package Slic3r::Print; use Moo; use File::Basename qw(basename fileparse); use Math::ConvexHull 1.0.4 qw(convex_hull); use Slic3r::ExtrusionPath ':roles'; use Slic3r::Geometry qw(X Y Z X1 Y1 X2 Y2 PI scale unscale move_points); use Slic3r::Geometry::Clipper qw(diff_ex union_ex offset JT_ROUND); use Time::HiRes qw(gettimeofday tv_interval); has 'objects' => (is => 'rw', default => sub {[]}); has 'copies' => (is => 'rw', default => sub {[]}); # obj_idx => [copies...] has 'total_extrusion_length' => (is => 'rw'); has 'processing_time' => (is => 'rw', required => 0); # ordered collection of extrusion paths to build skirt loops has 'skirt' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionLoop]', default => sub { [] }, ); sub add_object_from_file { my $self = shift; my ($input_file) = @_; my $object; if ($input_file =~ /\.stl$/i) { my $mesh = Slic3r::Format::STL->read_file($input_file); $mesh->check_manifoldness; $object = $self->add_object_from_mesh($mesh); } elsif ($input_file =~ /\.obj$/i) { my $mesh = Slic3r::Format::OBJ->read_file($input_file); $mesh->check_manifoldness; $object = $self->add_object_from_mesh($mesh); } elsif ( $input_file =~ /\.amf(\.xml)?$/i) { my ($materials, $meshes_by_material) = Slic3r::Format::AMF->read_file($input_file); $_->check_manifoldness for values %$meshes_by_material; $object = $self->add_object_from_mesh($meshes_by_material->{_} || +(values %$meshes_by_material)[0]); } else { die "Input file must have .stl, .obj or .amf(.xml) extension\n"; } $object->input_file($input_file); return $object; } sub add_object_from_mesh { my $self = shift; my ($mesh) = @_; $mesh->rotate($Slic3r::rotate); $mesh->scale($Slic3r::scale / $Slic3r::scaling_factor); $mesh->align_to_origin; # initialize print object my @size = $mesh->size; my $object = Slic3r::Print::Object->new( mesh => $mesh, x_length => $size[X], y_length => $size[Y], ); push @{$self->objects}, $object; push @{$self->copies}, [[0, 0]]; return $object; } sub cleanup { my $self = shift; $_->cleanup for @{$self->objects}; @{$self->skirt} = (); $self->total_extrusion_length(0); $self->processing_time(0); } sub layer_count { my $self = shift; my $count = 0; foreach my $object (@{$self->objects}) { $count = @{$object->layers} if @{$object->layers} > $count; } return $count; } sub duplicate { my $self = shift; if ($Slic3r::duplicate_grid->[X] > 1 || $Slic3r::duplicate_grid->[Y] > 1) { if (@{$self->objects} > 1) { die "Grid duplication is not supported with multiple objects\n"; } my $object = $self->objects->[0]; # generate offsets for copies my $dist = scale $Slic3r::duplicate_distance; @{$self->copies->[0]} = (); for my $x_copy (1..$Slic3r::duplicate_grid->[X]) { for my $y_copy (1..$Slic3r::duplicate_grid->[Y]) { push @{$self->copies->[0]}, [ ($object->x_length + $dist) * ($x_copy-1), ($object->y_length + $dist) * ($y_copy-1), ]; } } } elsif ($Slic3r::duplicate > 1) { foreach my $copies (@{$self->copies}) { @$copies = map [0,0], 1..$Slic3r::duplicate; } $self->arrange_objects; } } sub arrange_objects { my $self = shift; my $total_parts = scalar map @$_, @{$self->copies}; my $partx = my $party = 0; foreach my $object (@{$self->objects}) { $partx = $object->x_length if $object->x_length > $partx; $party = $object->y_length if $object->y_length > $party; } my @positions = Slic3r::Geometry::arrange ($total_parts, $partx, $party, (map scale $_, @$Slic3r::bed_size), scale $Slic3r::duplicate_distance); for my $obj_idx (0..$#{$self->objects}) { @{$self->copies->[$obj_idx]} = splice @positions, 0, scalar @{$self->copies->[$obj_idx]}; } } sub bounding_box { my $self = shift; my @points = (); foreach my $obj_idx (0 .. $#{$self->objects}) { my $object = $self->objects->[$obj_idx]; foreach my $copy (@{$self->copies->[$obj_idx]}) { push @points, [ $copy->[X], $copy->[Y] ], [ $copy->[X] + $object->x_length, $copy->[Y] ], [ $copy->[X] + $object->x_length, $copy->[Y] + $object->y_length ], [ $copy->[X], $copy->[Y] + $object->y_length ]; } } return Slic3r::Geometry::bounding_box(\@points); } sub size { my $self = shift; my @bb = $self->bounding_box; return [ $bb[X2] - $bb[X1], $bb[Y2] - $bb[Y1] ]; } sub export_gcode { my $self = shift; my %params = @_; my $status_cb = $params{status_cb} || sub {}; my $t0 = [gettimeofday]; # skein the STL into layers # each layer has surfaces with holes $status_cb->(5, "Processing input file"); $status_cb->(10, "Processing triangulated mesh"); $_->slice for @{$self->objects}; unless ($params{keep_meshes}) { $_->mesh(undef) for @{$self->objects}; # free memory } # make perimeters # this will add a set of extrusion loops to each layer # as well as generate infill boundaries $status_cb->(20, "Generating perimeters"); $_->make_perimeters for @{$self->objects}; # this will clip $layer->surfaces to the infill boundaries # and split them in top/bottom/internal surfaces; $status_cb->(30, "Detecting solid surfaces"); $_->detect_surfaces_type for @{$self->objects}; # decide what surfaces are to be filled $status_cb->(35, "Preparing infill surfaces"); $_->prepare_fill_surfaces for map @{$_->layers}, @{$self->objects}; # this will remove unprintable surfaces # (those that are too tight for extrusion) $status_cb->(40, "Cleaning up"); $_->remove_small_surfaces for map @{$_->layers}, @{$self->objects}; # this will detect bridges and reverse bridges # and rearrange top/bottom/internal surfaces $status_cb->(45, "Detect bridges"); $_->process_bridges for map @{$_->layers}, @{$self->objects}; # detect which fill surfaces are near external layers # they will be split in internal and internal-solid surfaces $status_cb->(60, "Generating horizontal shells"); $_->discover_horizontal_shells for @{$self->objects}; # free memory @{$_->surfaces} = () for map @{$_->layers}, @{$self->objects}; # combine fill surfaces to honor the "infill every N layers" option $status_cb->(70, "Combining infill"); $_->infill_every_layers for @{$self->objects}; # this will generate extrusion paths for each layer $status_cb->(80, "Infilling layers"); { my $fill_maker = Slic3r::Fill->new('print' => $self); my @items = (); # [obj_idx, layer_id] foreach my $obj_idx (0 .. $#{$self->objects}) { push @items, map [$obj_idx, $_], 0..$#{$self->objects->[$obj_idx]->layers}; } Slic3r::parallelize( items => [@items], thread_cb => sub { my $q = shift; $Slic3r::Geometry::Clipper::clipper = Math::Clipper->new; my $fills = {}; while (defined (my $obj_layer = $q->dequeue)) { my ($obj_idx, $layer_id) = @$obj_layer; $fills->{$obj_idx} ||= {}; $fills->{$obj_idx}{$layer_id} = [ $fill_maker->make_fill($self->objects->[$obj_idx]->layers->[$layer_id]) ]; } return $fills; }, collect_cb => sub { my $fills = shift; foreach my $obj_idx (keys %$fills) { foreach my $layer_id (keys %{$fills->{$obj_idx}}) { @{$self->objects->[$obj_idx]->layers->[$layer_id]->fills} = @{$fills->{$obj_idx}{$layer_id}}; } } }, no_threads_cb => sub { foreach my $layer (map @{$_->layers}, @{$self->objects}) { @{$layer->fills} = $fill_maker->make_fill($layer); } }, ); } # generate support material if ($Slic3r::support_material) { $status_cb->(85, "Generating support material"); $_->generate_support_material(print => $self) for @{$self->objects}; } # free memory (note that support material needs fill_surfaces) @{$_->fill_surfaces} = () for map @{$_->layers}, @{$self->objects}; # make skirt $status_cb->(88, "Generating skirt"); $self->make_skirt; # output everything to a G-code file my $output_file = $self->expanded_output_filepath($params{output_file}); $status_cb->(90, "Exporting G-code to $output_file"); $self->write_gcode($output_file); # run post-processing scripts if (@$Slic3r::post_process) { $status_cb->(95, "Running post-processing scripts"); for (@$Slic3r::post_process) { Slic3r::debugf " '%s' '%s'\n", $_, $output_file; system($_, $output_file); } } # output some statistics $self->processing_time(tv_interval($t0)); printf "Done. Process took %d minutes and %.3f seconds\n", int($self->processing_time/60), $self->processing_time - int($self->processing_time/60)*60; # TODO: more statistics! printf "Filament required: %.1fmm (%.1fcm3)\n", $self->total_extrusion_length, $self->total_extrusion_volume; } sub export_svg { my $self = shift; my %params = @_; $_->slice for @{$self->objects}; unless ($params{keep_meshes}) { $_->mesh(undef) for @{$self->objects}; # free memory } $self->arrange_objects; my $output_file = $self->expanded_output_filepath($params{output_file}); $output_file =~ s/\.gcode$/.svg/i; open my $fh, ">", $output_file or die "Failed to open $output_file for writing\n"; print "Exporting to $output_file..."; my $print_size = $self->size; print $fh sprintf <<"EOF", unscale($print_size->[X]), unscale($print_size->[Y]); EOF my $print_polygon = sub { my ($polygon, $type) = @_; printf $fh qq{ \n}, $type, (join ' ', map { join ',', map unscale $_, @$_ } @$polygon), ($type eq 'contour' ? 'white' : 'black'); }; for my $layer_id (0..$self->layer_count-1) { my @layers = map $_->layers->[$layer_id], @{$self->objects}; printf $fh qq{ \n}, $layer_id, unscale +(grep defined $_, @layers)[0]->slice_z; for my $obj_idx (0 .. $#layers) { my $layer = $layers[$layer_id] or next; # sort slices so that the outermost ones come first my @slices = sort { $a->expolygon->contour->encloses_point($b->expolygon->contour->[0]) ? 0 : 1 } @{$layer->slices}; foreach my $copy (@{$self->copies->[$obj_idx]}) { foreach my $slice (@slices) { my $expolygon = $slice->expolygon->clone; $expolygon->translate(@$copy); $print_polygon->($expolygon->contour, 'contour'); $print_polygon->($_, 'hole') for $expolygon->holes; } } } print $fh qq{ \n}; } print $fh "\n"; close $fh; print "Done.\n"; } sub make_skirt { my $self = shift; return unless $Slic3r::skirts > 0; # collect points from all layers contained in skirt height my $skirt_height = $Slic3r::skirt_height; $skirt_height = $self->layer_count if $skirt_height > $self->layer_count; my @points = (); foreach my $obj_idx (0 .. $#{$self->objects}) { my @layers = map $self->objects->[$obj_idx]->layer($_), 0..($skirt_height-1); my @layer_points = ( (map @$_, map @{$_->expolygon}, map @{$_->slices}, @layers), (map @$_, map @{$_->thin_walls}, @layers), (map @{$_->polyline->deserialize}, map @{$_->support_fills->paths}, grep $_->support_fills, @layers), ); push @points, map move_points($_, @layer_points), @{$self->copies->[$obj_idx]}; } return if @points < 3; # at least three points required for a convex hull # find out convex hull my $convex_hull = convex_hull(\@points); # draw outlines from outside to inside my @skirt = (); for (my $i = $Slic3r::skirts - 1; $i >= 0; $i--) { my $distance = scale ($Slic3r::skirt_distance + ($Slic3r::flow_spacing * $i)); my $outline = offset([$convex_hull], $distance, $Slic3r::scaling_factor * 100, JT_ROUND); push @skirt, Slic3r::ExtrusionLoop->new( polygon => Slic3r::Polygon->new(@{$outline->[0]}), role => EXTR_ROLE_SKIRT, ); } push @{$self->skirt}, @skirt; } sub write_gcode { my $self = shift; my ($file) = @_; # open output gcode file open my $fh, ">", $file or die "Failed to open $file for writing\n"; # write some information my @lt = localtime; printf $fh "; generated by Slic3r $Slic3r::VERSION on %04d-%02d-%02d at %02d:%02d:%02d\n\n", $lt[5] + 1900, $lt[4]+1, $lt[3], $lt[2], $lt[1], $lt[0]; print $fh "; $_\n" foreach split /\R/, $Slic3r::notes; print $fh "\n" if $Slic3r::notes; for (qw(layer_height perimeters solid_layers fill_density nozzle_diameter filament_diameter extrusion_multiplier perimeter_speed infill_speed travel_speed extrusion_width_ratio scale)) { printf $fh "; %s = %s\n", $_, Slic3r::Config->get($_); } printf $fh "; single wall width = %.2fmm\n", $Slic3r::flow_width; print $fh "\n"; # set up our extruder object my $extruder = Slic3r::Extruder->new; my $min_print_speed = 60 * $Slic3r::min_print_speed; my $dec = $extruder->dec; if ($Slic3r::support_material && $Slic3r::support_material_tool > 0) { print $fh $extruder->set_tool(0); } print $fh $extruder->set_fan(0, 1) if $Slic3r::cooling && $Slic3r::disable_fan_first_layers; # write start commands to file printf $fh $extruder->set_bed_temperature($Slic3r::first_layer_bed_temperature, 1), if $Slic3r::first_layer_bed_temperature && $Slic3r::start_gcode !~ /M190/i; printf $fh $extruder->set_temperature($Slic3r::first_layer_temperature) if $Slic3r::first_layer_temperature; printf $fh "%s\n", Slic3r::Config->replace_options($Slic3r::start_gcode); printf $fh $extruder->set_temperature($Slic3r::first_layer_temperature, 1) if $Slic3r::first_layer_temperature && $Slic3r::start_gcode !~ /M109/i; print $fh "G90 ; use absolute coordinates\n"; print $fh "G21 ; set units to millimeters\n"; if ($Slic3r::gcode_flavor =~ /^(?:reprap|teacup)$/) { printf $fh "G92 %s0 ; reset extrusion distance\n", $Slic3r::extrusion_axis if $Slic3r::extrusion_axis && !$Slic3r::use_relative_e_distances; if ($Slic3r::gcode_flavor =~ /^(?:reprap|makerbot)$/) { if ($Slic3r::use_relative_e_distances) { print $fh "M83 ; use relative distances for extrusion\n"; } else { print $fh "M82 ; use absolute distances for extrusion\n"; } } } # calculate X,Y shift to center print around specified origin my @print_bb = $self->bounding_box; my @shift = ( $Slic3r::print_center->[X] - (unscale ($print_bb[X2] - $print_bb[X1]) / 2) - unscale $print_bb[X1], $Slic3r::print_center->[Y] - (unscale ($print_bb[Y2] - $print_bb[Y1]) / 2) - unscale $print_bb[Y1], ); # prepare the logic to print one layer my $skirt_done = 0; my $extrude_layer = sub { my ($layer_id, $object_copies) = @_; my $gcode = ""; if ($layer_id == 1) { $gcode .= $extruder->set_temperature($Slic3r::temperature) if $Slic3r::temperature && $Slic3r::temperature != $Slic3r::first_layer_temperature; $gcode .= $extruder->set_bed_temperature($Slic3r::bed_temperature) if $Slic3r::bed_temperature && $Slic3r::bed_temperature != $Slic3r::first_layer_bed_temperature; } # go to layer (just use the first one, we only need Z from it) $gcode .= $extruder->change_layer($self->objects->[$object_copies->[0][0]]->layers->[$layer_id]); $extruder->elapsed_time(0); # extrude skirt if (!$skirt_done) { $extruder->shift_x($shift[X]); $extruder->shift_y($shift[Y]); $gcode .= $extruder->set_acceleration($Slic3r::perimeter_acceleration); if ($layer_id < $Slic3r::skirt_height) { $gcode .= $extruder->extrude_loop($_, 'skirt') for @{$self->skirt}; } $skirt_done = 1; } for my $obj_copy (@$object_copies) { my ($obj_idx, $copy) = @$obj_copy; my $layer = $self->objects->[$obj_idx]->layers->[$layer_id]; # retract explicitely because changing the shift_[xy] properties below # won't always trigger the automatic retraction $gcode .= $extruder->retract; $extruder->shift_x($shift[X] + unscale $copy->[X]); $extruder->shift_y($shift[Y] + unscale $copy->[Y]); # extrude perimeters $gcode .= $extruder->extrude($_, 'perimeter') for @{ $layer->perimeters }; # extrude fills $gcode .= $extruder->set_acceleration($Slic3r::infill_acceleration); for my $fill (@{ $layer->fills }) { $gcode .= $extruder->extrude_path($_, 'fill') for $fill->shortest_path($extruder->last_pos); } # extrude support material if ($layer->support_fills) { $gcode .= $extruder->set_tool($Slic3r::support_material_tool) if $Slic3r::support_material_tool > 0; $gcode .= $extruder->extrude_path($_, 'support material') for $layer->support_fills->shortest_path($extruder->last_pos); $gcode .= $extruder->set_tool(0) if $Slic3r::support_material_tool > 0; } } last if !$gcode; my $fan_speed = $Slic3r::fan_always_on ? $Slic3r::min_fan_speed : 0; my $speed_factor = 1; if ($Slic3r::cooling) { my $layer_time = $extruder->elapsed_time; Slic3r::debugf "Layer %d estimated printing time: %d seconds\n", $layer_id, $layer_time; if ($layer_time < $Slic3r::slowdown_below_layer_time) { $fan_speed = $Slic3r::max_fan_speed; $speed_factor = $layer_time / $Slic3r::slowdown_below_layer_time; } elsif ($layer_time < $Slic3r::fan_below_layer_time) { $fan_speed = $Slic3r::max_fan_speed - ($Slic3r::max_fan_speed - $Slic3r::min_fan_speed) * ($layer_time - $Slic3r::slowdown_below_layer_time) / ($Slic3r::fan_below_layer_time - $Slic3r::slowdown_below_layer_time); #/ } Slic3r::debugf " fan = %d%%, speed = %d%%\n", $fan_speed, $speed_factor * 100; if ($speed_factor < 1) { $gcode =~ s/^(?=.*? [XY])(?=.*? E)(G1 .*?F)(\d+(?:\.\d+)?)/ my $new_speed = $2 * $speed_factor; $1 . sprintf("%.${dec}f", $new_speed < $min_print_speed ? $min_print_speed : $new_speed) /gexm; } $fan_speed = 0 if $layer_id < $Slic3r::disable_fan_first_layers; } $gcode = $extruder->set_fan($fan_speed) . $gcode; # bridge fan speed if (!$Slic3r::cooling || $Slic3r::bridge_fan_speed == 0 || $layer_id < $Slic3r::disable_fan_first_layers) { $gcode =~ s/^;_BRIDGE_FAN_(?:START|END)\n//gm; } else { $gcode =~ s/^;_BRIDGE_FAN_START\n/ $extruder->set_fan($Slic3r::bridge_fan_speed, 1) /gmex; $gcode =~ s/^;_BRIDGE_FAN_END\n/ $extruder->set_fan($fan_speed, 1) /gmex; } return $gcode; }; # do all objects for each layer if ($Slic3r::complete_objects) { # get the height of the tallest object my $max_z; { my @last_layers = sort { $a->layer_id <=> $b->layer_id } map $_->layers->[-1], @{$self->objects}; $max_z = $Slic3r::z_offset + unscale $last_layers[-1]->print_z; } my $finished_objects = 0; for my $obj_idx (0..$#{$self->objects}) { for my $copy (@{ $self->copies->[$obj_idx] }) { # move to the origin position for the copy we're going to print. # this happens before Z goes down to layer 0 again, so that # no collision happens hopefully. # if our current Z is lower than the tallest object in the print, # raise our Z to that one + a little clearance before doing the # horizontal move if ($finished_objects > 0) { $extruder->shift_x($shift[X] + unscale $copy->[X]); $extruder->shift_y($shift[Y] + unscale $copy->[Y]); print $fh $extruder->retract; print $fh $extruder->G0(undef, $max_z + 1, 0, 'move up to avoid collisions') if $extruder->z < $max_z; print $fh $extruder->G0(Slic3r::Point->new(0,0), undef, 0, 'move to origin position for next object'); } for my $layer_id (0..$#{$self->objects->[$obj_idx]->layers}) { # if we are printing the bottom layer of an object, and we have already finished # another one, set first layer temperatures. this happens before the Z move # is triggered, so machine has more time to reach such temperatures if ($layer_id == 0 && $finished_objects > 0) { printf $fh $extruder->set_bed_temperature($Slic3r::first_layer_bed_temperature), if $Slic3r::first_layer_bed_temperature; printf $fh $extruder->set_temperature($Slic3r::first_layer_temperature) if $Slic3r::first_layer_temperature; } print $fh $extrude_layer->($layer_id, [[ $obj_idx, $copy ]]); } $finished_objects++; } } } else { for my $layer_id (0..$self->layer_count-1) { my @object_copies = (); for my $obj_idx (grep $self->objects->[$_]->layers->[$layer_id], 0..$#{$self->objects}) { push @object_copies, map [ $obj_idx, $_ ], @{ $self->copies->[$obj_idx] }; } print $fh $extrude_layer->($layer_id, \@object_copies); } } # save statistic data $self->total_extrusion_length($extruder->total_extrusion_length); # write end commands to file print $fh $extruder->retract; print $fh $extruder->set_fan(0); print $fh "M501 ; reset acceleration\n" if $Slic3r::acceleration; printf $fh "%s\n", Slic3r::Config->replace_options($Slic3r::end_gcode); printf $fh "; filament used = %.1fmm (%.1fcm3)\n", $self->total_extrusion_length, $self->total_extrusion_volume; # close our gcode file close $fh; } sub total_extrusion_volume { my $self = shift; return $self->total_extrusion_length * ($Slic3r::filament_diameter**2) * PI/4 / 1000; } # this method will return the value of $self->output_file after expanding its # format variables with their values sub expanded_output_filepath { my $self = shift; my ($path) = @_; # if no explicit output file was defined, we take the input # file directory and append the specified filename format my $input_file = $self->objects->[0]->input_file; $path ||= (fileparse($input_file))[1] . $Slic3r::output_filename_format; my $input_filename = my $input_filename_base = basename($input_file); $input_filename_base =~ s/\.(?:stl|amf(?:\.xml)?)$//i; return Slic3r::Config->replace_options($path, { input_filename => $input_filename, input_filename_base => $input_filename_base, }); } 1;