package Slic3r::Layer; use Moo; use Math::Clipper ':all'; use Slic3r::Geometry qw(collinear X Y A B PI); use Slic3r::Geometry::Clipper qw(union_ex diff_ex intersection_ex PFT_EVENODD); use XXX; # a sequential number of layer, starting at 0 has 'id' => ( is => 'ro', #isa => 'Int', required => 1, ); has 'slicing_errors' => (is => 'rw'); # collection of spare segments generated by slicing the original geometry; # these need to be merged in continuos (closed) polylines has 'lines' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::TriangleMesh::IntersectionLine]', default => sub { [] }, ); # collection of surfaces generated by slicing the original geometry has 'surfaces' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Surface]', default => sub { [] }, ); # ordered collection of extrusion paths to build all perimeters has 'perimeters' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionLoop]', default => sub { [] }, ); # ordered collection of extrusion paths to build skirt loops has 'skirts' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionLoop]', default => sub { [] }, ); # collection of surfaces generated by offsetting the innermost perimeter(s) # they represent boundaries of areas to fill has 'fill_boundaries' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::Surface]', default => sub { [] }, ); # ordered collection of extrusion paths to fill surfaces has 'fills' => ( is => 'rw', #isa => 'ArrayRef[Slic3r::ExtrusionPath]', default => sub { [] }, ); # Z used for slicing sub slice_z { my $self = shift; if ($self->id == 0) { return ($Slic3r::layer_height * $Slic3r::first_layer_height_ratio) / 2 / $Slic3r::resolution; } return (($Slic3r::layer_height * $Slic3r::first_layer_height_ratio) + (($self->id-1) * $Slic3r::layer_height) + ($Slic3r::layer_height/2)) / $Slic3r::resolution; } # Z used for printing sub print_z { my $self = shift; return (($Slic3r::layer_height * $Slic3r::first_layer_height_ratio) + ($self->id * $Slic3r::layer_height)) / $Slic3r::resolution; } sub add_surface { my $self = shift; my (@vertices) = @_; # convert arrayref points to Point objects @vertices = map Slic3r::Point->new($_), @vertices; my $surface = Slic3r::Surface->new( contour => Slic3r::Polyline::Closed->new(points => \@vertices), ); push @{ $self->surfaces }, $surface; # make sure our contour has its points in counter-clockwise order $surface->contour->make_counter_clockwise; return $surface; } sub add_line { my $self = shift; my ($line) = @_; push @{ $self->lines }, $line; return $line; } # build polylines from lines sub make_surfaces { my $self = shift; my ($loops) = @_; { my $expolygons = union_ex($loops, PFT_EVENODD); Slic3r::debugf " %d surface(s) having %d holes detected from %d polylines\n", scalar(@$expolygons), scalar(map $_->holes, @$expolygons), scalar(@$loops); push @{$self->surfaces}, map Slic3r::Surface->cast_from_expolygon($_, surface_type => 'internal'), @$expolygons; } #use Slic3r::SVG; #Slic3r::SVG::output(undef, "surfaces.svg", # polygons => [ map $_->contour->p, @{$self->surfaces} ], # red_polygons => [ map $_->p, map @{$_->holes}, @{$self->surfaces} ], #); } sub remove_small_surfaces { my $self = shift; my @good_surfaces = (); my $distance = ($Slic3r::flow_width / 2 / $Slic3r::resolution); my @surfaces = @{$self->surfaces}; @{$self->surfaces} = (); foreach my $surface (@surfaces) { # offset inwards my @offsets = $surface->expolygon->offset_ex(-$distance); # offset the results outwards again and merge the results @offsets = map $_->offset_ex($distance), @offsets; @offsets = @{ union_ex([ map @$_, @offsets ]) }; # the difference between $surface->expolygon and @offsets # is what we can't print since it's too small push @{$self->surfaces}, map Slic3r::Surface->cast_from_expolygon($_, surface_type => $surface->surface_type), @offsets; } Slic3r::debugf "removed %d small surfaces at layer %d\n", (@surfaces - @{$self->surfaces}), $self->id if @{$self->surfaces} != @surfaces; } sub remove_small_perimeters { my $self = shift; my @good_perimeters = grep $_->is_printable, @{$self->perimeters}; Slic3r::debugf "removed %d unprintable perimeters at layer %d\n", (@{$self->perimeters} - @good_perimeters), $self->id if @good_perimeters != @{$self->perimeters}; @{$self->perimeters} = @good_perimeters; } # make bridges printable sub process_bridges { my $self = shift; # no bridges are possible if we have no internal surfaces return if $Slic3r::fill_density == 0; my @bridges = (); # a bottom surface on a layer > 0 is either a bridge or a overhang # or a combination of both; any top surface is a candidate for # reverse bridge processing my @solid_surfaces = grep { ($_->surface_type eq 'bottom' && $self->id > 0) || $_->surface_type eq 'top' } @{$self->surfaces} or return; my @internal_surfaces = grep $_->surface_type =~ /internal/, @{$self->surfaces}; SURFACE: foreach my $surface (@solid_surfaces) { my $expolygon = $surface->expolygon->safety_offset; my $description = $surface->surface_type eq 'bottom' ? 'bridge/overhang' : 'reverse bridge'; # offset the contour and intersect it with the internal surfaces to discover # which of them has contact with our bridge my @supporting_surfaces = (); my ($contour_offset) = $expolygon->contour->offset($Slic3r::flow_width / $Slic3r::resolution); foreach my $internal_surface (@internal_surfaces) { my $intersection = intersection_ex([$contour_offset], [$internal_surface->contour->p]); if (@$intersection) { push @supporting_surfaces, $internal_surface; } } #use Slic3r::SVG; #Slic3r::SVG::output(undef, "bridge.svg", # green_polygons => [ map $_->p, @supporting_surfaces ], # red_polygons => [ @$expolygon ], #); next SURFACE unless @supporting_surfaces; Slic3r::debugf " Found $description on layer %d with %d support(s)\n", $self->id, scalar(@supporting_surfaces); my $bridge_angle = undef; if ($surface->surface_type eq 'bottom') { # detect optimal bridge angle my $bridge_over_hole = 0; my @edges = (); # edges are POLYLINES foreach my $supporting_surface (@supporting_surfaces) { my @surface_edges = $supporting_surface->contour->clip_with_polygon($contour_offset); if (@surface_edges == 1 && @{$supporting_surface->contour->p} == @{$surface_edges[0]->p}) { $bridge_over_hole = 1; } else { foreach my $edge (@surface_edges) { shift @{$edge->points}; pop @{$edge->points}; } @surface_edges = grep { @{$_->points} } @surface_edges; } push @edges, @surface_edges; } Slic3r::debugf " Bridge is supported on %d edge(s)\n", scalar(@edges); Slic3r::debugf " and covers a hole\n" if $bridge_over_hole; if (0) { require "Slic3r/SVG.pm"; Slic3r::SVG::output(undef, "bridge.svg", polylines => [ map $_->p, @edges ], ); } if (@edges == 2) { my @chords = map Slic3r::Line->new($_->points->[0], $_->points->[-1]), @edges; my @midpoints = map $_->midpoint, @chords; $bridge_angle = -Slic3r::Geometry::rad2deg(Slic3r::Geometry::line_atan(\@midpoints) + PI/2); Slic3r::debugf "Optimal infill angle of bridge on layer %d is %d degrees\n", $self->id, $bridge_angle; } } # now, extend our bridge by taking a portion of supporting surfaces { # offset the bridge by the specified amount of mm (minimum 3) my $bridge_overlap = 3 / $Slic3r::resolution; my ($bridge_offset) = $expolygon->contour->offset($bridge_overlap, $Slic3r::resolution * 100, JT_MITER, 2); # calculate the new bridge my $intersection = intersection_ex( [ @$expolygon, map $_->p, @supporting_surfaces ], [ $bridge_offset ], ); push @bridges, map Slic3r::Surface->cast_from_expolygon($_, surface_type => $surface->surface_type, bridge_angle => $bridge_angle, ), @$intersection; } } # now we need to merge bridges to avoid overlapping { # build a list of unique bridge types my @surface_groups = Slic3r::Surface->group(@bridges); # merge bridges of the same type, removing any of the bridges already merged; # the order of @surface_groups determines the priority between bridges having # different surface_type or bridge_angle @bridges = (); foreach my $surfaces (@surface_groups) { my $union = union_ex([ map $_->p, @$surfaces ]); my $diff = diff_ex( [ map @$_, @$union ], [ map $_->p, @bridges ], ); push @bridges, map Slic3r::Surface->cast_from_expolygon($_, surface_type => $surfaces->[0]->surface_type, bridge_angle => $surfaces->[0]->bridge_angle, ), @$union; } } # apply bridges to layer { my @surfaces = @{$self->surfaces}; @{$self->surfaces} = (); # intersect layer surfaces with bridges to get actual bridges foreach my $bridge (@bridges) { my $actual_bridge = intersection_ex( [ map $_->p, @surfaces ], [ $bridge->p ], ); push @{$self->surfaces}, map Slic3r::Surface->cast_from_expolygon($_, surface_type => $bridge->surface_type, bridge_angle => $bridge->bridge_angle, ), @$actual_bridge; } # difference between layer surfaces and bridges are the other surfaces foreach my $group (Slic3r::Surface->group(@surfaces)) { my $difference = diff_ex( [ map $_->p, @$group ], [ map $_->p, @bridges ], ); push @{$self->surfaces}, map Slic3r::Surface->cast_from_expolygon($_, surface_type => $group->[0]->surface_type), @$difference; } } } 1;