package Slic3r::Layer; use Moo; use Math::Clipper ':all'; use Slic3r::ExtrusionPath ':roles'; use Slic3r::Geometry qw(scale unscale collinear X Y A B PI rad2deg_dir bounding_box_center shortest_path); use Slic3r::Geometry::Clipper qw(safety_offset union_ex diff_ex intersection_ex xor_ex is_counter_clockwise); use Slic3r::Surface ':types'; # a sequential number of layer, starting at 0 has 'id' => ( is => 'rw', #isa => 'Int', required => 1, ); has 'slicing_errors' => (is => 'rw'); has 'slice_z' => (is => 'lazy'); has 'print_z' => (is => 'lazy'); has 'height' => (is => 'lazy'); has 'flow' => (is => 'lazy'); has 'perimeters_flow' => (is => 'lazy'); has 'infill_flow' => (is => 'lazy'); # collection of spare segments generated by slicing the original geometry; # these need to be merged in continuos (closed) polylines has 'lines' => ( is => 'rw', #isa => 'ArrayRef[ArrayRef]', default => sub { [] }, ); # collection of surfaces generated by slicing the original geometry has 'slices' => (is => 'ro', default => sub { [] }); # collection of polygons or polylines representing thin walls contained # in the original geometry has 'thin_walls' => (is => 'ro', default => sub { [] }); # collection of expolygons generated by offsetting the innermost perimeter(s) # they represent boundaries of areas to fill has 'fill_boundaries' => (is => 'ro', default => sub { [] }); # collection of polygons or polylines representing thin infill regions that # need to be filled with a medial axis has 'thin_fills' => (is => 'ro', default => sub { [] }); # collection of surfaces generated by clipping the slices to the fill boundaries has 'surfaces' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Surface]', default => sub { [] }, ); # collection of surfaces for infill has 'fill_surfaces' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Surface]', default => sub { [] }, ); # ordered collection of extrusion paths to build all perimeters has 'perimeters' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionLoop]', default => sub { [] }, ); # ordered collection of extrusion paths to fill surfaces for support material has 'support_fills' => ( is => 'rw', #isa => 'Slic3r::ExtrusionPath::Collection', ); # ordered collection of extrusion paths to fill surfaces has 'fills' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionPath::Collection]', default => sub { [] }, ); # Z used for slicing sub _build_slice_z { my $self = shift; if ($self->id == 0) { return $Slic3r::_first_layer_height / 2 / $Slic3r::scaling_factor; } return ($Slic3r::_first_layer_height + (($self->id-1) * $Slic3r::layer_height) + ($Slic3r::layer_height/2)) / $Slic3r::scaling_factor; #/ } # Z used for printing sub _build_print_z { my $self = shift; return ($Slic3r::_first_layer_height + ($self->id * $Slic3r::layer_height)) / $Slic3r::scaling_factor; } sub _build_height { my $self = shift; return $self->id == 0 ? $Slic3r::_first_layer_height : $Slic3r::layer_height; } sub _build_flow { my $self = shift; return $self->id == 0 && $Slic3r::first_layer_flow ? $Slic3r::first_layer_flow : $Slic3r::flow; } sub _build_perimeters_flow { my $self = shift; return $self->id == 0 && $Slic3r::first_layer_flow ? $Slic3r::first_layer_flow : $Slic3r::perimeters_flow; } sub _build_infill_flow { my $self = shift; return $self->id == 0 && $Slic3r::first_layer_flow ? $Slic3r::first_layer_flow : $Slic3r::infill_flow; } sub add_line { my $self = shift; my ($line) = @_; push @{ $self->lines }, $line; return $line; } # build polylines from lines sub make_surfaces { my $self = shift; my ($loops) = @_; { # merge everything my $expolygons = union_ex(safety_offset($loops, scale 0.1)); Slic3r::debugf " %d surface(s) having %d holes detected from %d polylines\n", scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@$loops); push @{$self->slices}, map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_INTERNAL), @$expolygons; } # the contours must be offsetted by half extrusion width inwards { my $distance = scale $self->perimeters_flow->width / 2; my @surfaces = @{$self->slices}; @{$self->slices} = (); foreach my $surface (@surfaces) { push @{$self->slices}, map Slic3r::Surface->new (expolygon => $_, surface_type => S_TYPE_INTERNAL), map $_->offset_ex(+$distance), $surface->expolygon->offset_ex(-2*$distance); } # now detect thin walls by re-outgrowing offsetted surfaces and subtracting # them from the original slices my $outgrown = Math::Clipper::offset([ map $_->p, @{$self->slices} ], $distance); my $diff = diff_ex( [ map $_->p, @surfaces ], $outgrown, 1, ); if (@$diff) { my $area_threshold = scale($self->perimeters_flow->spacing) ** 2; @$diff = grep $_->area > ($area_threshold), @$diff; push @{$self->thin_walls}, map $_->medial_axis(scale $self->perimeters_flow->width), @$diff; Slic3r::debugf " %d thin walls detected\n", scalar(@{$self->thin_walls}) if @{$self->thin_walls}; } } if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output(undef, "surfaces.svg", polygons => [ map $_->contour, @{$self->slices} ], red_polygons => [ map $_->p, map @{$_->holes}, @{$self->slices} ], ); } } sub make_perimeters { my $self = shift; Slic3r::debugf "Making perimeters for layer %d\n", $self->id; my $gap_area_threshold = scale($self->perimeters_flow->width)** 2; # this array will hold one arrayref per original surface (island); # each item of this arrayref is an arrayref representing a depth (from outer # perimeters to inner); each item of this arrayref is an ExPolygon: # @perimeters = ( # [ # first island # [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 0: outer loop # [ Slic3r::ExPolygon, Slic3r::ExPolygon... ], #depth 1: inner loop # ], # [ # second island # ... # ] # ) my @perimeters = (); # one item per depth; each item # organize islands using a shortest path search my @surfaces = @{shortest_path([ map [ $_->contour->[0], $_ ], @{$self->slices}, ])}; # for each island: foreach my $surface (@surfaces) { my @last_offsets = ($surface->expolygon); my $distance = 0; # experimental hole compensation (see ArcCompensation in the RepRap wiki) if (0) { foreach my $hole ($last_offsets[0]->holes) { my $circumference = abs($hole->length); next unless $circumference <= $Slic3r::small_perimeter_length; # this compensation only works for circular holes, while it would # overcompensate for hexagons and other shapes having straight edges. # so we require a minimum number of vertices. next unless $circumference / @$hole >= scale 3 * $Slic3r::flow->width; # revert the compensation done in make_surfaces() and get the actual radius # of the hole my $radius = ($circumference / PI / 2) - scale $self->perimeters_flow->spacing/2; my $new_radius = (scale($self->perimeters_flow->width) + sqrt((scale($self->perimeters_flow->width)**2) + (4*($radius**2)))) / 2; # holes are always turned to contours, so reverse point order before and after $hole->reverse; my @offsetted = $hole->offset(+ ($new_radius - $radius)); # skip arc compensation when hole is not round (thus leads to multiple offsets) @$hole = map Slic3r::Point->new($_), @{ $offsetted[0] } if @offsetted == 1; $hole->reverse; } } my @gaps = (); # generate perimeters inwards my $loop_number = $Slic3r::perimeters + ($surface->additional_inner_perimeters || 0); push @perimeters, []; for (my $loop = 0; $loop < $loop_number; $loop++) { # offsetting a polygon can result in one or many offset polygons if ($distance) { my @new_offsets = (); foreach my $expolygon (@last_offsets) { my @offsets = map $_->offset_ex(+0.5*$distance), $expolygon->offset_ex(-1.5*$distance); push @new_offsets, @offsets; my $diff = diff_ex( [ map @$_, $expolygon->offset_ex(-$distance) ], [ map @$_, @offsets ], ); push @gaps, grep $_->area >= $gap_area_threshold, @$diff; } @last_offsets = @new_offsets; } last if !@last_offsets; push @{ $perimeters[-1] }, [@last_offsets]; # offset distance for inner loops $distance = scale $self->perimeters_flow->spacing; } # create one more offset to be used as boundary for fill { my @fill_boundaries = map $_->offset_ex(-$distance), @last_offsets; $_->simplify(scale $Slic3r::resolution) for @fill_boundaries; push @{ $self->fill_boundaries }, @fill_boundaries; # detect the small gaps that we need to treat like thin polygons, # thus generating the skeleton and using it to fill them push @{ $self->thin_fills }, map $_->medial_axis(scale $self->perimeters_flow->width), @gaps; Slic3r::debugf " %d gaps filled\n", scalar @{ $self->thin_fills } if @{ $self->thin_fills }; } } # process one island (original surface) at time foreach my $island (@perimeters) { # do holes starting from innermost one my @holes = (); my @hole_depths = map [ map $_->holes, @$_ ], @$island; # organize the outermost hole loops using a shortest path search @{$hole_depths[0]} = @{shortest_path([ map [ $_->[0], $_ ], @{$hole_depths[0]}, ])}; CYCLE: while (map @$_, @hole_depths) { shift @hole_depths while !@{$hole_depths[0]}; # take first available hole push @holes, shift @{$hole_depths[0]}; my $current_depth = 0; while (1) { $current_depth++; # look for the hole containing this one if any next CYCLE if !$hole_depths[$current_depth]; my $parent_hole; for (@{$hole_depths[$current_depth]}) { if ($_->encloses_point($holes[-1]->[0])) { $parent_hole = $_; last; } } next CYCLE if !$parent_hole; # look for other holes contained in such parent for (@{$hole_depths[$current_depth-1]}) { if ($parent_hole->encloses_point($_->[0])) { # we have a sibling, so let's move onto next iteration next CYCLE; } } push @holes, $parent_hole; @{$hole_depths[$current_depth]} = grep $_ ne $parent_hole, @{$hole_depths[$current_depth]}; } } # do holes, then contours starting from innermost one $self->add_perimeter($_) for reverse @holes; for my $depth (reverse 0 .. $#$island) { my $role = $depth == $#$island ? EXTR_ROLE_CONTOUR_INTERNAL_PERIMETER : EXTR_ROLE_PERIMETER; $self->add_perimeter($_, $role) for map $_->contour, @{$island->[$depth]}; } } # add thin walls as perimeters { my @thin_paths = (); for (@{ $self->thin_walls }) { if ($_->isa('Slic3r::Polygon')) { push @thin_paths, Slic3r::ExtrusionLoop->new(polygon => $_, role => EXTR_ROLE_PERIMETER); } else { push @thin_paths, Slic3r::ExtrusionPath->new(polyline => $_, role => EXTR_ROLE_PERIMETER); } } my $collection = Slic3r::ExtrusionPath::Collection->new(paths => \@thin_paths); push @{ $self->perimeters }, $collection->shortest_path; } } sub add_perimeter { my $self = shift; my ($polygon, $role) = @_; return unless $polygon->is_printable($self->perimeters_flow->width); push @{ $self->perimeters }, Slic3r::ExtrusionLoop->new( polygon => $polygon, role => (abs($polygon->length) <= $Slic3r::small_perimeter_length) ? EXTR_ROLE_SMALLPERIMETER : ($role // EXTR_ROLE_PERIMETER), #/ ); } sub prepare_fill_surfaces { my $self = shift; my @surfaces = @{$self->surfaces}; # merge too small internal surfaces with their surrounding tops # (if they're too small, they can be treated as solid) { my $min_area = ((7 * $self->infill_flow->spacing / $Slic3r::scaling_factor)**2) * PI; my $small_internal = [ grep { $_->expolygon->contour->area <= $min_area } grep { $_->surface_type == S_TYPE_INTERNAL } @surfaces ]; foreach my $s (@$small_internal) { @surfaces = grep $_ ne $s, @surfaces; } my $union = union_ex([ (map $_->p, grep $_->surface_type == S_TYPE_TOP, @surfaces), (map @$_, map $_->expolygon->safety_offset, @$small_internal), ]); my @top = map Slic3r::Surface->new(expolygon => $_, surface_type => S_TYPE_TOP), @$union; @surfaces = (grep($_->surface_type != S_TYPE_TOP, @surfaces), @top); } # remove top/bottom surfaces if ($Slic3r::solid_layers == 0) { $_->surface_type(S_TYPE_INTERNAL) for grep $_->surface_type != S_TYPE_INTERNAL, @surfaces; } # remove internal surfaces if ($Slic3r::fill_density == 0) { @surfaces = grep $_->surface_type != S_TYPE_INTERNAL, @surfaces; } $self->fill_surfaces([@surfaces]); } sub remove_small_surfaces { my $self = shift; my $distance = scale $self->infill_flow->spacing / 2; my @surfaces = @{$self->fill_surfaces}; @{$self->fill_surfaces} = (); foreach my $surface (@surfaces) { # offset inwards my @offsets = $surface->expolygon->offset_ex(-$distance); # offset the results outwards again and merge the results @offsets = map $_->offset_ex($distance), @offsets; @offsets = @{ union_ex([ map @$_, @offsets ], undef, 1) }; push @{$self->fill_surfaces}, map Slic3r::Surface->new( expolygon => $_, surface_type => $surface->surface_type), @offsets; } Slic3r::debugf "identified %d small surfaces at layer %d\n", (@surfaces - @{$self->fill_surfaces}), $self->id if @{$self->fill_surfaces} != @surfaces; # the difference between @surfaces and $self->fill_surfaces # is what's too small; we add it back as solid infill if ($Slic3r::fill_density > 0) { my $diff = diff_ex( [ map $_->p, @surfaces ], [ map $_->p, @{$self->fill_surfaces} ], ); push @{$self->fill_surfaces}, map Slic3r::Surface->new( expolygon => $_, surface_type => S_TYPE_INTERNALSOLID), @$diff; } } # make bridges printable sub process_bridges { my $self = shift; # no bridges are possible if we have no internal surfaces return if $Slic3r::fill_density == 0; my @bridges = (); # a bottom surface on a layer > 0 is either a bridge or a overhang # or a combination of both; any top surface is a candidate for # reverse bridge processing my @solid_surfaces = grep { ($_->surface_type == S_TYPE_BOTTOM && $self->id > 0) || $_->surface_type == S_TYPE_TOP } @{$self->fill_surfaces} or return; my @internal_surfaces = grep { $_->surface_type == S_TYPE_INTERNAL || $_->surface_type == S_TYPE_INTERNALSOLID } @{$self->slices}; SURFACE: foreach my $surface (@solid_surfaces) { my $expolygon = $surface->expolygon->safety_offset; my $description = $surface->surface_type == S_TYPE_BOTTOM ? 'bridge/overhang' : 'reverse bridge'; # offset the contour and intersect it with the internal surfaces to discover # which of them has contact with our bridge my @supporting_surfaces = (); my ($contour_offset) = $expolygon->contour->offset(scale $self->flow->spacing * sqrt(2)); foreach my $internal_surface (@internal_surfaces) { my $intersection = intersection_ex([$contour_offset], [$internal_surface->p]); if (@$intersection) { push @supporting_surfaces, $internal_surface; } } if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output(undef, "bridge_surfaces.svg", green_polygons => [ map $_->p, @supporting_surfaces ], red_polygons => [ @$expolygon ], ); } Slic3r::debugf "Found $description on layer %d with %d support(s)\n", $self->id, scalar(@supporting_surfaces); next SURFACE unless @supporting_surfaces; my $bridge_angle = undef; if ($surface->surface_type == S_TYPE_BOTTOM) { # detect optimal bridge angle my $bridge_over_hole = 0; my @edges = (); # edges are POLYLINES foreach my $supporting_surface (@supporting_surfaces) { my @surface_edges = map $_->clip_with_polygon($contour_offset), ($supporting_surface->contour, $supporting_surface->holes); if (@supporting_surfaces == 1 && @surface_edges == 1 && @{$supporting_surface->contour} == @{$surface_edges[0]}) { $bridge_over_hole = 1; } push @edges, grep { @$_ } @surface_edges; } Slic3r::debugf " Bridge is supported on %d edge(s)\n", scalar(@edges); Slic3r::debugf " and covers a hole\n" if $bridge_over_hole; if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output(undef, "bridge_edges.svg", polylines => [ map $_->p, @edges ], ); } if (@edges == 2) { my @chords = map Slic3r::Line->new($_->[0], $_->[-1]), @edges; my @midpoints = map $_->midpoint, @chords; my $line_between_midpoints = Slic3r::Line->new(@midpoints); $bridge_angle = rad2deg_dir($line_between_midpoints->direction); } elsif (@edges == 1) { # TODO: this case includes both U-shaped bridges and plain overhangs; # we need a trapezoidation algorithm to detect the actual bridged area # and separate it from the overhang area. # in the mean time, we're treating as overhangs all cases where # our supporting edge is a straight line if (@{$edges[0]} > 2) { my $line = Slic3r::Line->new($edges[0]->[0], $edges[0]->[-1]); $bridge_angle = rad2deg_dir($line->direction); } } elsif (@edges) { my $center = bounding_box_center([ map @$_, @edges ]); my $x = my $y = 0; foreach my $point (map @$, @edges) { my $line = Slic3r::Line->new($center, $point); my $dir = $line->direction; my $len = $line->length; $x += cos($dir) * $len; $y += sin($dir) * $len; } $bridge_angle = rad2deg_dir(atan2($y, $x)); } Slic3r::debugf " Optimal infill angle of bridge on layer %d is %d degrees\n", $self->id, $bridge_angle if defined $bridge_angle; } # now, extend our bridge by taking a portion of supporting surfaces { # offset the bridge by the specified amount of mm (minimum 3) my $bridge_overlap = scale 3; my ($bridge_offset) = $expolygon->contour->offset($bridge_overlap); # calculate the new bridge my $intersection = intersection_ex( [ @$expolygon, map $_->p, @supporting_surfaces ], [ $bridge_offset ], ); push @bridges, map Slic3r::Surface->new( expolygon => $_, surface_type => $surface->surface_type, bridge_angle => $bridge_angle, ), @$intersection; } } # now we need to merge bridges to avoid overlapping { # build a list of unique bridge types my @surface_groups = Slic3r::Surface->group(@bridges); # merge bridges of the same type, removing any of the bridges already merged; # the order of @surface_groups determines the priority between bridges having # different surface_type or bridge_angle @bridges = (); foreach my $surfaces (@surface_groups) { my $union = union_ex([ map $_->p, @$surfaces ]); my $diff = diff_ex( [ map @$_, @$union ], [ map $_->p, @bridges ], ); push @bridges, map Slic3r::Surface->new( expolygon => $_, surface_type => $surfaces->[0]->surface_type, bridge_angle => $surfaces->[0]->bridge_angle, ), @$union; } } # apply bridges to layer { my @surfaces = @{$self->fill_surfaces}; @{$self->fill_surfaces} = (); # intersect layer surfaces with bridges to get actual bridges foreach my $bridge (@bridges) { my $actual_bridge = intersection_ex( [ map $_->p, @surfaces ], [ $bridge->p ], ); push @{$self->fill_surfaces}, map Slic3r::Surface->new( expolygon => $_, surface_type => $bridge->surface_type, bridge_angle => $bridge->bridge_angle, ), @$actual_bridge; } # difference between layer surfaces and bridges are the other surfaces foreach my $group (Slic3r::Surface->group(@surfaces)) { my $difference = diff_ex( [ map $_->p, @$group ], [ map $_->p, @bridges ], ); push @{$self->fill_surfaces}, map Slic3r::Surface->new( expolygon => $_, surface_type => $group->[0]->surface_type), @$difference; } } } 1;