#include "TriangleMesh.hpp" #include #include #include #include #include #include #include #include #include namespace Slic3r { TriangleMesh::TriangleMesh(const TriangleMesh &other) : stl(other.stl), repaired(other.repaired) { this->stl.heads = NULL; this->stl.tail = NULL; if (other.stl.facet_start != NULL) { this->stl.facet_start = new stl_facet[other.stl.stats.number_of_facets]; std::copy(other.stl.facet_start, other.stl.facet_start + other.stl.stats.number_of_facets, this->stl.facet_start); } if (other.stl.neighbors_start != NULL) { this->stl.neighbors_start = new stl_neighbors[other.stl.stats.number_of_facets]; std::copy(other.stl.neighbors_start, other.stl.neighbors_start + other.stl.stats.number_of_facets, this->stl.neighbors_start); } if (other.stl.v_indices != NULL) { this->stl.v_indices = new v_indices_struct[other.stl.stats.number_of_facets]; std::copy(other.stl.v_indices, other.stl.v_indices + other.stl.stats.number_of_facets, this->stl.v_indices); } if (other.stl.v_shared != NULL) { this->stl.v_shared = new stl_vertex[other.stl.stats.shared_vertices]; std::copy(other.stl.v_shared, other.stl.v_shared + other.stl.stats.shared_vertices, this->stl.v_shared); } } TriangleMesh::~TriangleMesh() { stl_close(&this->stl); } SV* TriangleMesh::to_SV() { SV* sv = newSV(0); sv_setref_pv( sv, "Slic3r::TriangleMesh", (void*)this ); return sv; } void TriangleMesh::ReadSTLFile(char* input_file) { stl_open(&stl, input_file); } void TriangleMesh::write_ascii(char* output_file) { stl_write_ascii(&this->stl, output_file, ""); } void TriangleMesh::write_binary(char* output_file) { stl_write_binary(&this->stl, output_file, ""); } void TriangleMesh::ReadFromPerl(SV* vertices, SV* facets) { stl_initialize(&stl); stl.stats.type = inmemory; // count facets and allocate memory AV* facets_av = (AV*)SvRV(facets); stl.stats.number_of_facets = av_len(facets_av)+1; stl.stats.original_num_facets = stl.stats.number_of_facets; stl_allocate(&stl); // read geometry AV* vertices_av = (AV*)SvRV(vertices); for (unsigned int i = 0; i < stl.stats.number_of_facets; i++) { AV* facet_av = (AV*)SvRV(*av_fetch(facets_av, i, 0)); stl_facet facet; facet.normal.x = 0; facet.normal.y = 0; facet.normal.z = 0; for (unsigned int v = 0; v <= 2; v++) { AV* vertex_av = (AV*)SvRV(*av_fetch(vertices_av, SvIV(*av_fetch(facet_av, v, 0)), 0)); facet.vertex[v].x = SvNV(*av_fetch(vertex_av, 0, 0)); facet.vertex[v].y = SvNV(*av_fetch(vertex_av, 1, 0)); facet.vertex[v].z = SvNV(*av_fetch(vertex_av, 2, 0)); } facet.extra[0] = 0; facet.extra[1] = 0; stl.facet_start[i] = facet; } stl_get_size(&(this->stl)); } void TriangleMesh::repair() { if (this->repaired) return; // checking exact stl_check_facets_exact(&stl); stl.stats.facets_w_1_bad_edge = (stl.stats.connected_facets_2_edge - stl.stats.connected_facets_3_edge); stl.stats.facets_w_2_bad_edge = (stl.stats.connected_facets_1_edge - stl.stats.connected_facets_2_edge); stl.stats.facets_w_3_bad_edge = (stl.stats.number_of_facets - stl.stats.connected_facets_1_edge); // checking nearby int last_edges_fixed = 0; float tolerance = stl.stats.shortest_edge; float increment = stl.stats.bounding_diameter / 10000.0; int iterations = 2; if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) { for (int i = 0; i < iterations; i++) { if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) { //printf("Checking nearby. Tolerance= %f Iteration=%d of %d...", tolerance, i + 1, iterations); stl_check_facets_nearby(&stl, tolerance); //printf(" Fixed %d edges.\n", stl.stats.edges_fixed - last_edges_fixed); last_edges_fixed = stl.stats.edges_fixed; tolerance += increment; } else { break; } } } // remove_unconnected if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) { stl_remove_unconnected_facets(&stl); } // fill_holes if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) { stl_fill_holes(&stl); } // normal_directions stl_fix_normal_directions(&stl); // normal_values stl_fix_normal_values(&stl); // always calculate the volume and reverse all normals if volume is negative stl_calculate_volume(&stl); // neighbors stl_verify_neighbors(&stl); this->repaired = true; } void TriangleMesh::WriteOBJFile(char* output_file) { stl_generate_shared_vertices(&stl); stl_write_obj(&stl, output_file); } void TriangleMesh::scale(float factor) { stl_scale(&(this->stl), factor); } void TriangleMesh::scale(std::vector versor) { float fversor[3]; fversor[0] = versor[0]; fversor[1] = versor[1]; fversor[2] = versor[2]; stl_scale(&this->stl, fversor); } void TriangleMesh::translate(float x, float y, float z) { stl_translate(&(this->stl), x, y, z); } void TriangleMesh::align_to_origin() { this->translate( -(this->stl.stats.min.x), -(this->stl.stats.min.y), -(this->stl.stats.min.z) ); } void TriangleMesh::rotate(double angle, Point* center) { this->translate(-center->x, -center->y, 0); stl_rotate_z(&(this->stl), (float)angle); this->translate(+center->x, +center->y, 0); } std::vector* TriangleMesh::slice(const std::vector &z) { /* This method gets called with a list of Z coordinates and outputs a vector pointer having the same number of items as the original list. Each item is a vector of polygons created by slicing our mesh at the given heights. This method should basically combine the behavior of the existing Perl methods defined in lib/Slic3r/TriangleMesh.pm: - analyze(): this creates the 'facets_edges' and the 'edges_facets' tables (we don't need the 'edges' table) - slice_facet(): this has to be done for each facet. It generates intersection lines with each plane identified by the Z list. The get_layer_range() binary search used to identify the Z range of the facet is already ported to C++ (see Object.xsp) - make_loops(): this has to be done for each layer. It creates polygons from the lines generated by the previous step. At the end, we free the tables generated by analyze() as we don't need them anymore. FUTURE: parallelize slice_facet() and make_loops() */ // build a table to map a facet_idx to its three edge indices if (this->stl.v_shared == NULL) stl_generate_shared_vertices(&(this->stl)); typedef std::pair t_edge; typedef std::vector t_edges; // edge_idx => a_id,b_id typedef std::map t_edges_map; // a_id,b_id => edge_idx typedef std::vector< std::vector > t_facets_edges; t_facets_edges facets_edges; facets_edges.resize(this->stl.stats.number_of_facets); { t_edges edges; // reserve() instad of resize() because otherwise we couldn't read .size() below to assign edge_idx edges.reserve(this->stl.stats.number_of_facets * 3); // number of edges = number of facets * 3 t_edges_map edges_map; for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; facet_idx++) { facets_edges[facet_idx].resize(3); for (int i = 0; i <= 2; i++) { int a_id = this->stl.v_indices[facet_idx].vertex[i]; int b_id = this->stl.v_indices[facet_idx].vertex[(i+1) % 3]; int edge_idx; t_edges_map::const_iterator my_edge = edges_map.find(std::make_pair(b_id,a_id)); if (my_edge == edges_map.end()) { // edge isn't listed in table, so we insert it edge_idx = edges.size(); edges.push_back(std::make_pair(a_id,b_id)); edges_map[ edges[edge_idx] ] = edge_idx; } else { edge_idx = my_edge->second; } facets_edges[facet_idx][i] = edge_idx; #ifdef SLIC3R_DEBUG printf(" [facet %d, edge %d] a_id = %d, b_id = %d --> edge %d\n", facet_idx, i, a_id, b_id, edge_idx); #endif } } } std::vector lines(z.size()); for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; facet_idx++) { stl_facet* facet = &(this->stl.facet_start[facet_idx]); float min_z = fminf(facet->vertex[0].z, fminf(facet->vertex[1].z, facet->vertex[2].z)); float max_z = fmaxf(facet->vertex[0].z, fmaxf(facet->vertex[1].z, facet->vertex[2].z)); #ifdef SLIC3R_DEBUG printf("\n==> FACET %d (%f,%f,%f - %f,%f,%f - %f,%f,%f):\n", facet_idx, facet->vertex[0].x, facet->vertex[0].y, facet->vertex[0].z, facet->vertex[1].x, facet->vertex[1].y, facet->vertex[1].z, facet->vertex[2].x, facet->vertex[2].y, facet->vertex[2].z); printf("z: min = %.2f, max = %.2f\n", min_z, max_z); #endif if (min_z == max_z) { #ifdef SLIC3R_DEBUG printf("Facet is horizontal; ignoring\n"); #endif continue; } std::vector::const_iterator min_layer, max_layer; min_layer = std::lower_bound(z.begin(), z.end(), min_z); // first layer whose slice_z is >= min_z max_layer = std::upper_bound(z.begin() + (min_layer - z.begin()), z.end(), max_z) - 1; // last layer whose slice_z is <= max_z #ifdef SLIC3R_DEBUG printf("layers: min = %d, max = %d\n", (int)(min_layer - z.begin()), (int)(max_layer - z.begin())); #endif for (std::vector::const_iterator it = min_layer; it != max_layer + 1; ++it) { std::vector::size_type layer_idx = it - z.begin(); double slice_z = *it; std::vector points; std::vector< std::vector::size_type > points_on_layer, intersection_points; bool found_horizontal_edge = false; /* reorder vertices so that the first one is the one with lowest Z this is needed to get all intersection lines in a consistent order (external on the right of the line) */ int i = 0; if (facet->vertex[1].z == min_z) { // vertex 1 has lowest Z i = 1; } else if (facet->vertex[2].z == min_z) { // vertex 2 has lowest Z i = 2; } for (int j = i; (j-i) < 3; j++) { // loop through facet edges int edge_id = facets_edges[facet_idx][j % 3]; int a_id = this->stl.v_indices[facet_idx].vertex[j % 3]; int b_id = this->stl.v_indices[facet_idx].vertex[(j+1) % 3]; stl_vertex* a = &(this->stl.v_shared[a_id]); stl_vertex* b = &(this->stl.v_shared[b_id]); if (a->z == b->z && a->z == slice_z) { // edge is horizontal and belongs to the current layer #ifdef SLIC3R_DEBUG printf("Edge is horizontal!\n"); #endif /* We assume that this method is never being called for horizontal facets, so no other edge is going to be on this layer. */ IntersectionLine line; if (this->stl.v_indices[facet_idx].vertex[0] < slice_z || this->stl.v_indices[facet_idx].vertex[1] < slice_z || this->stl.v_indices[facet_idx].vertex[2] < slice_z) { line.edge_type = feTop; std::swap(a, b); std::swap(a_id, b_id); } else { line.edge_type = feBottom; } line.a.x = a->x; line.a.y = a->y; line.b.x = b->x; line.b.y = b->y; line.a_id = a_id; line.b_id = b_id; lines[layer_idx].push_back(line); found_horizontal_edge = true; break; } else if (a->z == slice_z) { #ifdef SLIC3R_DEBUG printf("A point on plane!\n"); #endif IntersectionPoint point; point.x = a->x; point.y = a->y; point.point_id = a_id; points.push_back(point); points_on_layer.push_back(points.size()-1); } else if (b->z == slice_z) { #ifdef SLIC3R_DEBUG printf("B point on plane!\n"); #endif IntersectionPoint point; point.x = b->x; point.y = b->y; point.point_id = b_id; points.push_back(point); points_on_layer.push_back(points.size()-1); } else if ((a->z < slice_z && b->z > slice_z) || (b->z < slice_z && a->z > slice_z)) { // edge intersects the current layer; calculate intersection #ifdef SLIC3R_DEBUG printf("Intersects!\n"); #endif IntersectionPoint point; point.x = b->x + (a->x - b->x) * (slice_z - b->z) / (a->z - b->z); point.y = b->y + (a->y - b->y) * (slice_z - b->z) / (a->z - b->z); point.edge_id = edge_id; points.push_back(point); intersection_points.push_back(points.size()-1); } } if (found_horizontal_edge) continue; if (points_on_layer.size() == 2) { if (intersection_points.size() == 1) { points.erase( points.begin() + points_on_layer[1] ); } else if (intersection_points.empty()) { if (points[ points_on_layer[0] ].coincides_with(&points[ points_on_layer[1] ])) { continue; } } } if (!points.empty()) { assert(points.size() == 2); // facets must intersect each plane 0 or 2 times IntersectionLine line; line.a.x = points[1].x; line.a.y = points[1].y; line.b.x = points[0].x; line.b.y = points[0].y; line.a_id = points[1].point_id; line.b_id = points[0].point_id; line.edge_a_id = points[1].edge_id; line.edge_b_id = points[0].edge_id; lines[layer_idx].push_back(line); } } } // build loops std::vector* layers = new std::vector(z.size()); for (std::vector::iterator it = lines.begin(); it != lines.end(); ++it) { int layer_idx = it - lines.begin(); // remove tangent edges for (IntersectionLines::iterator line = it->begin(); line != it->end(); ++line) { if (line->skip || line->edge_type == feNone) continue; /* if the line is a facet edge, find another facet edge having the same endpoints but in reverse order */ for (IntersectionLines::iterator line2 = line + 1; line2 != it->end(); ++line2) { if (line2->skip || line2->edge_type == feNone) continue; // are these facets adjacent? (sharing a common edge on this layer) if (line->a_id == line2->a_id && line->b_id == line2->b_id) { line2->skip = true; /* if they are both oriented upwards or downwards (like a 'V') then we can remove both edges from this layer since it won't affect the sliced shape */ /* if one of them is oriented upwards and the other is oriented downwards, let's only keep one of them (it doesn't matter which one since all 'top' lines were reversed at slicing) */ if (line->edge_type == line2->edge_type) { line->skip = true; break; } } } } // build a map of lines by edge_a_id and a_id std::vector by_edge_a_id, by_a_id; by_edge_a_id.resize(this->stl.stats.number_of_facets * 3); by_a_id.resize(this->stl.stats.shared_vertices); for (IntersectionLines::iterator line = it->begin(); line != it->end(); ++line) { if (line->skip) continue; if (line->edge_a_id != -1) by_edge_a_id[line->edge_a_id].push_back(&(*line)); if (line->a_id != -1) by_a_id[line->a_id].push_back(&(*line)); } CYCLE: while (1) { // take first spare line and start a new loop IntersectionLine* first_line = NULL; for (IntersectionLines::iterator line = it->begin(); line != it->end(); ++line) { if (line->skip) continue; first_line = &(*line); break; } if (first_line == NULL) break; first_line->skip = true; IntersectionLinePtrs loop; loop.push_back(first_line); /* printf("first_line edge_a_id = %d, edge_b_id = %d, a_id = %d, b_id = %d, a = %d,%d, b = %d,%d\n", first_line->edge_a_id, first_line->edge_b_id, first_line->a_id, first_line->b_id, first_line->a.x, first_line->a.y, first_line->b.x, first_line->b.y); */ while (1) { // find a line starting where last one finishes IntersectionLine* next_line = NULL; if (loop.back()->edge_b_id != -1) { IntersectionLinePtrs* candidates = &(by_edge_a_id[loop.back()->edge_b_id]); for (IntersectionLinePtrs::iterator lineptr = candidates->begin(); lineptr != candidates->end(); ++lineptr) { if ((*lineptr)->skip) continue; next_line = *lineptr; break; } } if (next_line == NULL && loop.back()->b_id != -1) { IntersectionLinePtrs* candidates = &(by_a_id[loop.back()->b_id]); for (IntersectionLinePtrs::iterator lineptr = candidates->begin(); lineptr != candidates->end(); ++lineptr) { if ((*lineptr)->skip) continue; next_line = *lineptr; break; } } if (next_line == NULL) { // check whether we closed this loop if ((loop.front()->edge_a_id != -1 && loop.front()->edge_a_id == loop.back()->edge_b_id) || (loop.front()->a_id != -1 && loop.front()->a_id == loop.back()->b_id)) { // loop is complete Polygon p; p.points.reserve(loop.size()); for (IntersectionLinePtrs::iterator lineptr = loop.begin(); lineptr != loop.end(); ++lineptr) { p.points.push_back((*lineptr)->a); } (*layers)[layer_idx].push_back(p); #ifdef SLIC3R_DEBUG printf(" Discovered %s polygon of %d points\n", (p.is_counter_clockwise() ? "ccw" : "cw"), (int)p.points.size()); #endif goto CYCLE; } // we can't close this loop! //// push @failed_loops, [@loop]; goto CYCLE; } /* printf("next_line edge_a_id = %d, edge_b_id = %d, a_id = %d, b_id = %d, a = %d,%d, b = %d,%d\n", next_line->edge_a_id, next_line->edge_b_id, next_line->a_id, next_line->b_id, next_line->a.x, next_line->a.y, next_line->b.x, next_line->b.y); */ loop.push_back(next_line); next_line->skip = true; } } } return layers; } TriangleMeshPtrs TriangleMesh::split() const { TriangleMeshPtrs meshes; std::set seen_facets; // we need neighbors if (!this->repaired) CONFESS("split() requires repair()"); // loop while we have remaining facets while (1) { // get the first facet std::queue facet_queue; std::deque facets; for (int facet_idx = 0; facet_idx < this->stl.stats.number_of_facets; facet_idx++) { if (seen_facets.find(facet_idx) == seen_facets.end()) { // if facet was not seen put it into queue and start searching facet_queue.push(facet_idx); break; } } if (facet_queue.empty()) break; while (!facet_queue.empty()) { int facet_idx = facet_queue.front(); facet_queue.pop(); if (seen_facets.find(facet_idx) != seen_facets.end()) continue; facets.push_back(facet_idx); for (int j = 0; j <= 2; j++) { facet_queue.push(this->stl.neighbors_start[facet_idx].neighbor[j]); } seen_facets.insert(facet_idx); } TriangleMesh* mesh = new TriangleMesh; meshes.push_back(mesh); stl_initialize(&mesh->stl); mesh->stl.stats.type = inmemory; mesh->stl.stats.number_of_facets = facets.size(); mesh->stl.stats.original_num_facets = mesh->stl.stats.number_of_facets; stl_allocate(&mesh->stl); for (std::deque::const_iterator facet = facets.begin(); facet != facets.end(); facet++) { mesh->stl.facet_start[facet - facets.begin()] = this->stl.facet_start[*facet]; } } return meshes; } void TriangleMesh::merge(const TriangleMesh* mesh) { // reset stats and metadata int number_of_facets = this->stl.stats.number_of_facets; stl_invalidate_shared_vertices(&this->stl); this->repaired = false; // update facet count and allocate more memory this->stl.stats.number_of_facets = number_of_facets + mesh->stl.stats.number_of_facets; this->stl.stats.original_num_facets = this->stl.stats.number_of_facets; stl_reallocate(&this->stl); // copy facets for (int i = 0; i < mesh->stl.stats.number_of_facets; i++) { this->stl.facet_start[number_of_facets + i] = mesh->stl.facet_start[i]; } // update size stl_get_size(&this->stl); } }