#include "libslic3r/libslic3r.h" #include "GLModel.hpp" #include "3DScene.hpp" #include "libslic3r/TriangleMesh.hpp" #include namespace Slic3r { namespace GUI { void GL_Model::init_from(const GLModelInitializationData& data) { assert(!data.positions.empty() && !data.triangles.empty()); assert(data.positions.size() == data.normals.size()); if (m_vbo_id > 0) // call reset() if you want to reuse this model return; // vertices/normals data std::vector vertices(6 * data.positions.size()); for (size_t i = 0; i < data.positions.size(); ++i) { ::memcpy(static_cast(&vertices[i * 6]), static_cast(data.positions[i].data()), 3 * sizeof(float)); ::memcpy(static_cast(&vertices[3 + i * 6]), static_cast(data.normals[i].data()), 3 * sizeof(float)); } // indices data std::vector indices(3 * data.triangles.size()); for (size_t i = 0; i < data.triangles.size(); ++i) { for (size_t j = 0; j < 3; ++j) { indices[i * 3 + j] = static_cast(data.triangles[i][j]); } } m_indices_count = static_cast(indices.size()); m_bounding_box = BoundingBoxf3(); for (size_t i = 0; i < data.positions.size(); ++i) { m_bounding_box.merge(data.positions[i].cast()); } send_to_gpu(vertices, indices); } void GL_Model::init_from(const TriangleMesh& mesh) { auto get_normal = [](const std::array& triangle) { return (triangle[1] - triangle[0]).cross(triangle[2] - triangle[0]).normalized(); }; if (m_vbo_id > 0) // call reset() if you want to reuse this model return; assert(!mesh.its.vertices.empty() && !mesh.its.indices.empty()); // call require_shared_vertices() before to pass the mesh to this method // vertices data -> load from mesh std::vector vertices(6 * mesh.its.vertices.size()); for (size_t i = 0; i < mesh.its.vertices.size(); ++i) { ::memcpy(static_cast(&vertices[i * 6]), static_cast(mesh.its.vertices[i].data()), 3 * sizeof(float)); } // indices/normals data -> load from mesh std::vector indices(3 * mesh.its.indices.size()); for (size_t i = 0; i < mesh.its.indices.size(); ++i) { const stl_triangle_vertex_indices& triangle = mesh.its.indices[i]; for (size_t j = 0; j < 3; ++j) { indices[i * 3 + j] = static_cast(triangle[j]); } Vec3f normal = get_normal({ mesh.its.vertices[triangle[0]], mesh.its.vertices[triangle[1]], mesh.its.vertices[triangle[2]] }); ::memcpy(static_cast(&vertices[3 + static_cast(triangle[0]) * 6]), static_cast(normal.data()), 3 * sizeof(float)); ::memcpy(static_cast(&vertices[3 + static_cast(triangle[1]) * 6]), static_cast(normal.data()), 3 * sizeof(float)); ::memcpy(static_cast(&vertices[3 + static_cast(triangle[2]) * 6]), static_cast(normal.data()), 3 * sizeof(float)); } m_indices_count = static_cast(indices.size()); m_bounding_box = mesh.bounding_box(); send_to_gpu(vertices, indices); } void GL_Model::reset() { // release gpu memory if (m_ibo_id > 0) { glsafe(::glDeleteBuffers(1, &m_ibo_id)); m_ibo_id = 0; } if (m_vbo_id > 0) { glsafe(::glDeleteBuffers(1, &m_vbo_id)); m_vbo_id = 0; } m_indices_count = 0; m_bounding_box = BoundingBoxf3(); } void GL_Model::render() const { if (m_vbo_id == 0 || m_ibo_id == 0) return; glsafe(::glBindBuffer(GL_ARRAY_BUFFER, m_vbo_id)); glsafe(::glVertexPointer(3, GL_FLOAT, 6 * sizeof(float), (const void*)0)); glsafe(::glNormalPointer(GL_FLOAT, 6 * sizeof(float), (const void*)(3 * sizeof(float)))); glsafe(::glEnableClientState(GL_VERTEX_ARRAY)); glsafe(::glEnableClientState(GL_NORMAL_ARRAY)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_ibo_id)); glsafe(::glDrawElements(GL_TRIANGLES, static_cast(m_indices_count), GL_UNSIGNED_INT, (const void*)0)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)); glsafe(::glDisableClientState(GL_NORMAL_ARRAY)); glsafe(::glDisableClientState(GL_VERTEX_ARRAY)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0)); } void GL_Model::send_to_gpu(const std::vector& vertices, const std::vector& indices) { // vertex data -> send to gpu glsafe(::glGenBuffers(1, &m_vbo_id)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, m_vbo_id)); glsafe(::glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(float), vertices.data(), GL_STATIC_DRAW)); glsafe(::glBindBuffer(GL_ARRAY_BUFFER, 0)); // indices data -> send to gpu glsafe(::glGenBuffers(1, &m_ibo_id)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_ibo_id)); glsafe(::glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), indices.data(), GL_STATIC_DRAW)); glsafe(::glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)); } GLModelInitializationData stilized_arrow(int resolution, float tip_radius, float tip_height, float stem_radius, float stem_height) { auto append_vertex = [](GLModelInitializationData& data, const Vec3f& position, const Vec3f& normal) { data.positions.emplace_back(position); data.normals.emplace_back(normal); }; resolution = std::max(4, resolution); GLModelInitializationData data; const float angle_step = 2.0f * M_PI / static_cast(resolution); std::vector cosines(resolution); std::vector sines(resolution); for (int i = 0; i < resolution; ++i) { float angle = angle_step * static_cast(i); cosines[i] = ::cos(angle); sines[i] = -::sin(angle); } const float total_height = tip_height + stem_height; // tip vertices/normals append_vertex(data, { 0.0f, 0.0f, total_height }, Vec3f::UnitZ()); for (int i = 0; i < resolution; ++i) { append_vertex(data, { tip_radius * sines[i], tip_radius * cosines[i], stem_height }, { sines[i], cosines[i], 0.0f }); } // tip triangles for (int i = 0; i < resolution; ++i) { int v3 = (i < resolution - 1) ? i + 2 : 1; data.triangles.emplace_back(0, i + 1, v3); } // tip cap outer perimeter vertices for (int i = 0; i < resolution; ++i) { append_vertex(data, { tip_radius * sines[i], tip_radius * cosines[i], stem_height }, -Vec3f::UnitZ()); } // tip cap inner perimeter vertices for (int i = 0; i < resolution; ++i) { append_vertex(data, { stem_radius * sines[i], stem_radius * cosines[i], stem_height }, -Vec3f::UnitZ()); } // tip cap triangles for (int i = 0; i < resolution; ++i) { int v2 = (i < resolution - 1) ? i + resolution + 2 : resolution + 1; int v3 = (i < resolution - 1) ? i + 2 * resolution + 2 : 2 * resolution + 1; data.triangles.emplace_back(i + resolution + 1, v3, v2); data.triangles.emplace_back(i + resolution + 1, i + 2 * resolution + 1, v3); } // stem bottom vertices for (int i = 0; i < resolution; ++i) { append_vertex(data, { stem_radius * sines[i], stem_radius * cosines[i], stem_height }, { sines[i], cosines[i], 0.0f }); } // stem top vertices for (int i = 0; i < resolution; ++i) { append_vertex(data, { stem_radius * sines[i], stem_radius * cosines[i], 0.0f }, { sines[i], cosines[i], 0.0f }); } // stem triangles for (int i = 0; i < resolution; ++i) { int v2 = (i < resolution - 1) ? i + 3 * resolution + 2 : 3 * resolution + 1; int v3 = (i < resolution - 1) ? i + 4 * resolution + 2 : 4 * resolution + 1; data.triangles.emplace_back(i + 3 * resolution + 1, v3, v2); data.triangles.emplace_back(i + 3 * resolution + 1, i + 4 * resolution + 1, v3); } // stem cap vertices append_vertex(data, Vec3f::Zero(), -Vec3f::UnitZ()); for (int i = 0; i < resolution; ++i) { append_vertex(data, { stem_radius * sines[i], stem_radius * cosines[i], 0.0f }, -Vec3f::UnitZ()); } // stem cap triangles for (int i = 0; i < resolution; ++i) { int v3 = (i < resolution - 1) ? i + 5 * resolution + 3 : 5 * resolution + 2; data.triangles.emplace_back(5 * resolution + 1, v3, i + 5 * resolution + 2); } return data; } GLModelInitializationData circular_arrow(int resolution, float radius, float tip_height, float tip_width, float stem_width, float thickness) { auto append_vertex = [](GLModelInitializationData& data, const Vec3f& position, const Vec3f& normal) { data.positions.emplace_back(position); data.normals.emplace_back(normal); }; resolution = std::max(2, resolution); GLModelInitializationData data; const float half_thickness = 0.5f * thickness; const float half_stem_width = 0.5f * stem_width; const float half_tip_width = 0.5f * tip_width; const float outer_radius = radius + half_stem_width; const float inner_radius = radius - half_stem_width; const float step_angle = 0.5f * PI / static_cast(resolution); // tip // top face vertices append_vertex(data, { 0.0f, outer_radius, half_thickness }, Vec3f::UnitZ()); append_vertex(data, { 0.0f, radius + half_tip_width, half_thickness }, Vec3f::UnitZ()); append_vertex(data, { -tip_height, radius, half_thickness }, Vec3f::UnitZ()); append_vertex(data, { 0.0f, radius - half_tip_width, half_thickness }, Vec3f::UnitZ()); append_vertex(data, { 0.0f, inner_radius, half_thickness }, Vec3f::UnitZ()); // top face triangles data.triangles.emplace_back(0, 1, 2); data.triangles.emplace_back(0, 2, 4); data.triangles.emplace_back(4, 2, 3); // bottom face vertices append_vertex(data, { 0.0f, outer_radius, -half_thickness }, -Vec3f::UnitZ()); append_vertex(data, { 0.0f, radius + half_tip_width, -half_thickness }, -Vec3f::UnitZ()); append_vertex(data, { -tip_height, radius, -half_thickness }, -Vec3f::UnitZ()); append_vertex(data, { 0.0f, radius - half_tip_width, -half_thickness }, -Vec3f::UnitZ()); append_vertex(data, { 0.0f, inner_radius, -half_thickness }, -Vec3f::UnitZ()); // bottom face triangles data.triangles.emplace_back(5, 7, 6); data.triangles.emplace_back(5, 9, 7); data.triangles.emplace_back(9, 8, 7); // side faces vertices append_vertex(data, { 0.0f, outer_radius, half_thickness }, Vec3f::UnitX()); append_vertex(data, { 0.0f, radius + half_tip_width, half_thickness }, Vec3f::UnitY()); append_vertex(data, { -tip_height, radius, half_thickness }, -Vec3f::UnitX()); append_vertex(data, { 0.0f, radius - half_tip_width, half_thickness }, -Vec3f::UnitY()); append_vertex(data, { 0.0f, inner_radius, half_thickness }, Vec3f::UnitX()); append_vertex(data, { 0.0f, outer_radius, -half_thickness }, Vec3f::UnitX()); append_vertex(data, { 0.0f, radius + half_tip_width, -half_thickness }, Vec3f::UnitY()); append_vertex(data, { -tip_height, radius, -half_thickness }, -Vec3f::UnitX()); append_vertex(data, { 0.0f, radius - half_tip_width, -half_thickness }, -Vec3f::UnitY()); append_vertex(data, { 0.0f, inner_radius, -half_thickness }, Vec3f::UnitX()); // side faces triangles for (int i = 0; i < 4; ++i) { data.triangles.emplace_back(15 + i, 11 + i, 10 + i); data.triangles.emplace_back(15 + i, 16 + i, 11 + i); } // stem // top face vertices for (int i = 0; i <= resolution; ++i) { float angle = static_cast(i) * step_angle; append_vertex(data, { inner_radius * ::sin(angle), inner_radius * ::cos(angle), half_thickness }, Vec3f::UnitZ()); } for (int i = 0; i <= resolution; ++i) { float angle = static_cast(i) * step_angle; append_vertex(data, { outer_radius * ::sin(angle), outer_radius * ::cos(angle), half_thickness }, Vec3f::UnitZ()); } // top face triangles for (int i = 0; i < resolution; ++i) { data.triangles.emplace_back(20 + i, 21 + i, 21 + resolution + i); data.triangles.emplace_back(21 + i, 22 + resolution + i, 21 + resolution + i); } // bottom face vertices for (int i = 0; i <= resolution; ++i) { float angle = static_cast(i) * step_angle; append_vertex(data, { inner_radius * ::sin(angle), inner_radius * ::cos(angle), -half_thickness }, -Vec3f::UnitZ()); } for (int i = 0; i <= resolution; ++i) { float angle = static_cast(i) * step_angle; append_vertex(data, { outer_radius * ::sin(angle), outer_radius * ::cos(angle), -half_thickness }, -Vec3f::UnitZ()); } // bottom face triangles for (int i = 0; i < resolution; ++i) { data.triangles.emplace_back(22 + 2 * resolution + i, 23 + 3 * resolution + i, 23 + 2 * resolution + i); data.triangles.emplace_back(23 + 2 * resolution + i, 23 + 3 * resolution + i, 24 + 3 * resolution + i); } // side faces vertices for (int i = 0; i <= resolution; ++i) { float angle = static_cast(i) * step_angle; float c = ::cos(angle); float s = ::sin(angle); append_vertex(data, { inner_radius * s, inner_radius * c, half_thickness }, { -s, -c, 0.0f}); } for (int i = resolution; i >= 0; --i) { float angle = static_cast(i) * step_angle; float c = ::cos(angle); float s = ::sin(angle); append_vertex(data, { outer_radius * s, outer_radius * c, half_thickness }, { s, c, 0.0f }); } for (int i = 0; i <= resolution; ++i) { float angle = static_cast(i) * step_angle; float c = ::cos(angle); float s = ::sin(angle); append_vertex(data, { inner_radius * s, inner_radius * c, -half_thickness }, { -s, -c, 0.0f }); } for (int i = resolution; i >= 0; --i) { float angle = static_cast(i) * step_angle; float c = ::cos(angle); float s = ::sin(angle); append_vertex(data, { outer_radius * s, outer_radius * c, -half_thickness }, { s, c, 0.0f }); } // side faces triangles for (int i = 0; i < 2 * resolution + 1; ++i) { data.triangles.emplace_back(20 + 6 * (resolution + 1) + i, 21 + 6 * (resolution + 1) + i, 21 + 4 * (resolution + 1) + i); data.triangles.emplace_back(20 + 6 * (resolution + 1) + i, 21 + 4 * (resolution + 1) + i, 20 + 4 * (resolution + 1) + i); } return data; } } // namespace GUI } // namespace Slic3r