#include #include #include #include #include #include #include "../ClipperUtils.hpp" #include "../ExPolygon.hpp" #include "../Surface.hpp" #include "FillRectilinear2.hpp" // #define SLIC3R_DEBUG // Make assert active if SLIC3R_DEBUG #ifdef SLIC3R_DEBUG #undef NDEBUG #include "SVG.hpp" #endif #include // We want our version of assert. #include "../libslic3r.h" #ifndef myassert #define myassert assert #endif namespace Slic3r { #ifndef clamp template static inline T clamp(T low, T high, T x) { return std::max(low, std::min(high, x)); } #endif /* clamp */ #ifndef sqr template static inline T sqr(T x) { return x * x; } #endif /* sqr */ #ifndef mag2 static inline coordf_t mag2(const Point &p) { return sqr(coordf_t(p.x)) + sqr(coordf_t(p.y)); } #endif /* mag2 */ #ifndef mag static inline coordf_t mag(const Point &p) { return std::sqrt(mag2(p)); } #endif /* mag */ enum Orientation { ORIENTATION_CCW = 1, ORIENTATION_CW = -1, ORIENTATION_COLINEAR = 0 }; // Return orientation of the three points (clockwise, counter-clockwise, colinear) // The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries. //FIXME Make sure the temporaries do not overflow, // which means, the coord_t types must not have some of the topmost bits utilized. static inline Orientation orient(const Point &a, const Point &b, const Point &c) { // BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t)); int64_t u = int64_t(b.x) * int64_t(c.y) - int64_t(b.y) * int64_t(c.x); int64_t v = int64_t(a.x) * int64_t(c.y) - int64_t(a.y) * int64_t(c.x); int64_t w = int64_t(a.x) * int64_t(b.y) - int64_t(a.y) * int64_t(b.x); int64_t d = u - v + w; return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW); } // Return orientation of the polygon. // The input polygon must not contain duplicate points. static inline bool is_ccw(const Polygon &poly) { // The polygon shall be at least a triangle. myassert(poly.points.size() >= 3); if (poly.points.size() < 3) return true; // 1) Find the lowest lexicographical point. int imin = 0; for (size_t i = 1; i < poly.points.size(); ++ i) { const Point &pmin = poly.points[imin]; const Point &p = poly.points[i]; if (p.x < pmin.x || (p.x == pmin.x && p.y < pmin.y)) imin = i; } // 2) Detect the orientation of the corner imin. size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1; size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1); Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]); // The lowest bottom point must not be collinear if the polygon does not contain duplicate points // or overlapping segments. myassert(o != ORIENTATION_COLINEAR); return o == ORIENTATION_CCW; } // Having a segment of a closed polygon, calculate its Euclidian length. // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop, // therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc. static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2) { #ifdef SLIC3R_DEBUG // Verify that p1 lies on seg1. This is difficult to verify precisely, // but at least verify, that p1 lies in the bounding box of seg1. for (size_t i = 0; i < 2; ++ i) { size_t seg = (i == 0) ? seg1 : seg2; Point px = (i == 0) ? p1 : p2; Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1]; Point pb = poly.points[seg]; if (pa.x > pb.x) std::swap(pa.x, pb.x); if (pa.y > pb.y) std::swap(pa.y, pb.y); myassert(px.x >= pa.x && px.x <= pb.x); myassert(px.y >= pa.y && px.y <= pb.y); } #endif /* SLIC3R_DEBUG */ const Point *pPrev = &p1; const Point *pThis = NULL; coordf_t len = 0; if (seg1 <= seg2) { for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis) len += pPrev->distance_to(*(pThis = &poly.points[i])); } else { for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis) len += pPrev->distance_to(*(pThis = &poly.points[i])); for (size_t i = 0; i < seg2; ++ i, pPrev = pThis) len += pPrev->distance_to(*(pThis = &poly.points[i])); } len += pPrev->distance_to(p2); return len; } // Append a segment of a closed polygon to a polyline. // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop. // Only insert intermediate points between seg1 and seg2. static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2) { if (seg1 == seg2) { // Nothing to append from this segment. } else if (seg1 < seg2) { // Do not append a point pointed to by seg2. out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2); } else { out.reserve(out.size() + seg2 + polygon.points.size() - seg1); out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end()); // Do not append a point pointed to by seg2. out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2); } } // Append a segment of a closed polygon to a polyline. // The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop, // but this time the segment is traversed backward. // Only insert intermediate points between seg1 and seg2. static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2) { if (seg1 >= seg2) { out.reserve(seg1 - seg2); for (size_t i = seg1; i > seg2; -- i) out.push_back(polygon.points[i - 1]); } else { // it could be, that seg1 == seg2. In that case, append the complete loop. out.reserve(out.size() + seg2 + polygon.points.size() - seg1); for (size_t i = seg1; i > 0; -- i) out.push_back(polygon.points[i - 1]); for (size_t i = polygon.points.size(); i > seg2; -- i) out.push_back(polygon.points[i - 1]); } } // Intersection point of a vertical line with a polygon segment. class SegmentIntersection { public: SegmentIntersection() : iContour(0), iSegment(0), pos_p(0), pos_q(1), type(UNKNOWN), consumed_vertical_up(false), consumed_perimeter_right(false) {} // Index of a contour in ExPolygonWithOffset, with which this vertical line intersects. size_t iContour; // Index of a segment in iContour, with which this vertical line intersects. size_t iSegment; // y position of the intersection, ratinal number. int64_t pos_p; uint32_t pos_q; coord_t pos() const { // Division rounds both positive and negative down to zero. // Add half of q for an arithmetic rounding effect. int64_t p = pos_p; if (p < 0) p -= int64_t(pos_q>>1); else p += int64_t(pos_q>>1); return coord_t(p / int64_t(pos_q)); } // Kind of intersection. With the original contour, or with the inner offestted contour? // A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH, // but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH, // and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH. enum SegmentIntersectionType { OUTER_LOW = 0, OUTER_HIGH = 1, INNER_LOW = 2, INNER_HIGH = 3, UNKNOWN = -1 }; SegmentIntersectionType type; // Was this segment along the y axis consumed? // Up means up along the vertical segment. bool consumed_vertical_up; // Was a segment of the inner perimeter contour consumed? // Right means right from the vertical segment. bool consumed_perimeter_right; // For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour. // For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour. // If INNER_LOW is connected to INNER_HIGH or vice versa, // one has to make sure the vertical infill line does not overlap with the connecting perimeter line. bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; } bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; } bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; } bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; } // Compare two y intersection points given by rational numbers. // Note that the rational number is given as pos_p/pos_q, where pos_p is int64 and pos_q is uint32. // This function calculates pos_p * other.pos_q < other.pos_p * pos_q as a 48bit number. // We don't use 128bit intrinsic data types as these are usually not supported by 32bit compilers and // we don't need the full 128bit precision anyway. bool operator<(const SegmentIntersection &other) const { assert(pos_q > 0); assert(other.pos_q > 0); if (pos_p == 0 || other.pos_p == 0) { // Because the denominators are positive and one of the nominators is zero, // following simple statement holds. return pos_p < other.pos_p; } else { // None of the nominators is zero. char sign1 = (pos_p > 0) ? 1 : -1; char sign2 = (other.pos_p > 0) ? 1 : -1; char signs = sign1 * sign2; assert(signs == 1 || signs == -1); if (signs < 0) { // The nominators have different signs. return sign1 < 0; } else { // The nominators have the same sign. // Absolute values uint64_t p1, p2; if (sign1 > 0) { p1 = uint64_t(pos_p); p2 = uint64_t(other.pos_p); } else { p1 = uint64_t(- pos_p); p2 = uint64_t(- other.pos_p); }; // Multiply low and high 32bit words of p1 by other_pos.q // 32bit x 32bit => 64bit // l_hi and l_lo overlap by 32 bits. uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q); uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q); l_hi += (l_lo >> 32); uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q); uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q); r_hi += (r_lo >> 32); // Compare the high 64 bits. if (l_hi == r_hi) { // Compare the low 32 bits. l_lo &= 0xffffffffll; r_lo &= 0xffffffffll; return (sign1 < 0) ? (l_lo > r_lo) : (l_lo < r_lo); } return (sign1 < 0) ? (l_hi > r_hi) : (l_hi < r_hi); } } } bool operator==(const SegmentIntersection &other) const { assert(pos_q > 0); assert(other.pos_q > 0); if (pos_p == 0 || other.pos_p == 0) { // Because the denominators are positive and one of the nominators is zero, // following simple statement holds. return pos_p == other.pos_p; } // None of the nominators is zero, none of the denominators is zero. bool positive = pos_p > 0; if (positive != (other.pos_p > 0)) return false; // The nominators have the same sign. // Absolute values uint64_t p1 = positive ? uint64_t(pos_p) : uint64_t(- pos_p); uint64_t p2 = positive ? uint64_t(other.pos_p) : uint64_t(- other.pos_p); // Multiply low and high 32bit words of p1 by other_pos.q // 32bit x 32bit => 64bit // l_hi and l_lo overlap by 32 bits. uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q); uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q); if (l_lo != r_lo) return false; uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q); uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q); return l_hi + (l_lo >> 32) == r_hi + (r_lo >> 32); } }; // A vertical line with intersection points with polygons. class SegmentedIntersectionLine { public: // Index of this vertical intersection line. size_t idx; // x position of this vertical intersection line. coord_t pos; // List of intersection points with polygons, sorted increasingly by the y axis. std::vector intersections; }; // A container maintaining an expolygon with its inner offsetted polygon. // The purpose of the inner offsetted polygon is to provide segments to connect the infill lines. struct ExPolygonWithOffset { public: ExPolygonWithOffset( const ExPolygon &expolygon, float angle, coord_t aoffset1, coord_t aoffset2) { // Copy and rotate the source polygons. polygons_src = expolygon; polygons_src.contour.rotate(angle); for (Polygons::iterator it = polygons_src.holes.begin(); it != polygons_src.holes.end(); ++ it) it->rotate(angle); double mitterLimit = 3.; // for the infill pattern, don't cut the corners. // default miterLimt = 3 //double mitterLimit = 10.; myassert(aoffset1 < 0); myassert(aoffset2 < 0); myassert(aoffset2 < aoffset1); bool sticks_removed = remove_sticks(polygons_src); // if (sticks_removed) printf("Sticks removed!\n"); polygons_outer = offset(polygons_src, aoffset1, ClipperLib::jtMiter, mitterLimit); polygons_inner = offset(polygons_outer, aoffset2 - aoffset1, ClipperLib::jtMiter, mitterLimit); // Filter out contours with zero area or small area, contours with 2 points only. const double min_area_threshold = 0.01 * aoffset2 * aoffset2; remove_small(polygons_outer, min_area_threshold); remove_small(polygons_inner, min_area_threshold); remove_sticks(polygons_outer); remove_sticks(polygons_inner); n_contours_outer = polygons_outer.size(); n_contours_inner = polygons_inner.size(); n_contours = n_contours_outer + n_contours_inner; polygons_ccw.assign(n_contours, false); for (size_t i = 0; i < n_contours; ++ i) { contour(i).remove_duplicate_points(); myassert(! contour(i).has_duplicate_points()); polygons_ccw[i] = is_ccw(contour(i)); } } // Any contour with offset1 bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; } // Any contour with offset2 bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; } const Polygon& contour(size_t idx) const { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; } Polygon& contour(size_t idx) { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; } bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx]; } BoundingBox bounding_box_src() const { return get_extents(polygons_src); } BoundingBox bounding_box_outer() const { return get_extents(polygons_outer); } BoundingBox bounding_box_inner() const { return get_extents(polygons_inner); } #ifdef SLIC3R_DEBUG void export_to_svg(Slic3r::SVG &svg) { svg.draw_outline(polygons_src, "black"); svg.draw_outline(polygons_outer, "green"); svg.draw_outline(polygons_inner, "brown"); } #endif /* SLIC3R_DEBUG */ ExPolygon polygons_src; Polygons polygons_outer; Polygons polygons_inner; size_t n_contours_outer; size_t n_contours_inner; size_t n_contours; protected: // For each polygon of polygons_inner, remember its orientation. std::vector polygons_ccw; }; static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward) { int d = int(seg2) - int(seg1); if (! forward) d = - d; if (d < 0) d += int(poly.points.size()); return d; } // For a vertical line, an inner contour and an intersection point, // find an intersection point on the previous resp. next vertical line. // The intersection point is connected with the prev resp. next intersection point with iInnerContour. // Return -1 if there is no such point on the previous resp. next vertical line. static inline int intersection_on_prev_next_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, bool dir_is_next) { size_t iVerticalLineOther = iVerticalLine; if (dir_is_next) { if (++ iVerticalLineOther == segs.size()) // No successive vertical line. return -1; } else if (iVerticalLineOther -- == 0) { // No preceding vertical line. return -1; } const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther]; const Polygon &poly = poly_with_offset.contour(iInnerContour); // const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour); const bool forward = itsct.is_low() == dir_is_next; // Resulting index of an intersection point on il2. int out = -1; // Find an intersection point on iVerticalLineOther, intersecting iInnerContour // at the same orientation as iIntersection, and being closest to iIntersection // in the number of contour segments, when following the direction of the contour. int dmin = std::numeric_limits::max(); for (size_t i = 0; i < il2.intersections.size(); ++ i) { const SegmentIntersection &itsct2 = il2.intersections[i]; if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) { /* if (itsct.is_low()) { myassert(itsct.type == SegmentIntersection::INNER_LOW); myassert(iIntersection > 0); myassert(il.intersections[iIntersection-1].type == SegmentIntersection::OUTER_LOW); myassert(i > 0); if (il2.intersections[i-1].is_inner()) // Take only the lowest inner intersection point. continue; myassert(il2.intersections[i-1].type == SegmentIntersection::OUTER_LOW); } else { myassert(itsct.type == SegmentIntersection::INNER_HIGH); myassert(iIntersection+1 < il.intersections.size()); myassert(il.intersections[iIntersection+1].type == SegmentIntersection::OUTER_HIGH); myassert(i+1 < il2.intersections.size()); if (il2.intersections[i+1].is_inner()) // Take only the highest inner intersection point. continue; myassert(il2.intersections[i+1].type == SegmentIntersection::OUTER_HIGH); } */ // The intersection points lie on the same contour and have the same orientation. // Find the intersection point with a shortest path in the direction of the contour. int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward); if (d < dmin) { out = i; dmin = d; } } } //FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line. return out; } static inline int intersection_on_prev_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection) { return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false); } static inline int intersection_on_next_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection) { return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true); } enum IntersectionTypeOtherVLine { // There is no connection point on the other vertical line. INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED = -1, // Connection point on the other vertical segment was found // and it could be followed. INTERSECTION_TYPE_OTHER_VLINE_OK = 0, // The connection segment connects to a middle of a vertical segment. // Cannot follow. INTERSECTION_TYPE_OTHER_VLINE_INNER, // Cannot extend the contor to this intersection point as either the connection segment // or the succeeding vertical segment were already consumed. INTERSECTION_TYPE_OTHER_VLINE_CONSUMED, // Not the first intersection along the contor. This intersection point // has been preceded by an intersection point along the vertical line. INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST, }; // Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded. static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical_line( const std::vector &segs, size_t iVerticalLine, size_t iIntersection, size_t iIntersectionOther, bool dir_is_next) { // This routine will propose a connecting line even if the connecting perimeter segment intersects // iVertical line multiple times before reaching iIntersectionOther. if (iIntersectionOther == -1) return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED; myassert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0)); const SegmentedIntersectionLine &il_this = segs[iVerticalLine]; const SegmentIntersection &itsct_this = il_this.intersections[iIntersection]; const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)]; const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther]; myassert(itsct_other.is_inner()); myassert(iIntersectionOther > 0); myassert(iIntersectionOther + 1 < il_other.intersections.size()); // Is iIntersectionOther at the boundary of a vertical segment? const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1]; if (itsct_other2.is_inner()) // Cannot follow a perimeter segment into the middle of another vertical segment. // Only perimeter segments connecting to the end of a vertical segment are followed. return INTERSECTION_TYPE_OTHER_VLINE_INNER; myassert(itsct_other.is_low() == itsct_other2.is_low()); if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right) // This perimeter segment was already consumed. return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED; if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up) // This vertical segment was already consumed. return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED; return INTERSECTION_TYPE_OTHER_VLINE_OK; } static inline IntersectionTypeOtherVLine intersection_type_on_prev_vertical_line( const std::vector &segs, size_t iVerticalLine, size_t iIntersection, size_t iIntersectionPrev) { return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionPrev, false); } static inline IntersectionTypeOtherVLine intersection_type_on_next_vertical_line( const std::vector &segs, size_t iVerticalLine, size_t iIntersection, size_t iIntersectionNext) { return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionNext, true); } // Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2. static inline coordf_t measure_perimeter_prev_next_segment_length( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2, bool dir_is_next) { size_t iVerticalLineOther = iVerticalLine; if (dir_is_next) { if (++ iVerticalLineOther == segs.size()) // No successive vertical line. return coordf_t(-1); } else if (iVerticalLineOther -- == 0) { // No preceding vertical line. return coordf_t(-1); } const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther]; const SegmentIntersection &itsct2 = il2.intersections[iIntersection2]; const Polygon &poly = poly_with_offset.contour(iInnerContour); // const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour); myassert(itsct.type == itsct2.type); myassert(itsct.iContour == itsct2.iContour); myassert(itsct.is_inner()); const bool forward = itsct.is_low() == dir_is_next; Point p1(il.pos, itsct.pos()); Point p2(il2.pos, itsct2.pos()); return forward ? segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) : segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1); } static inline coordf_t measure_perimeter_prev_segment_length( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2) { return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false); } static inline coordf_t measure_perimeter_next_segment_length( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2) { return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true); } // Append the points of a perimeter segment when going from iIntersection to iIntersection2. // The first point (the point of iIntersection) will not be inserted, // the last point will be inserted. static inline void emit_perimeter_prev_next_segment( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2, Polyline &out, bool dir_is_next) { size_t iVerticalLineOther = iVerticalLine; if (dir_is_next) { ++ iVerticalLineOther; myassert(iVerticalLineOther < segs.size()); } else { myassert(iVerticalLineOther > 0); -- iVerticalLineOther; } const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther]; const SegmentIntersection &itsct2 = il2.intersections[iIntersection2]; const Polygon &poly = poly_with_offset.contour(iInnerContour); // const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour); myassert(itsct.type == itsct2.type); myassert(itsct.iContour == itsct2.iContour); myassert(itsct.is_inner()); const bool forward = itsct.is_low() == dir_is_next; // Do not append the first point. // out.points.push_back(Point(il.pos, itsct.pos)); if (forward) polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment); else polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment); // Append the last point. out.points.push_back(Point(il2.pos, itsct2.pos())); } static inline coordf_t measure_perimeter_segment_on_vertical_line_length( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2, bool forward) { const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentIntersection &itsct2 = il.intersections[iIntersection2]; const Polygon &poly = poly_with_offset.contour(iInnerContour); myassert(itsct.is_inner()); myassert(itsct2.is_inner()); myassert(itsct.type != itsct2.type); myassert(itsct.iContour == iInnerContour); myassert(itsct.iContour == itsct2.iContour); Point p1(il.pos, itsct.pos()); Point p2(il.pos, itsct2.pos()); return forward ? segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) : segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1); } // Append the points of a perimeter segment when going from iIntersection to iIntersection2. // The first point (the point of iIntersection) will not be inserted, // the last point will be inserted. static inline void emit_perimeter_segment_on_vertical_line( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t iVerticalLine, size_t iInnerContour, size_t iIntersection, size_t iIntersection2, Polyline &out, bool forward) { const SegmentedIntersectionLine &il = segs[iVerticalLine]; const SegmentIntersection &itsct = il.intersections[iIntersection]; const SegmentIntersection &itsct2 = il.intersections[iIntersection2]; const Polygon &poly = poly_with_offset.contour(iInnerContour); myassert(itsct.is_inner()); myassert(itsct2.is_inner()); myassert(itsct.type != itsct2.type); myassert(itsct.iContour == iInnerContour); myassert(itsct.iContour == itsct2.iContour); // Do not append the first point. // out.points.push_back(Point(il.pos, itsct.pos)); if (forward) polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment); else polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment); // Append the last point. out.points.push_back(Point(il.pos, itsct2.pos())); } //TBD: For precise infill, measure the area of a slab spanned by an infill line. /* static inline float measure_outer_contour_slab( const ExPolygonWithOffset &poly_with_offset, const std::vector &segs, size_t i_vline, size_t iIntersection) { const SegmentedIntersectionLine &il = segs[i_vline]; const SegmentIntersection &itsct = il.intersections[i_vline]; const SegmentIntersection &itsct2 = il.intersections[iIntersection2]; const Polygon &poly = poly_with_offset.contour((itsct.iContour); myassert(itsct.is_outer()); myassert(itsct2.is_outer()); myassert(itsct.type != itsct2.type); myassert(itsct.iContour == itsct2.iContour); if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour) // Error, return zero area. return 0.f; // Find possible connection points on the previous / next vertical line. int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection); int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection); // Find possible connection points on the same vertical line. int iAbove = iBelow = -1; // Does the perimeter intersect the current vertical line above intrsctn? for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i) if (seg.intersections[i].iContour == itsct.iContour) { iAbove = i; break; } // Does the perimeter intersect the current vertical line below intrsctn? for (int i = int(i_intersection) - 1; i > 0; -- i) if (seg.intersections[i].iContour == itsct.iContour) { iBelow = i; break; } if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) { // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext. // The perimeter contour orientation. const Polygon &poly = poly_with_offset.contour(itsct.iContour); { int d_horiz = (iPrev == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true); int d_down = (iBelow == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, iSegBelow, itsct.iSegment, true); int d_up = (iAbove == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, iSegAbove, itsct.iSegment, true); if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up)) // The vertical crossing comes eralier than the prev crossing. // Disable the perimeter going back. intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST; if (d_up > std::min(d_horiz, d_down)) // The horizontal crossing comes earlier than the vertical crossing. vert_seg_dir_valid_mask &= ~DIR_BACKWARD; } { int d_horiz = (iNext == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true); int d_down = (iSegBelow == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, itsct.iSegment, iSegBelow, true); int d_up = (iSegAbove == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, itsct.iSegment, iSegAbove, true); if (d_up > std::min(d_horiz, d_down)) // The horizontal crossing comes earlier than the vertical crossing. vert_seg_dir_valid_mask &= ~DIR_FORWARD; } } } */ enum DirectionMask { DIR_FORWARD = 1, DIR_BACKWARD = 2 }; bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillParams ¶ms, float angleBase, float pattern_shift, Polylines &polylines_out) { // At the end, only the new polylines will be rotated back. size_t n_polylines_out_initial = polylines_out.size(); // Shrink the input polygon a bit first to not push the infill lines out of the perimeters. // const float INFILL_OVERLAP_OVER_SPACING = 0.3f; const float INFILL_OVERLAP_OVER_SPACING = 0.45f; myassert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f); // Rotate polygons so that we can work with vertical lines here std::pair rotate_vector = this->_infill_direction(surface); rotate_vector.first += angleBase; myassert(params.density > 0.0001f && params.density <= 1.f); coord_t line_spacing = coord_t(scale_(this->spacing) / params.density); // On the polygons of poly_with_offset, the infill lines will be connected. ExPolygonWithOffset poly_with_offset( surface->expolygon, - rotate_vector.first, scale_(- (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing), scale_(- 0.5 * this->spacing)); if (poly_with_offset.n_contours_inner == 0) { // Not a single infill line fits. //FIXME maybe one shall trigger the gap fill here? return true; } BoundingBox bounding_box = poly_with_offset.bounding_box_src(); // define flow spacing according to requested density bool full_infill = params.density > 0.9999f; if (full_infill && !params.dont_adjust) { line_spacing = this->_adjust_solid_spacing(bounding_box.size().x, line_spacing); this->spacing = unscale(line_spacing); } else { // extend bounding box so that our pattern will be aligned with other layers // Transform the reference point to the rotated coordinate system. Point refpt = rotate_vector.second.rotated(- rotate_vector.first); // _align_to_grid will not work correctly with positive pattern_shift. coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % line_spacing; refpt.x -= (pattern_shift_scaled > 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled); bounding_box.merge(_align_to_grid( bounding_box.min, Point(line_spacing, line_spacing), refpt)); } // Intersect a set of euqally spaced vertical lines wiht expolygon. // n_vlines = ceil(bbox_width / line_spacing) size_t n_vlines = (bounding_box.max.x - bounding_box.min.x + line_spacing - 1) / line_spacing; coord_t x0 = bounding_box.min.x + (line_spacing + SCALED_EPSILON) / 2; #ifdef SLIC3R_DEBUG static int iRun = 0; BoundingBox bbox_svg = poly_with_offset.bounding_box_outer(); ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-%d.svg", iRun), bbox_svg); // , scale_(1.)); poly_with_offset.export_to_svg(svg); { ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-initial-%d.svg", iRun), bbox_svg); // , scale_(1.)); poly_with_offset.export_to_svg(svg); } iRun ++; #endif /* SLIC3R_DEBUG */ // For each contour // Allocate storage for the segments. std::vector segs(n_vlines, SegmentedIntersectionLine()); for (size_t i = 0; i < n_vlines; ++ i) { segs[i].idx = i; segs[i].pos = x0 + i * line_spacing; } for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) { const Points &contour = poly_with_offset.contour(iContour).points; if (contour.size() < 2) continue; // For each segment for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) { size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1; const Point &p1 = contour[iPrev]; const Point &p2 = contour[iSegment]; // Which of the equally spaced vertical lines is intersected by this segment? coord_t l = p1.x; coord_t r = p2.x; if (l > r) std::swap(l, r); // il, ir are the left / right indices of vertical lines intersecting a segment int il = (l - x0) / line_spacing; while (il * line_spacing + x0 < l) ++ il; il = std::max(int(0), il); int ir = (r - x0 + line_spacing) / line_spacing; while (ir * line_spacing + x0 > r) -- ir; ir = std::min(int(segs.size()) - 1, ir); if (il > ir) // No vertical line intersects this segment. continue; myassert(il >= 0 && il < segs.size()); myassert(ir >= 0 && ir < segs.size()); for (int i = il; i <= ir; ++ i) { coord_t this_x = segs[i].pos; assert(this_x == i * line_spacing + x0); SegmentIntersection is; is.iContour = iContour; is.iSegment = iSegment; myassert(l <= this_x); myassert(r >= this_x); // Calculate the intersection position in y axis. x is known. if (p1.x == this_x) { if (p2.x == this_x) { // Ignore strictly vertical segments. continue; } is.pos_p = p1.y; is.pos_q = 1; } else if (p2.x == this_x) { is.pos_p = p2.y; is.pos_q = 1; } else { // First calculate the intersection parameter 't' as a rational number with non negative denominator. if (p2.x > p1.x) { is.pos_p = this_x - p1.x; is.pos_q = p2.x - p1.x; } else { is.pos_p = p1.x - this_x; is.pos_q = p1.x - p2.x; } myassert(is.pos_p >= 0 && is.pos_p <= is.pos_q); // Make an intersection point from the 't'. is.pos_p *= int64_t(p2.y - p1.y); is.pos_p += p1.y * int64_t(is.pos_q); } // +-1 to take rounding into account. myassert(is.pos() + 1 >= std::min(p1.y, p2.y)); myassert(is.pos() <= std::max(p1.y, p2.y) + 1); segs[i].intersections.push_back(is); } } } // Sort the intersections along their segments, specify the intersection types. for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) { SegmentedIntersectionLine &sil = segs[i_seg]; // Sort the intersection points using exact rational arithmetic. std::sort(sil.intersections.begin(), sil.intersections.end()); #if 0 // Verify the order, bubble sort the intersections until sorted. bool modified = false; do { modified = false; for (size_t i = 1; i < sil.intersections.size(); ++ i) { size_t iContour1 = sil.intersections[i-1].iContour; size_t iContour2 = sil.intersections[i].iContour; const Points &contour1 = poly_with_offset.contour(iContour1).points; const Points &contour2 = poly_with_offset.contour(iContour2).points; size_t iSegment1 = sil.intersections[i-1].iSegment; size_t iPrev1 = ((iSegment1 == 0) ? contour1.size() : iSegment1) - 1; size_t iSegment2 = sil.intersections[i].iSegment; size_t iPrev2 = ((iSegment2 == 0) ? contour2.size() : iSegment2) - 1; bool swap = false; if (iContour1 == iContour2 && iSegment1 == iSegment2) { // The same segment, it has to be vertical. myassert(iPrev1 == iPrev2); swap = contour1[iPrev1].y > contour1[iContour1].y; #ifdef SLIC3R_DEBUG if (swap) printf("Swapping when single vertical segment\n"); #endif } else { // Segments are in a general position. Here an exact airthmetics may come into play. coord_t y1max = std::max(contour1[iPrev1].y, contour1[iSegment1].y); coord_t y2min = std::min(contour2[iPrev2].y, contour2[iSegment2].y); if (y1max < y2min) { // The segments are separated, nothing to do. } else { // Use an exact predicate to verify, that segment1 is below segment2. const Point *a = &contour1[iPrev1]; const Point *b = &contour1[iSegment1]; const Point *c = &contour2[iPrev2]; const Point *d = &contour2[iSegment2]; #ifdef SLIC3R_DEBUG const Point x1(sil.pos, sil.intersections[i-1].pos); const Point x2(sil.pos, sil.intersections[i ].pos); bool successive = false; #endif /* SLIC3R_DEBUG */ // Sort the points in the two segments by x. if (a->x > b->x) std::swap(a, b); if (c->x > d->x) std::swap(c, d); myassert(a->x <= sil.pos); myassert(c->x <= sil.pos); myassert(b->x >= sil.pos); myassert(d->x >= sil.pos); // Sort the two segments, so the segment will be on the left of . bool upper_more_left = false; if (a->x > c->x) { upper_more_left = true; std::swap(a, c); std::swap(b, d); } if (a == c) { // The segments iSegment1 and iSegment2 are directly connected. myassert(iContour1 == iContour2); myassert(iSegment1 == iPrev2 || iPrev1 == iSegment2); std::swap(c, d); myassert(a != c && b != c); #ifdef SLIC3R_DEBUG successive = true; #endif /* SLIC3R_DEBUG */ } #ifdef SLIC3R_DEBUG else if (b == d) { // The segments iSegment1 and iSegment2 are directly connected. myassert(iContour1 == iContour2); myassert(iSegment1 == iPrev2 || iPrev1 == iSegment2); myassert(a != c && b != c); successive = true; } #endif /* SLIC3R_DEBUG */ Orientation o = orient(*a, *b, *c); myassert(o != ORIENTATION_COLINEAR); swap = upper_more_left != (o == ORIENTATION_CW); #ifdef SLIC3R_DEBUG if (swap) printf(successive ? "Swapping when iContour1 == iContour2 and successive segments\n" : "Swapping when exact predicate\n"); #endif } } if (swap) { // Swap the intersection points, but keep the original positions, so they stay sorted by the y axis. std::swap(sil.intersections[i-1], sil.intersections[i]); std::swap(sil.intersections[i-1].pos_p, sil.intersections[i].pos_p); std::swap(sil.intersections[i-1].pos_q, sil.intersections[i].pos_q); modified = true; } } } while (modified); #endif // Assign the intersection types, remove duplicate or overlapping intersection points. // When a loop vertex touches a vertical line, intersection point is generated for both segments. // If such two segments are oriented equally, then one of them is removed. // Otherwise the vertex is tangential to the vertical line and both segments are removed. // The same rule applies, if the loop is pinched into a single point and this point touches the vertical line: // The loop has a zero vertical size at the vertical line, therefore the intersection point is removed. size_t j = 0; for (size_t i = 0; i < sil.intersections.size(); ++ i) { // What is the orientation of the segment at the intersection point? size_t iContour = sil.intersections[i].iContour; const Points &contour = poly_with_offset.contour(iContour).points; size_t iSegment = sil.intersections[i].iSegment; size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1; coord_t dir = contour[iSegment].x - contour[iPrev].x; // bool ccw = poly_with_offset.is_contour_ccw(iContour); // bool low = (dir > 0) == ccw; bool low = dir > 0; sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ? (low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) : (low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH); if (j > 0 && sil.intersections[i].pos() == sil.intersections[j-1].pos() && sil.intersections[i].iContour == sil.intersections[j-1].iContour) { if (sil.intersections[i].type == sil.intersections[j-1].type) { // This has to be a corner point crossing the vertical line. // Remove the second intersection point. #ifdef SLIC3R_DEBUG size_t iSegment2 = sil.intersections[j-1].iSegment; size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1; myassert(iSegment == iPrev2 || iSegment2 == iPrev); #endif /* SLIC3R_DEBUG */ } else { // This is a loop returning to the same point. // It may as well be a vertex of a loop touching this vertical line. // Remove both the lines. -- j; } } else { if (j < i) sil.intersections[j] = sil.intersections[i]; ++ j; } //FIXME solve a degenerate case, where there is a vertical segment on this vertical line and the contour // follows from left to right or vice versa, leading to low,low or high,high intersections. } // Shrink the list of intersections, if any of the intersection was removed during the classification. if (j < sil.intersections.size()) sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end()); } // Verify the segments. If something is wrong, give up. #define ASSERT_OR_RETURN(CONDITION) do { assert(CONDITION); if (! (CONDITION)) return false; } while (0) for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) { SegmentedIntersectionLine &sil = segs[i_seg]; // The intersection points have to be even. ASSERT_OR_RETURN((sil.intersections.size() & 1) == 0); for (size_t i = 0; i < sil.intersections.size();) { // An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times. ASSERT_OR_RETURN(sil.intersections[i].type == SegmentIntersection::OUTER_LOW); size_t j = i + 1; ASSERT_OR_RETURN(j < sil.intersections.size()); ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH); for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ; ASSERT_OR_RETURN(j < sil.intersections.size()); ASSERT_OR_RETURN((j & 1) == 1); ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH); ASSERT_OR_RETURN(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH); i = j + 1; } } #undef ASSERT_OR_RETURN #ifdef SLIC3R_DEBUG // Paint the segments and finalize the SVG file. for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) { SegmentedIntersectionLine &sil = segs[i_seg]; for (size_t i = 0; i < sil.intersections.size();) { size_t j = i + 1; for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ; if (i + 1 == j) { svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[j].pos())), "blue"); } else { svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[i+1].pos())), "green"); svg.draw(Line(Point(sil.pos, sil.intersections[i+1].pos()), Point(sil.pos, sil.intersections[j-1].pos())), (j - i + 1 > 4) ? "yellow" : "magenta"); svg.draw(Line(Point(sil.pos, sil.intersections[j-1].pos()), Point(sil.pos, sil.intersections[j].pos())), "green"); } i = j + 1; } } svg.Close(); #endif /* SLIC3R_DEBUG */ // For each outer only chords, measure their maximum distance to the bow of the outer contour. // Mark an outer only chord as consumed, if the distance is low. for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) { SegmentedIntersectionLine &seg = segs[i_vline]; for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++ i_intersection) { if (seg.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW && seg.intersections[i_intersection+1].type == SegmentIntersection::OUTER_HIGH) { bool consumed = false; // if (full_infill) { // measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection); // } else consumed = true; seg.intersections[i_intersection].consumed_vertical_up = consumed; } } } // Now construct a graph. // Find the first point. // Naively one would expect to achieve best results by chaining the paths by the shortest distance, // but that procedure does not create the longest continuous paths. // A simple "sweep left to right" procedure achieves better results. size_t i_vline = 0; size_t i_intersection = size_t(-1); // Follow the line, connect the lines into a graph. // Until no new line could be added to the output path: Point pointLast; Polyline *polyline_current = NULL; if (! polylines_out.empty()) pointLast = polylines_out.back().points.back(); for (;;) { if (i_intersection == size_t(-1)) { // The path has been interrupted. Find a next starting point, closest to the previous extruder position. coordf_t dist2min = std::numeric_limits().max(); for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) { const SegmentedIntersectionLine &seg = segs[i_vline2]; if (! seg.intersections.empty()) { myassert(seg.intersections.size() > 1); // Even number of intersections with the loops. myassert((seg.intersections.size() & 1) == 0); myassert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW); for (size_t i = 0; i < seg.intersections.size(); ++ i) { const SegmentIntersection &intrsctn = seg.intersections[i]; if (intrsctn.is_outer()) { myassert(intrsctn.is_low() || i > 0); bool consumed = intrsctn.is_low() ? intrsctn.consumed_vertical_up : seg.intersections[i-1].consumed_vertical_up; if (! consumed) { coordf_t dist2 = sqr(coordf_t(pointLast.x - seg.pos)) + sqr(coordf_t(pointLast.y - intrsctn.pos())); if (dist2 < dist2min) { dist2min = dist2; i_vline = i_vline2; i_intersection = i; //FIXME We are taking the first left point always. Verify, that the caller chains the paths // by a shortest distance, while reversing the paths if needed. //if (polylines_out.empty()) // Initial state, take the first line, which is the first from the left. goto found; } } } } } } if (i_intersection == size_t(-1)) // We are finished. break; found: // Start a new path. polylines_out.push_back(Polyline()); polyline_current = &polylines_out.back(); // Emit the first point of a path. pointLast = Point(segs[i_vline].pos, segs[i_vline].intersections[i_intersection].pos()); polyline_current->points.push_back(pointLast); } // From the initial point (i_vline, i_intersection), follow a path. SegmentedIntersectionLine &seg = segs[i_vline]; SegmentIntersection *intrsctn = &seg.intersections[i_intersection]; bool going_up = intrsctn->is_low(); bool try_connect = false; if (going_up) { myassert(! intrsctn->consumed_vertical_up); myassert(i_intersection + 1 < seg.intersections.size()); // Step back to the beginning of the vertical segment to mark it as consumed. if (intrsctn->is_inner()) { myassert(i_intersection > 0); -- intrsctn; -- i_intersection; } // Consume the complete vertical segment up to the outer contour. do { intrsctn->consumed_vertical_up = true; ++ intrsctn; ++ i_intersection; myassert(i_intersection < seg.intersections.size()); } while (intrsctn->type != SegmentIntersection::OUTER_HIGH); if ((intrsctn - 1)->is_inner()) { // Step back. -- intrsctn; -- i_intersection; myassert(intrsctn->type == SegmentIntersection::INNER_HIGH); try_connect = true; } } else { // Going down. myassert(intrsctn->is_high()); myassert(i_intersection > 0); myassert(! (intrsctn - 1)->consumed_vertical_up); // Consume the complete vertical segment up to the outer contour. if (intrsctn->is_inner()) intrsctn->consumed_vertical_up = true; do { myassert(i_intersection > 0); -- intrsctn; -- i_intersection; intrsctn->consumed_vertical_up = true; } while (intrsctn->type != SegmentIntersection::OUTER_LOW); if ((intrsctn + 1)->is_inner()) { // Step back. ++ intrsctn; ++ i_intersection; myassert(intrsctn->type == SegmentIntersection::INNER_LOW); try_connect = true; } } if (try_connect) { // Decide, whether to finish the segment, or whether to follow the perimeter. // 1) Find possible connection points on the previous / next vertical line. int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection); int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection); IntersectionTypeOtherVLine intrsctn_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection, iPrev); IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection, iNext); // 2) Find possible connection points on the same vertical line. int iAbove = -1; int iBelow = -1; int iSegAbove = -1; int iSegBelow = -1; { SegmentIntersection::SegmentIntersectionType type_crossing = (intrsctn->type == SegmentIntersection::INNER_LOW) ? SegmentIntersection::INNER_HIGH : SegmentIntersection::INNER_LOW; // Does the perimeter intersect the current vertical line above intrsctn? for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i) // if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) { if (seg.intersections[i].iContour == intrsctn->iContour) { iAbove = i; iSegAbove = seg.intersections[i].iSegment; break; } // Does the perimeter intersect the current vertical line below intrsctn? for (size_t i = i_intersection - 1; i > 0; -- i) // if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) { if (seg.intersections[i].iContour == intrsctn->iContour) { iBelow = i; iSegBelow = seg.intersections[i].iSegment; break; } } // 3) Sort the intersection points, clear iPrev / iNext / iSegBelow / iSegAbove, // if it is preceded by any other intersection point along the contour. unsigned int vert_seg_dir_valid_mask = (going_up ? (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::INNER_LOW) : (iSegBelow != -1 && seg.intersections[iBelow].type == SegmentIntersection::INNER_HIGH)) ? (DIR_FORWARD | DIR_BACKWARD) : 0; { // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext. // The perimeter contour orientation. const bool forward = intrsctn->is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour); const Polygon &poly = poly_with_offset.contour(intrsctn->iContour); { int d_horiz = (iPrev == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, intrsctn->iSegment, forward); int d_down = (iSegBelow == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, iSegBelow, intrsctn->iSegment, forward); int d_up = (iSegAbove == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, iSegAbove, intrsctn->iSegment, forward); if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up)) // The vertical crossing comes eralier than the prev crossing. // Disable the perimeter going back. intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST; if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up))) // The horizontal crossing comes earlier than the vertical crossing. vert_seg_dir_valid_mask &= ~(forward ? DIR_BACKWARD : DIR_FORWARD); } { int d_horiz = (iNext == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, intrsctn->iSegment, segs[i_vline+1].intersections[iNext].iSegment, forward); int d_down = (iSegBelow == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, intrsctn->iSegment, iSegBelow, forward); int d_up = (iSegAbove == -1) ? std::numeric_limits::max() : distance_of_segmens(poly, intrsctn->iSegment, iSegAbove, forward); if (intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up)) // The vertical crossing comes eralier than the prev crossing. // Disable the perimeter going forward. intrsctn_type_next = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST; if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up))) // The horizontal crossing comes earlier than the vertical crossing. vert_seg_dir_valid_mask &= ~(forward ? DIR_FORWARD : DIR_BACKWARD); } } // 4) Try to connect to a previous or next vertical line, making a zig-zag pattern. if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) { coordf_t distPrev = (intrsctn_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits::max() : measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev); coordf_t distNext = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits::max() : measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext); // Take the shorter path. //FIXME this may not be always the best strategy to take the shortest connection line now. bool take_next = (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ? (distNext < distPrev) : intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK; myassert(intrsctn->is_inner()); bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length); if (skip) { // Just skip the connecting contour and start a new path. goto dont_connect; polyline_current->points.push_back(Point(seg.pos, intrsctn->pos())); polylines_out.push_back(Polyline()); polyline_current = &polylines_out.back(); const SegmentedIntersectionLine &il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)]; polyline_current->points.push_back(Point(il2.pos, il2.intersections[take_next ? iNext : iPrev].pos())); } else { polyline_current->points.push_back(Point(seg.pos, intrsctn->pos())); emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next); } // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed. if (iPrev != -1) segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true; if (iNext != -1) intrsctn->consumed_perimeter_right = true; //FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed. // Advance to the neighbor line. if (take_next) { ++ i_vline; i_intersection = iNext; } else { -- i_vline; i_intersection = iPrev; } continue; } // 5) Try to connect to a previous or next point on the same vertical line. if (vert_seg_dir_valid_mask) { bool valid = true; // Verify, that there is no intersection with the inner contour up to the end of the contour segment. // Verify, that the successive segment has not been consumed yet. if (going_up) { if (seg.intersections[iAbove].consumed_vertical_up) { valid = false; } else { for (int i = (int)i_intersection + 1; i < iAbove && valid; ++i) if (seg.intersections[i].is_inner()) valid = false; } } else { if (seg.intersections[iBelow-1].consumed_vertical_up) { valid = false; } else { for (int i = iBelow + 1; i < (int)i_intersection && valid; ++i) if (seg.intersections[i].is_inner()) valid = false; } } if (valid) { const Polygon &poly = poly_with_offset.contour(intrsctn->iContour); int iNext = going_up ? iAbove : iBelow; int iSegNext = going_up ? iSegAbove : iSegBelow; bool dir_forward = (vert_seg_dir_valid_mask == (DIR_FORWARD | DIR_BACKWARD)) ? // Take the shorter length between the current and the next intersection point. (distance_of_segmens(poly, intrsctn->iSegment, iSegNext, true) < distance_of_segmens(poly, intrsctn->iSegment, iSegNext, false)) : (vert_seg_dir_valid_mask == DIR_FORWARD); // Skip this perimeter line? bool skip = params.dont_connect; if (! skip && link_max_length > 0) { coordf_t link_length = measure_perimeter_segment_on_vertical_line_length( poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, dir_forward); skip = link_length > link_max_length; } polyline_current->points.push_back(Point(seg.pos, intrsctn->pos())); if (skip) { // Just skip the connecting contour and start a new path. polylines_out.push_back(Polyline()); polyline_current = &polylines_out.back(); polyline_current->points.push_back(Point(seg.pos, seg.intersections[iNext].pos())); } else { // Consume the connecting contour and the next segment. emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, *polyline_current, dir_forward); } // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed. // If there are any outer intersection points skipped (bypassed) by the contour, // mark them as processed. if (going_up) { for (int i = (int)i_intersection; i < iAbove; ++ i) seg.intersections[i].consumed_vertical_up = true; } else { for (int i = iBelow; i < (int)i_intersection; ++ i) seg.intersections[i].consumed_vertical_up = true; } // seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true; intrsctn->consumed_perimeter_right = true; i_intersection = iNext; if (going_up) ++ intrsctn; else -- intrsctn; intrsctn->consumed_perimeter_right = true; continue; } } dont_connect: // No way to continue the current polyline. Take the rest of the line up to the outer contour. // This will finish the polyline, starting another polyline at a new point. if (going_up) ++ intrsctn; else -- intrsctn; } // Finish the current vertical line, // reset the current vertical line to pick a new starting point in the next round. myassert(intrsctn->is_outer()); myassert(intrsctn->is_high() == going_up); pointLast = Point(seg.pos, intrsctn->pos()); polyline_current->points.push_back(pointLast); // Handle duplicate points and zero length segments. polyline_current->remove_duplicate_points(); myassert(! polyline_current->has_duplicate_points()); // Handle nearly zero length edges. if (polyline_current->points.size() <= 1 || (polyline_current->points.size() == 2 && std::abs(polyline_current->points.front().x - polyline_current->points.back().x) < SCALED_EPSILON && std::abs(polyline_current->points.front().y - polyline_current->points.back().y) < SCALED_EPSILON)) polylines_out.pop_back(); intrsctn = NULL; i_intersection = -1; polyline_current = NULL; } #ifdef SLIC3R_DEBUG { { ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d.svg", iRun), bbox_svg); // , scale_(1.)); poly_with_offset.export_to_svg(svg); for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i) svg.draw(polylines_out[i].lines(), "black"); } // Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap. for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) { ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.)); svg.draw(polylines_out[i_polyline].lines(), "black"); } } #endif /* SLIC3R_DEBUG */ // paths must be rotated back for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) { // No need to translate, the absolute position is irrelevant. // it->translate(- rotate_vector.second.x, - rotate_vector.second.y); myassert(! it->has_duplicate_points()); it->rotate(rotate_vector.first); //FIXME rather simplify the paths to avoid very short edges? //myassert(! it->has_duplicate_points()); it->remove_duplicate_points(); } #ifdef SLIC3R_DEBUG // Verify, that there are no duplicate points in the sequence. for (Polylines::iterator it = polylines_out.begin(); it != polylines_out.end(); ++ it) myassert(! it->has_duplicate_points()); #endif /* SLIC3R_DEBUG */ return true; } Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams ¶ms) { Polylines polylines_out; if (! fill_surface_by_lines(surface, params, 0.f, 0.f, polylines_out)) { printf("FillRectilinear2::fill_surface() failed to fill a region.\n"); } return polylines_out; } Polylines FillGrid2::fill_surface(const Surface *surface, const FillParams ¶ms) { // Each linear fill covers half of the target coverage. FillParams params2 = params; params2.density *= 0.5f; Polylines polylines_out; if (! fill_surface_by_lines(surface, params2, 0.f, 0.f, polylines_out) || ! fill_surface_by_lines(surface, params2, float(M_PI / 2.), 0.f, polylines_out)) { printf("FillGrid2::fill_surface() failed to fill a region.\n"); } return polylines_out; } Polylines FillTriangles::fill_surface(const Surface *surface, const FillParams ¶ms) { // Each linear fill covers 1/3 of the target coverage. FillParams params2 = params; params2.density *= 0.333333333f; Polylines polylines_out; if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) || ! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) || ! fill_surface_by_lines(surface, params2, float(2. * M_PI / 3.), 0.5 * this->spacing / params2.density, polylines_out)) { printf("FillTriangles::fill_surface() failed to fill a region.\n"); } return polylines_out; } Polylines FillStars::fill_surface(const Surface *surface, const FillParams ¶ms) { // Each linear fill covers 1/3 of the target coverage. FillParams params2 = params; params2.density *= 0.333333333f; Polylines polylines_out; if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) || ! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) || ! fill_surface_by_lines(surface, params2, float(2. * M_PI / 3.), 0., polylines_out)) { printf("FillStars::fill_surface() failed to fill a region.\n"); } return polylines_out; } Polylines FillCubic::fill_surface(const Surface *surface, const FillParams ¶ms) { // Each linear fill covers 1/3 of the target coverage. FillParams params2 = params; params2.density *= 0.333333333f; Polylines polylines_out; if (! fill_surface_by_lines(surface, params2, 0.f, z, polylines_out) || ! fill_surface_by_lines(surface, params2, float(M_PI / 3.), -z, polylines_out) || // Rotated by PI*2/3 + PI to achieve reverse sloping wall. ! fill_surface_by_lines(surface, params2, float(M_PI * 2. / 3.), z, polylines_out)) { printf("FillCubic::fill_surface() failed to fill a region.\n"); } return polylines_out; } } // namespace Slic3r