#ifndef slic3r_SupportMaterial_hpp_ #define slic3r_SupportMaterial_hpp_ #include "Flow.hpp" #include "PrintConfig.hpp" namespace Slic3r { class PrintObject; class PrintConfig; class PrintObjectConfig; // how much we extend support around the actual contact area #define SUPPORT_MATERIAL_MARGIN 1.5 // This class manages raft and supports for a single PrintObject. // Instantiated by Slic3r::Print::Object->_support_material() // This class is instantiated before the slicing starts as Object.pm will query // the parameters of the raft to determine the 1st layer height and thickness. class PrintObjectSupportMaterial { public: enum SupporLayerType { sltUnknown = 0, sltRaft, stlFirstLayer, sltBottomContact, sltBottomInterface, sltBase, sltTopInterface, sltTopContact, // Some undecided type yet. It will turn into stlBase first, then it may turn into stlBottomInterface or stlTopInterface. stlIntermediate, }; class MyLayer { public: MyLayer() : layer_type(sltUnknown), print_z(0.), bottom_z(0.), height(0.), idx_object_layer_above(size_t(-1)), idx_object_layer_below(size_t(-1)), bridging(false), aux_polygons(NULL) {} ~MyLayer() { delete aux_polygons; aux_polygons = NULL; } bool operator==(const MyLayer &layer2) const { return print_z == layer2.print_z && height == layer2.height && bridging == layer2.bridging; } bool operator<(const MyLayer &layer2) const { if (print_z < layer2.print_z) { return true; } else if (print_z == layer2.print_z) { if (height > layer2.height) return true; else if (height == layer2.height) { return bridging < layer2.bridging; } else return false; } else return false; } SupporLayerType layer_type; // Z used for printing in unscaled coordinates coordf_t print_z; // Bottom height of this layer. For soluble layers, bottom_z + height = print_z, // otherwise bottom_z + gap + height = print_z. coordf_t bottom_z; // layer height in unscaled coordinates coordf_t height; // Index of a PrintObject layer_id supported by this layer. This will be set for top contact layers. // If this is not a contact layer, it will be set to size_t(-1). size_t idx_object_layer_above; // Index of a PrintObject layer_id, which supports this layer. This will be set for bottom contact layers. // If this is not a contact layer, it will be set to size_t(-1). size_t idx_object_layer_below; // Use a bridging flow when printing this support layer. bool bridging; // Polygons to be filled by the support pattern. Polygons polygons; // Currently for the contact layers only: Overhangs are stored here. Polygons *aux_polygons; }; struct LayerExtreme { LayerExtreme(MyLayer *alayer, bool ais_top) : layer(alayer), is_top(ais_top) {} MyLayer *layer; // top or bottom extreme bool is_top; coordf_t z() const { return is_top ? layer->print_z : layer->print_z - layer->height; } bool operator<(const LayerExtreme &other) const { return z() < other.z(); } }; /* struct LayerPrintZ_Hash { size_t operator()(const MyLayer &layer) const { return std::hash()(layer.print_z)^std::hash()(layer.height)^size_t(layer.bridging); } }; */ typedef std::vector MyLayersPtr; typedef std::deque MyLayerStorage; public: PrintObjectSupportMaterial(const PrintObject *object); // Height of the 1st layer is user configured as it is important for the print // to stick to he print bed. coordf_t first_layer_height() const { return m_object_config->first_layer_height.value; } // Is raft enabled? bool has_raft() const { return m_has_raft; } // Has any support? bool has_support() const { return m_object_config->support_material.value; } // How many raft layers are there below the 1st object layer? // The 1st object layer_id will be offsetted by this number. size_t num_raft_layers() const { return m_object_config->raft_layers.value; } // num_raft_layers() == num_raft_base_layers() + num_raft_interface_layers() + num_raft_contact_layers(). size_t num_raft_base_layers() const { return m_num_base_raft_layers; } size_t num_raft_interface_layers() const { return m_num_interface_raft_layers; } size_t num_raft_contact_layers() const { return m_num_contact_raft_layers; } coordf_t raft_height() const { return m_raft_height; } coordf_t raft_base_height() const { return m_raft_base_height; } coordf_t raft_interface_height() const { return m_raft_interface_height; } coordf_t raft_contact_height() const { return m_raft_contact_height; } bool raft_bridging() const { return m_raft_contact_layer_bridging; } // 1st layer of the object will be printed depeding on the raft settings. coordf_t first_object_layer_print_z() const { return m_object_1st_layer_print_z; } coordf_t first_object_layer_height() const { return m_object_1st_layer_height; } coordf_t first_object_layer_gap() const { return m_object_1st_layer_gap; } bool first_object_layer_bridging() const { return m_object_1st_layer_bridging; } // Generate support material for the object. // New support layers will be added to the object, // with extrusion paths and islands filled in for each support layer. void generate(PrintObject &object); private: // Generate top contact layers supporting overhangs. // For a soluble interface material synchronize the layer heights with the object, otherwise leave the layer height undefined. // If supports over bed surface only are requested, don't generate contact layers over an object. MyLayersPtr top_contact_layers(const PrintObject &object, MyLayerStorage &layer_storage) const; // Generate bottom contact layers supporting the top contact layers. // For a soluble interface material synchronize the layer heights with the object, // otherwise set the layer height to a bridging flow of a support interface nozzle. MyLayersPtr bottom_contact_layers_and_layer_support_areas( const PrintObject &object, const MyLayersPtr &top_contacts, MyLayerStorage &layer_storage, std::vector &layer_support_areas) const; // Trim the top_contacts layers with the bottom_contacts layers if they overlap, so there would not be enough vertical space for both of them. void trim_top_contacts_by_bottom_contacts(const PrintObject &object, const MyLayersPtr &bottom_contacts, MyLayersPtr &top_contacts) const; // Generate raft layers and the intermediate support layers between the bottom contact and top contact surfaces. MyLayersPtr raft_and_intermediate_support_layers( const PrintObject &object, const MyLayersPtr &bottom_contacts, const MyLayersPtr &top_contacts, MyLayerStorage &layer_storage, const coordf_t max_object_layer_height) const; void generate_base_layers( const PrintObject &object, const MyLayersPtr &bottom_contacts, const MyLayersPtr &top_contacts, MyLayersPtr &intermediate_layers, std::vector &layer_support_areas) const; Polygons generate_raft_base( const PrintObject &object, const MyLayersPtr &bottom_contacts, MyLayersPtr &intermediate_layers) const; MyLayersPtr generate_interface_layers( const PrintObject &object, const MyLayersPtr &bottom_contacts, const MyLayersPtr &top_contacts, MyLayersPtr &intermediate_layers, MyLayerStorage &layer_storage) const; /* void generate_pillars_shape(); void clip_with_shape(); */ // Produce the actual G-code. void generate_toolpaths( const PrintObject &object, const Polygons &raft, const MyLayersPtr &bottom_contacts, const MyLayersPtr &top_contacts, const MyLayersPtr &intermediate_layers, const MyLayersPtr &interface_layers) const; const PrintObject *m_object; const PrintConfig *m_print_config; const PrintObjectConfig *m_object_config; Flow m_first_layer_flow; Flow m_support_material_flow; Flow m_support_material_interface_flow; bool m_soluble_interface; Flow m_support_material_raft_base_flow; Flow m_support_material_raft_interface_flow; Flow m_support_material_raft_contact_flow; bool m_has_raft; size_t m_num_base_raft_layers; size_t m_num_interface_raft_layers; size_t m_num_contact_raft_layers; // If set, the raft contact layer is laid with round strings, which are easily detachable // from both the below and above layes. // Otherwise a normal flow is used and the strings are squashed against the layer below, // creating a firm bond with the layer below and making the interface top surface flat. coordf_t m_raft_height; coordf_t m_raft_base_height; coordf_t m_raft_interface_height; coordf_t m_raft_contact_height; bool m_raft_contact_layer_bridging; coordf_t m_object_1st_layer_print_z; coordf_t m_object_1st_layer_height; coordf_t m_object_1st_layer_gap; bool m_object_1st_layer_bridging; coordf_t m_object_layer_height_max; coordf_t m_support_layer_height_min; coordf_t m_support_layer_height_max; coordf_t m_support_interface_layer_height_max; coordf_t m_gap_extra_above; coordf_t m_gap_extra_below; coordf_t m_gap_xy; // If enabled, the support layers will be synchronized with object layers. // This does not prevent the support layers to be combined. bool m_synchronize_support_layers_with_object; // If disabled and m_synchronize_support_layers_with_object, // the support layers will be synchronized with the object layers exactly, no layer will be combined. bool m_combine_support_layers; }; } // namespace Slic3r #endif /* slic3r_SupportMaterial_hpp_ */