#include #include "libslic3r/Point.hpp" #include "libslic3r/BoundingBox.hpp" #include "libslic3r/Polygon.hpp" #include "libslic3r/Polyline.hpp" #include "libslic3r/Line.hpp" #include "libslic3r/Geometry.hpp" #include "libslic3r/Geometry/Circle.hpp" #include "libslic3r/Geometry/ConvexHull.hpp" #include "libslic3r/ClipperUtils.hpp" #include "libslic3r/ShortestPath.hpp" //#include //#include "libnest2d/tools/benchmark.h" #include "libslic3r/SVG.hpp" #include "../libnest2d/printer_parts.hpp" #include using namespace Slic3r; TEST_CASE("Line::parallel_to", "[Geometry]"){ Line l{ { 100000, 0 }, { 0, 0 } }; Line l2{ { 200000, 0 }, { 0, 0 } }; REQUIRE(l.parallel_to(l)); REQUIRE(l.parallel_to(l2)); Line l3(l2); l3.rotate(0.9 * EPSILON, { 0, 0 }); REQUIRE(l.parallel_to(l3)); Line l4(l2); l4.rotate(1.1 * EPSILON, { 0, 0 }); REQUIRE(! l.parallel_to(l4)); // The angle epsilon is so low that vectors shorter than 100um rotated by epsilon radians are not rotated at all. Line l5{ { 20000, 0 }, { 0, 0 } }; l5.rotate(1.1 * EPSILON, { 0, 0 }); REQUIRE(l.parallel_to(l5)); l.rotate(1., { 0, 0 }); Point offset{ 342876, 97636249 }; l.translate(offset); l3.rotate(1., { 0, 0 }); l3.translate(offset); l4.rotate(1., { 0, 0 }); l4.translate(offset); REQUIRE(l.parallel_to(l3)); REQUIRE(!l.parallel_to(l4)); } TEST_CASE("Line::perpendicular_to", "[Geometry]") { Line l{ { 100000, 0 }, { 0, 0 } }; Line l2{ { 0, 200000 }, { 0, 0 } }; REQUIRE(! l.perpendicular_to(l)); REQUIRE(l.perpendicular_to(l2)); Line l3(l2); l3.rotate(0.9 * EPSILON, { 0, 0 }); REQUIRE(l.perpendicular_to(l3)); Line l4(l2); l4.rotate(1.1 * EPSILON, { 0, 0 }); REQUIRE(! l.perpendicular_to(l4)); // The angle epsilon is so low that vectors shorter than 100um rotated by epsilon radians are not rotated at all. Line l5{ { 0, 20000 }, { 0, 0 } }; l5.rotate(1.1 * EPSILON, { 0, 0 }); REQUIRE(l.perpendicular_to(l5)); l.rotate(1., { 0, 0 }); Point offset{ 342876, 97636249 }; l.translate(offset); l3.rotate(1., { 0, 0 }); l3.translate(offset); l4.rotate(1., { 0, 0 }); l4.translate(offset); REQUIRE(l.perpendicular_to(l3)); REQUIRE(! l.perpendicular_to(l4)); } TEST_CASE("Polygon::contains works properly", "[Geometry]"){ // this test was failing on Windows (GH #1950) Slic3r::Polygon polygon(std::vector({ Point(207802834,-57084522), Point(196528149,-37556190), Point(173626821,-25420928), Point(171285751,-21366123), Point(118673592,-21366123), Point(116332562,-25420928), Point(93431208,-37556191), Point(82156517,-57084523), Point(129714478,-84542120), Point(160244873,-84542120) })); Point point(95706562, -57294774); REQUIRE(polygon.contains(point)); } SCENARIO("Intersections of line segments", "[Geometry]"){ GIVEN("Integer coordinates"){ Line line1(Point(5,15),Point(30,15)); Line line2(Point(10,20), Point(10,10)); THEN("The intersection is valid"){ Point point; line1.intersection(line2,&point); REQUIRE(Point(10,15) == point); } } GIVEN("Scaled coordinates"){ Line line1(Point(73.6310778185108 / 0.00001, 371.74239268924 / 0.00001), Point(73.6310778185108 / 0.00001, 501.74239268924 / 0.00001)); Line line2(Point(75/0.00001, 437.9853/0.00001), Point(62.7484/0.00001, 440.4223/0.00001)); THEN("There is still an intersection"){ Point point; REQUIRE(line1.intersection(line2,&point)); } } } SCENARIO("polygon_is_convex works") { GIVEN("A square of dimension 10") { WHEN("Polygon is convex clockwise") { Polygon cw_square { { {0, 0}, {0,10}, {10,10}, {10,0} } }; THEN("it is not convex") { REQUIRE(! polygon_is_convex(cw_square)); } } WHEN("Polygon is convex counter-clockwise") { Polygon ccw_square { { {0, 0}, {10,0}, {10,10}, {0,10} } }; THEN("it is convex") { REQUIRE(polygon_is_convex(ccw_square)); } } } GIVEN("A concave polygon") { Polygon concave = { {0,0}, {10,0}, {10,10}, {0,10}, {0,6}, {4,6}, {4,4}, {0,4} }; THEN("It is not convex") { REQUIRE(! polygon_is_convex(concave)); } } } TEST_CASE("Creating a polyline generates the obvious lines", "[Geometry]"){ Slic3r::Polyline polyline; polyline.points = std::vector({Point(0, 0), Point(10, 0), Point(20, 0)}); REQUIRE(polyline.lines().at(0).a == Point(0,0)); REQUIRE(polyline.lines().at(0).b == Point(10,0)); REQUIRE(polyline.lines().at(1).a == Point(10,0)); REQUIRE(polyline.lines().at(1).b == Point(20,0)); } TEST_CASE("Splitting a Polygon generates a polyline correctly", "[Geometry]"){ Slic3r::Polygon polygon(std::vector({Point(0, 0), Point(10, 0), Point(5, 5)})); Slic3r::Polyline split = polygon.split_at_index(1); REQUIRE(split.points[0]==Point(10,0)); REQUIRE(split.points[1]==Point(5,5)); REQUIRE(split.points[2]==Point(0,0)); REQUIRE(split.points[3]==Point(10,0)); } TEST_CASE("Bounding boxes are scaled appropriately", "[Geometry]"){ BoundingBox bb(std::vector({Point(0, 1), Point(10, 2), Point(20, 2)})); bb.scale(2); REQUIRE(bb.min == Point(0,2)); REQUIRE(bb.max == Point(40,4)); } TEST_CASE("Offseting a line generates a polygon correctly", "[Geometry]"){ Slic3r::Polyline tmp = { Point(10,10), Point(20,10) }; Slic3r::Polygon area = offset(tmp,5).at(0); REQUIRE(area.area() == Slic3r::Polygon(std::vector({Point(10,5),Point(20,5),Point(20,15),Point(10,15)})).area()); } SCENARIO("Circle Fit, TaubinFit with Newton's method", "[Geometry]") { GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") { Vec2d expected_center(-6, 0); Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)}; std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;}); WHEN("Circle fit is called on the entire array") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample); THEN("A center point of -6,0 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } WHEN("Circle fit is called on the first four points") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4); THEN("A center point of -6,0 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } WHEN("Circle fit is called on the middle four points") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6); THEN("A center point of -6,0 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } } GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") { Vec2d expected_center(-3, 9); Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)}; std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;}); WHEN("Circle fit is called on the entire array") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample); THEN("A center point of 3,9 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } WHEN("Circle fit is called on the first four points") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4); THEN("A center point of 3,9 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } WHEN("Circle fit is called on the middle four points") { Vec2d result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6); THEN("A center point of 3,9 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } } GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") { Point expected_center { Point::new_scale(-3, 9)}; Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524), Point::new_scale(0, 6.0), Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)}; std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;}); WHEN("Circle fit is called on the entire array") { Point result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample); THEN("A center point of scaled 3,9 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } WHEN("Circle fit is called on the first four points") { Point result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4); THEN("A center point of scaled 3,9 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } WHEN("Circle fit is called on the middle four points") { Point result_center(0,0); result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6); THEN("A center point of scaled 3,9 is returned.") { REQUIRE(is_approx(result_center, expected_center)); } } } } TEST_CASE("smallest_enclosing_circle_welzl", "[Geometry]") { // Some random points in plane. Points pts { { 89243, 4359 }, { 763465, 59687 }, { 3245, 734987 }, { 2459867, 987634 }, { 759866, 67843982 }, { 9754687, 9834658 }, { 87235089, 743984373 }, { 65874456, 2987546 }, { 98234524, 657654873 }, { 786243598, 287934765 }, { 824356, 734265 }, { 82576449, 7864534 }, { 7826345, 3984765 } }; const auto c = Slic3r::Geometry::smallest_enclosing_circle_welzl(pts); // The radius returned is inflated by SCALED_EPSILON, thus all points should be inside. bool all_inside = std::all_of(pts.begin(), pts.end(), [c](const Point &pt){ return c.contains(pt.cast()); }); auto c2(c); c2.radius -= SCALED_EPSILON * 2.1; auto num_on_boundary = std::count_if(pts.begin(), pts.end(), [c2](const Point& pt) { return ! c2.contains(pt.cast(), SCALED_EPSILON); }); REQUIRE(all_inside); REQUIRE(num_on_boundary == 3); } SCENARIO("Path chaining", "[Geometry]") { GIVEN("A path") { std::vector points = { Point(26,26),Point(52,26),Point(0,26),Point(26,52),Point(26,0),Point(0,52),Point(52,52),Point(52,0) }; THEN("Chained with no diagonals (thus 26 units long)") { std::vector indices = chain_points(points); for (Points::size_type i = 0; i + 1 < indices.size(); ++ i) { double dist = (points.at(indices.at(i)).cast() - points.at(indices.at(i+1)).cast()).norm(); REQUIRE(std::abs(dist-26) <= EPSILON); } } } GIVEN("Gyroid infill end points") { Polylines polylines = { { {28122608, 3221037}, {27919139, 56036027} }, { {33642863, 3400772}, {30875220, 56450360} }, { {34579315, 3599827}, {35049758, 55971572} }, { {26483070, 3374004}, {23971830, 55763598} }, { {38931405, 4678879}, {38740053, 55077714} }, { {20311895, 5015778}, {20079051, 54551952} }, { {16463068, 6773342}, {18823514, 53992958} }, { {44433771, 7424951}, {42629462, 53346059} }, { {15697614, 7329492}, {15350896, 52089991} }, { {48085792, 10147132}, {46435427, 50792118} }, { {48828819, 10972330}, {49126582, 48368374} }, { {9654526, 12656711}, {10264020, 47691584} }, { {5726905, 18648632}, {8070762, 45082416} }, { {54818187, 39579970}, {52974912, 43271272} }, { {4464342, 37371742}, {5027890, 39106220} }, { {54139746, 18417661}, {55177987, 38472580} }, { {56527590, 32058461}, {56316456, 34067185} }, { {3303988, 29215290}, {3569863, 32985633} }, { {56255666, 25025857}, {56478310, 27144087} }, { {4300034, 22805361}, {3667946, 25752601} }, { {8266122, 14250611}, {6244813, 17751595} }, { {12177955, 9886741}, {10703348, 11491900} } }; Polylines chained = chain_polylines(polylines); THEN("Chained taking the shortest path") { double connection_length = 0.; for (size_t i = 1; i < chained.size(); ++i) { const Polyline &pl1 = chained[i - 1]; const Polyline &pl2 = chained[i]; connection_length += (pl2.first_point() - pl1.last_point()).cast().norm(); } REQUIRE(connection_length < 85206000.); } } GIVEN("Loop pieces") { Point a { 2185796, 19058485 }; Point b { 3957902, 18149382 }; Point c { 2912841, 18790564 }; Point d { 2831848, 18832390 }; Point e { 3179601, 18627769 }; Point f { 3137952, 18653370 }; Polylines polylines = { { a, b }, { c, d }, { e, f }, { d, a }, { f, c }, { b, e } }; Polylines chained = chain_polylines(polylines, &a); THEN("Connected without a gap") { for (size_t i = 0; i < chained.size(); ++i) { const Polyline &pl1 = (i == 0) ? chained.back() : chained[i - 1]; const Polyline &pl2 = chained[i]; REQUIRE(pl1.points.back() == pl2.points.front()); } } } } SCENARIO("Line distances", "[Geometry]"){ GIVEN("A line"){ Line line(Point(0, 0), Point(20, 0)); THEN("Points on the line segment have 0 distance"){ REQUIRE(line.distance_to(Point(0, 0)) == 0); REQUIRE(line.distance_to(Point(20, 0)) == 0); REQUIRE(line.distance_to(Point(10, 0)) == 0); } THEN("Points off the line have the appropriate distance"){ REQUIRE(line.distance_to(Point(10, 10)) == 10); REQUIRE(line.distance_to(Point(50, 0)) == 30); } } } SCENARIO("Calculating angles", "[Geometry]") { GIVEN(("Vectors 30 degrees apart")) { std::vector> pts { { {1000, 0}, { 866, 500 } }, { { 866, 500 }, { 500, 866 } }, { { 500, 866 }, { 0, 1000 } }, { { -500, 866 }, { -866, 500 } } }; THEN("Angle detected is 30 degrees") { for (auto &p : pts) REQUIRE(is_approx(angle(p.first, p.second), M_PI / 6.)); } } GIVEN(("Vectors 30 degrees apart")) { std::vector> pts { { { 866, 500 }, {1000, 0} }, { { 500, 866 }, { 866, 500 } }, { { 0, 1000 }, { 500, 866 } }, { { -866, 500 }, { -500, 866 } } }; THEN("Angle detected is -30 degrees") { for (auto &p : pts) REQUIRE(is_approx(angle(p.first, p.second), - M_PI / 6.)); } } } SCENARIO("Polygon convex/concave detection", "[Geometry]"){ static constexpr const double angle_threshold = M_PI / 3.; GIVEN(("A Square with dimension 100")){ auto square = Slic3r::Polygon /*new_scale*/(std::vector({ Point(100,100), Point(200,100), Point(200,200), Point(100,200)})); THEN("It has 4 convex points counterclockwise"){ REQUIRE(square.concave_points(angle_threshold).size() == 0); REQUIRE(square.convex_points(angle_threshold).size() == 4); } THEN("It has 4 concave points clockwise"){ square.make_clockwise(); REQUIRE(square.concave_points(angle_threshold).size() == 4); REQUIRE(square.convex_points(angle_threshold).size() == 0); } } GIVEN("A Square with an extra colinearvertex"){ auto square = Slic3r::Polygon /*new_scale*/(std::vector({ Point(150,100), Point(200,100), Point(200,200), Point(100,200), Point(100,100)})); THEN("It has 4 convex points counterclockwise"){ REQUIRE(square.concave_points(angle_threshold).size() == 0); REQUIRE(square.convex_points(angle_threshold).size() == 4); } } GIVEN("A Square with an extra collinear vertex in different order"){ auto square = Slic3r::Polygon /*new_scale*/(std::vector({ Point(200,200), Point(100,200), Point(100,100), Point(150,100), Point(200,100)})); THEN("It has 4 convex points counterclockwise"){ REQUIRE(square.concave_points(angle_threshold).size() == 0); REQUIRE(square.convex_points(angle_threshold).size() == 4); } } GIVEN("A triangle"){ auto triangle = Slic3r::Polygon(std::vector({ Point(16000170,26257364), Point(714223,461012), Point(31286371,461008) })); THEN("it has three convex vertices"){ REQUIRE(triangle.concave_points(angle_threshold).size() == 0); REQUIRE(triangle.convex_points(angle_threshold).size() == 3); } } GIVEN("A triangle with an extra collinear point"){ auto triangle = Slic3r::Polygon(std::vector({ Point(16000170,26257364), Point(714223,461012), Point(20000000,461012), Point(31286371,461012) })); THEN("it has three convex vertices"){ REQUIRE(triangle.concave_points(angle_threshold).size() == 0); REQUIRE(triangle.convex_points(angle_threshold).size() == 3); } } GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){ // Two concave vertices of this polygon have angle = PI*4/3, so this test fails // if epsilon is not used. auto polygon = Slic3r::Polygon(std::vector({ Point(60246458,14802768),Point(64477191,12360001), Point(63727343,11060995),Point(64086449,10853608), Point(66393722,14850069),Point(66034704,15057334), Point(65284646,13758387),Point(61053864,16200839), Point(69200258,30310849),Point(62172547,42483120), Point(61137680,41850279),Point(67799985,30310848), Point(51399866,1905506),Point(38092663,1905506), Point(38092663,692699),Point(52100125,692699) })); THEN("the correct number of points are detected"){ REQUIRE(polygon.concave_points(angle_threshold).size() == 6); REQUIRE(polygon.convex_points(angle_threshold).size() == 10); } } } TEST_CASE("Triangle Simplification does not result in less than 3 points", "[Geometry]"){ auto triangle = Slic3r::Polygon(std::vector({ Point(16000170,26257364), Point(714223,461012), Point(31286371,461008) })); REQUIRE(triangle.simplify(250000).at(0).points.size() == 3); } SCENARIO("Ported from xs/t/14_geometry.t", "[Geometry]"){ GIVEN(("square")){ Slic3r::Points points { { 100, 100 }, {100, 200 }, { 200, 200 }, { 200, 100 }, { 150, 150 } }; Slic3r::Polygon hull = Slic3r::Geometry::convex_hull(points); SECTION("convex hull returns the correct number of points") { REQUIRE(hull.points.size() == 4); } } SECTION("arrange returns expected number of positions") { Pointfs positions; Slic3r::Geometry::arrange(4, Vec2d(20, 20), 5, nullptr, positions); REQUIRE(positions.size() == 4); } SECTION("directions_parallel") { REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, 0)); REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, 0)); REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, M_PI / 180)); REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, M_PI / 180)); REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, M_PI, 0)); REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, PI, M_PI /180)); } } TEST_CASE("Convex polygon intersection on two disjoint squares", "[Geometry][Rotcalip]") { Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}}; A.scale(1. / SCALING_FACTOR); Polygon B = A; B.translate(20 / SCALING_FACTOR, 0); bool is_inters = Geometry::convex_polygons_intersect(A, B); REQUIRE(is_inters == false); } TEST_CASE("Convex polygon intersection on two intersecting squares", "[Geometry][Rotcalip]") { Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}}; A.scale(1. / SCALING_FACTOR); Polygon B = A; B.translate(5 / SCALING_FACTOR, 5 / SCALING_FACTOR); bool is_inters = Geometry::convex_polygons_intersect(A, B); REQUIRE(is_inters == true); } TEST_CASE("Convex polygon intersection on two squares touching one edge", "[Geometry][Rotcalip]") { Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}}; A.scale(1. / SCALING_FACTOR); Polygon B = A; B.translate(10 / SCALING_FACTOR, 0); bool is_inters = Geometry::convex_polygons_intersect(A, B); REQUIRE(is_inters == false); } TEST_CASE("Convex polygon intersection on two squares touching one vertex", "[Geometry][Rotcalip]") { Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}}; A.scale(1. / SCALING_FACTOR); Polygon B = A; B.translate(10 / SCALING_FACTOR, 10 / SCALING_FACTOR); SVG svg{std::string("one_vertex_touch") + ".svg"}; svg.draw(A, "blue"); svg.draw(B, "green"); svg.Close(); bool is_inters = Geometry::convex_polygons_intersect(A, B); REQUIRE(is_inters == false); } TEST_CASE("Convex polygon intersection on two overlapping squares", "[Geometry][Rotcalip]") { Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}}; A.scale(1. / SCALING_FACTOR); Polygon B = A; bool is_inters = Geometry::convex_polygons_intersect(A, B); REQUIRE(is_inters == true); } //// Only for benchmarking //static Polygon gen_convex_poly(std::mt19937_64 &rg, size_t point_cnt) //{ // std::uniform_int_distribution dist(0, 100); // Polygon out; // out.points.reserve(point_cnt); // coord_t tr = dist(rg) * 2 / SCALING_FACTOR; // for (size_t i = 0; i < point_cnt; ++i) // out.points.emplace_back(tr + dist(rg) / SCALING_FACTOR, // tr + dist(rg) / SCALING_FACTOR); // return Geometry::convex_hull(out.points); //} //TEST_CASE("Convex polygon intersection test on random polygons", "[Geometry]") { // constexpr size_t TEST_CNT = 1000; // constexpr size_t POINT_CNT = 1000; // auto seed = std::random_device{}(); //// unsigned long seed = 2525634386; // std::mt19937_64 rg{seed}; // Benchmark bench; // auto tests = reserve_vector>(TEST_CNT); // auto results = reserve_vector(TEST_CNT); // auto expects = reserve_vector(TEST_CNT); // for (size_t i = 0; i < TEST_CNT; ++i) { // tests.emplace_back(gen_convex_poly(rg, POINT_CNT), gen_convex_poly(rg, POINT_CNT)); // } // bench.start(); // for (const auto &test : tests) // results.emplace_back(Geometry::convex_polygons_intersect(test.first, test.second)); // bench.stop(); // std::cout << "Test time: " << bench.getElapsedSec() << std::endl; // bench.start(); // for (const auto &test : tests) // expects.emplace_back(!intersection(test.first, test.second).empty()); // bench.stop(); // std::cout << "Clipper time: " << bench.getElapsedSec() << std::endl; // REQUIRE(results.size() == expects.size()); // auto seedstr = std::to_string(seed); // for (size_t i = 0; i < results.size(); ++i) { // // std::cout << expects[i] << " "; // if (results[i] != expects[i]) { // SVG svg{std::string("fail_seed") + seedstr + "_" + std::to_string(i) + ".svg"}; // svg.draw(tests[i].first, "blue"); // svg.draw(tests[i].second, "green"); // svg.Close(); // // std::cout << std::endl; // } // REQUIRE(results[i] == expects[i]); // } // std::cout << std::endl; //} struct Pair { size_t first, second; bool operator==(const Pair &b) const { return first == b.first && second == b.second; } }; template<> struct std::hash { size_t operator()(const Pair &c) const { return c.first * PRINTER_PART_POLYGONS.size() + c.second; } }; TEST_CASE("Convex polygon intersection test prusa polygons", "[Geometry][Rotcalip]") { // Overlap of the same polygon should always be an intersection for (size_t i = 0; i < PRINTER_PART_POLYGONS.size(); ++i) { Polygon P = PRINTER_PART_POLYGONS[i]; P = Geometry::convex_hull(P.points); bool res = Geometry::convex_polygons_intersect(P, P); if (!res) { SVG svg{std::string("fail_self") + std::to_string(i) + ".svg"}; svg.draw(P, "green"); svg.Close(); } REQUIRE(res == true); } std::unordered_set combos; for (size_t i = 0; i < PRINTER_PART_POLYGONS.size(); ++i) { for (size_t j = 0; j < PRINTER_PART_POLYGONS.size(); ++j) { if (i != j) { size_t a = std::min(i, j), b = std::max(i, j); combos.insert(Pair{a, b}); } } } // All disjoint for (const auto &combo : combos) { Polygon A = PRINTER_PART_POLYGONS[combo.first], B = PRINTER_PART_POLYGONS[combo.second]; A = Geometry::convex_hull(A.points); B = Geometry::convex_hull(B.points); auto bba = A.bounding_box(); auto bbb = B.bounding_box(); A.translate(-bba.center()); B.translate(-bbb.center()); B.translate(bba.size() + bbb.size()); bool res = Geometry::convex_polygons_intersect(A, B); bool ref = !intersection(A, B).empty(); if (res != ref) { SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"}; svg.draw(A, "blue"); svg.draw(B, "green"); svg.Close(); } REQUIRE(res == ref); } // All intersecting for (const auto &combo : combos) { Polygon A = PRINTER_PART_POLYGONS[combo.first], B = PRINTER_PART_POLYGONS[combo.second]; A = Geometry::convex_hull(A.points); B = Geometry::convex_hull(B.points); auto bba = A.bounding_box(); auto bbb = B.bounding_box(); A.translate(-bba.center()); B.translate(-bbb.center()); bool res = Geometry::convex_polygons_intersect(A, B); bool ref = !intersection(A, B).empty(); if (res != ref) { SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"}; svg.draw(A, "blue"); svg.draw(B, "green"); svg.Close(); } REQUIRE(res == ref); } }