package Slic3r::Perimeter; use Moose; use Math::Geometry::Planar; *Math::Geometry::Planar::OffsetPolygon = *Math::Geometry::Planar::Offset::OffsetPolygon; sub make_perimeter { my $self = shift; my ($layer) = @_; printf "Making perimeter for layer %d:\n", $layer->id; # at least one perimeter is required die "Can't extrude object without any perimeter!\n" if $Slic3r::perimeter_offsets == 0; my (@perimeters, %contours, %holes) = (); foreach my $surface (@{ $layer->surfaces }) { $contours{$surface} = []; $holes{$surface} = []; # first perimeter { my $polygon = $surface->mgp_polygon; my ($contour_p, @holes_p) = @{ $polygon->polygons }; push @{ $contours{$surface} }, $contour_p; push @{ $holes{$surface} }, @holes_p; push @perimeters, $polygon; } # create other offsets for (my $loop = 1; $loop < $Slic3r::perimeter_offsets; $loop++) { # offsetting a polygon can result in one or many offset polygons my @offsets = $self->offset_polygon($perimeters[-1]); foreach my $offset_polygon (@offsets) { my ($contour_p, @holes_p) = @{ $offset_polygon->polygons }; push @{ $contours{$surface} }, $contour_p; push @{ $holes{$surface} }, @holes_p; push @perimeters, $offset_polygon; } } # create one more offset to be used as boundary for fill push @{ $layer->fill_surfaces }, map Slic3r::Surface->new_from_mgp($_), $self->offset_polygon($perimeters[-1]); } # generate paths for holes # we start from innermost loops (that is, external ones), do them # for all holes, than go on with inner loop and do that for all # holes and so on foreach my $p (map @$_, values %holes) { push @{ $layer->perimeters }, Slic3r::Polyline->new_from_points(@{ $p->points }); } # generate paths for contours # this time we do something different: we do contour loops for one # shape (that is, one original surface) at a time: we start from the # innermost loop (that is, internal one), then without interrupting # our path we go onto the outer loop and continue; this should ensure # good surface quality foreach my $polylines (values %contours) { my @path_points = (); foreach my $p (map $self->_mgp_from_points_ref($_), @$polylines) { my $points = $p->points; # TODO: the initial $points->[0] should be replaced by the point of # the segment which is $Slic3r::flow_width / $Slic3r::resolution # away from it to avoid the extruder to get two times there push @path_points, @$points, $points->[0]; } push @{ $layer->perimeters }, Slic3r::ExtrusionPath->new_from_points(reverse @path_points); } } sub offset_polygon { my $self = shift; my ($polygon) = @_; # $polygon holds a Math::Geometry::Planar object representing # a polygon and its holes my ($contour_p, @holes_p) = map $self->_mgp_from_points_ref($_), @{ $polygon->polygons }; # generate offsets my $contour_offsets = $contour_p->offset_polygon($Slic3r::flow_width / $Slic3r::resolution); my @hole_offsets = map @$_, map $_->offset_polygon(- $Slic3r::flow_width / $Slic3r::resolution), @holes_p; # now we subtract perimeter offsets from the contour offset polygon # this will generate a single polygon with correct holes and also # will take care of collisions between contour offset and holes my @resulting_offsets = (); foreach my $contour_points (@$contour_offsets) { my $tmp = $self->_mgp_from_points_ref($contour_points)->convert2gpc; foreach my $hole_points (@hole_offsets) { $hole_points = $self->_mgp_from_points_ref($hole_points)->convert2gpc; $tmp = GpcClip('DIFFERENCE', $tmp, $hole_points); } my ($result) = Gpc2Polygons($tmp); # now we've got $result, which is a Math::Geometry::Planar # representing the inner surface including hole perimeters push @resulting_offsets, $result; } return @resulting_offsets; } sub _mgp_from_points_ref { my $self = shift; my ($points) = @_; my $p = Math::Geometry::Planar->new; $p->points($points); return $p; } sub _mgp_from_polygons_ref { my $self = shift; my ($polygons) = @_; my $p = Math::Geometry::Planar->new; $p->polygons($polygons); return $p; } 1;