067, 9321068); if (! loop.split_at_vertex(point)) loop.split_at(point, false, 0); THEN("total length is preserved after splitting") { REQUIRE(loop.length() == Approx(len)); } THEN("order is correctly preserved after splitting") { REQUIRE(loop.paths.front().role() == erExternalPerimeter); REQUIRE(loop.paths[1].role() == erOverhangPerimeter); REQUIRE(loop.paths[2].role() == erExternalPerimeter); REQUIRE(loop.paths[3].role() == erOverhangPerimeter); } } } GIVEN("Some complex loop") { ExtrusionLoop loop; loop.paths.emplace_back(new_extrusion_path( Polyline { { 15896783, 15868739 }, { 24842049, 12117558 }, { 33853238, 15801279 }, { 37591780, 24780128 }, { 37591780, 24844970 }, { 33853231, 33825297 }, { 24842049, 37509013 }, { 15896798, 33757841 }, { 12211841, 24812544 }, { 15896783, 15868739 } }, erExternalPerimeter, 1.)); double len = loop.length(); THEN("split_at() preserves total length") { loop.split_at({ 15896783, 15868739 }, false, 0); REQUIRE(loop.length() == Approx(len)); } } } SCENARIO("ExtrusionEntityCollection: Basics", "[ExtrusionEntity]") { Polyline polyline { { 100, 100 }, { 200, 100 }, { 200, 200 } }; ExtrusionPath path = new_extrusion_path(polyline, erExternalPerimeter, 1.); ExtrusionLoop loop; loop.paths.emplace_back(new_extrusion_path(Polygon(polyline.points).split_at_first_point(), erInternalInfill, 1.)); ExtrusionEntityCollection collection; collection.append(path); THEN("no_sort is false by default") { REQUIRE(! collection.no_sort); } collection.append(collection); THEN("append ExtrusionEntityCollection") { REQUIRE(collection.entities.size() == 2); } collection.append(path); THEN("append ExtrusionPath") { REQUIRE(collection.entities.size() == 3); } collection.append(loop); THEN("append ExtrusionLoop") { REQUIRE(collection.entities.size() == 4); } THEN("appended collection was duplicated") { REQUIRE(dynamic_cast(collection.entities[1])->entities.size() == 1); } WHEN("cloned") { auto coll2 = std::unique_ptr(dynamic_cast(collection.clone())); THEN("expected no_sort value") { assert(! coll2->no_sort); } coll2->no_sort = true; THEN("no_sort is kept after clone") { auto coll3 = std::unique_ptr(dynamic_cast(coll2->clone())); assert(coll3->no_sort); } } } SCENARIO("ExtrusionEntityCollection: Polygon flattening", "[ExtrusionEntity]") { srand(0xDEADBEEF); // consistent seed for test reproducibility. // Generate one specific random path set and save it for later comparison Slic3r::ExtrusionPaths nosort_path_set = random_paths(); Slic3r::ExtrusionEntityCollection sub_nosort; sub_nosort.append(nosort_path_set); sub_nosort.no_sort = true; Slic3r::ExtrusionEntityCollection sub_sort; sub_sort.no_sort = false; sub_sort.append(random_paths()); GIVEN("A Extrusion Entity Collection with a child that has one child that is marked as no-sort") { Slic3r::ExtrusionEntityCollection sample; Slic3r::ExtrusionEntityCollection output; sample.append(sub_sort); sample.append(sub_nosort); sample.append(sub_sort); WHEN("The EEC is flattened with default options (preserve_order=false)") { output = sample.flatten(); THEN("The output EEC contains no Extrusion Entity Collections") { CHECK(std::count_if(output.entities.cbegin(), output.entities.cend(), [=](const ExtrusionEntity* e) {return e->is_collection();}) == 0); } } WHEN("The EEC is flattened with preservation (preserve_order=true)") { output = sample.flatten(true); THEN("The output EECs contains one EEC.") { CHECK(std::count_if(output.entities.cbegin(), output.entities.cend(), [=](const ExtrusionEntity* e) {return e->is_collection();}) == 1); } AND_THEN("The ordered EEC contains the same order of elements than the original") { // find the entity in the collection for (auto e : output.entities) if (e->is_collection()) { ExtrusionEntityCollection *temp = dynamic_cast(e); // check each Extrusion path against nosort_path_set to see if the first and last match the same CHECK(nosort_path_set.size() == temp->entities.size()); for (size_t i = 0; i < nosort_path_set.size(); ++ i) { CHECK(temp->entities[i]->first_point() == nosort_path_set[i].first_point()); CHECK(temp->entities[i]->last_point() == nosort_path_set[i].last_point()); } } } } } } TEST_CASE("ExtrusionEntityCollection: Chained path", "[ExtrusionEntity]") { struct Test { Polylines unchained; Polylines chained; Point initial_point; }; std::vector tests { { { { {0,15}, {0,18}, {0,20} }, { {0,10}, {0,8}, {0,5} } }, { { {0,20}, {0,18}, {0,15} }, { {0,10}, {0,8}, {0,5} } }, { 0, 30 } }, { { { {4,0}, {10,0}, {15,0} }, { {10,5}, {15,5}, {20,5} } }, { { {20,5}, {15,5}, {10,5} }, { {15,0}, {10,0}, {4,0} } }, { 30, 0 } }, { { { {15,0}, {10,0}, {4,0} }, { {10,5}, {15,5}, {20,5} } }, { { {20,5}, {15,5}, {10,5} }, { {15,0}, {10,0}, {4,0} } }, { 30, 0 } }, }; for (const Test &test : tests) { Polylines chained = chain_polylines(test.unchained, &test.initial_point); REQUIRE(chained == test.chained); ExtrusionEntityCollection unchained_extrusions; extrusion_entities_append_paths(unchained_extrusions.entities, test.unchained, erInternalInfill, 0., 0.4f, 0.3f); THEN("Chaining works") { ExtrusionEntityCollection chained_extrusions = unchained_extrusions.chained_path_from(test.initial_point); REQUIRE(chained_extrusions.entities.size() == test.chained.size()); for (size_t i = 0; i < chained_extrusions.entities.size(); ++ i) { const Points &p1 = test.chained[i].points; const Points &p2 = dynamic_cast(chained_extrusions.entities[i])->polyline.points; REQUIRE(p1 == p2); } } THEN("Chaining produces no change with no_sort") { unchained_extrusions.no_sort = true; ExtrusionEntityCollection chained_extrusions = unchained_extrusions.chained_path_from(test.initial_point); REQUIRE(chained_extrusions.entities.size() == test.unchained.size()); for (size_t i = 0; i < chained_extrusions.entities.size(); ++ i) { const Points &p1 = test.unchained[i].points; const Points &p2 = dynamic_cast(chained_extrusions.entities[i])->polyline.points; REQUIRE(p1 == p2); } } } } TEST_CASE("ExtrusionEntityCollection: Chained path with no explicit starting point", "[ExtrusionEntity]") { auto polylines = Polylines { { { 0, 15 }, {0, 18}, {0, 20} }, { { 0, 10 }, {0, 8}, {0, 5} } }; auto target = Polylines { { {0, 5}, {0, 8}, { 0, 10 } }, { { 0, 15 }, {0, 18}, {0, 20} } }; auto chained = chain_polylines(polylines); REQUIRE(chained == target); }