#include #include #include "libslic3r/MutablePriorityQueue.hpp" // based on https://raw.githubusercontent.com/rollbear/prio_queue/master/self_test.cpp // original source Copyright Björn Fahller 2015, Boost Software License, Version 1.0, http://www.boost.org/LICENSE_1_0.txt TEST_CASE("Skip addressing", "[MutableSkipHeapPriorityQueue]") { using skip_addressing = SkipHeapAddressing<8>; SECTION("block root") { REQUIRE(skip_addressing::is_block_root(1)); REQUIRE(skip_addressing::is_block_root(9)); REQUIRE(skip_addressing::is_block_root(17)); REQUIRE(skip_addressing::is_block_root(73)); REQUIRE(! skip_addressing::is_block_root(2)); REQUIRE(! skip_addressing::is_block_root(3)); REQUIRE(! skip_addressing::is_block_root(4)); REQUIRE(! skip_addressing::is_block_root(7)); REQUIRE(! skip_addressing::is_block_root(31)); } SECTION("block leaf") { REQUIRE(! skip_addressing::is_block_leaf(1)); REQUIRE(! skip_addressing::is_block_leaf(2)); REQUIRE(! skip_addressing::is_block_leaf(3)); REQUIRE(skip_addressing::is_block_leaf(4)); REQUIRE(skip_addressing::is_block_leaf(5)); REQUIRE(skip_addressing::is_block_leaf(6)); REQUIRE(skip_addressing::is_block_leaf(7)); REQUIRE(skip_addressing::is_block_leaf(28)); REQUIRE(skip_addressing::is_block_leaf(29)); REQUIRE(skip_addressing::is_block_leaf(30)); REQUIRE(! skip_addressing::is_block_leaf(257)); REQUIRE(skip_addressing::is_block_leaf(255)); } SECTION("Obtaining child") { REQUIRE(skip_addressing::child_of(1) == 2); REQUIRE(skip_addressing::child_of(2) == 4); REQUIRE(skip_addressing::child_of(3) == 6); REQUIRE(skip_addressing::child_of(4) == 9); REQUIRE(skip_addressing::child_of(31) == 249); } SECTION("Obtaining parent") { REQUIRE(skip_addressing::parent_of(2) == 1); REQUIRE(skip_addressing::parent_of(3) == 1); REQUIRE(skip_addressing::parent_of(6) == 3); REQUIRE(skip_addressing::parent_of(7) == 3); REQUIRE(skip_addressing::parent_of(9) == 4); REQUIRE(skip_addressing::parent_of(17) == 4); REQUIRE(skip_addressing::parent_of(33) == 5); REQUIRE(skip_addressing::parent_of(29) == 26); REQUIRE(skip_addressing::parent_of(1097) == 140); } } template static auto make_test_priority_queue() { return make_miniheap_mutable_priority_queue, block_size, false>( [](std::pair &v, size_t idx){ v.second = idx; }, [](std::pair &l, std::pair &r){ return l.first < r.first; }); } TEST_CASE("Mutable priority queue - basic tests", "[MutableSkipHeapPriorityQueue]") { SECTION("a default constructed queue is empty") { auto q = make_test_priority_queue(); REQUIRE(q.empty()); REQUIRE(q.size() == 0); } SECTION("an empty queue is not empty when one element is inserted") { auto q = make_test_priority_queue(); q.push(std::make_pair(1, 0U)); REQUIRE(!q.empty()); REQUIRE(q.size() == 1); } SECTION("a queue with one element has it on top") { auto q = make_test_priority_queue(); q.push(std::make_pair(8, 0U)); REQUIRE(q.top().first == 8); } SECTION("a queue with one element becomes empty when popped") { auto q = make_test_priority_queue(); q.push(std::make_pair(9, 0U)); q.pop(); REQUIRE(q.empty()); REQUIRE(q.size() == 0); } SECTION("insert sorted stays sorted") { auto q = make_test_priority_queue(); for (auto i : { 1, 2, 3, 4, 5, 6, 7, 8 }) q.push(std::make_pair(i, 0U)); REQUIRE(q.top().first == 1); q.pop(); REQUIRE(q.top().first == 2); q.pop(); REQUIRE(q.top().first == 3); q.pop(); REQUIRE(q.top().first == 4); q.pop(); REQUIRE(q.top().first == 5); q.pop(); REQUIRE(q.top().first == 6); q.pop(); REQUIRE(q.top().first == 7); q.pop(); REQUIRE(q.top().first == 8); q.pop(); REQUIRE(q.empty()); } SECTION("randomly inserted elements are popped sorted") { auto q = make_test_priority_queue(); std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> dist(1, 100000); int n[36000]; for (auto& i : n) { i = dist(gen); q.push(std::make_pair(i, 0U)); } REQUIRE(!q.empty()); REQUIRE(q.size() == 36000); std::sort(std::begin(n), std::end(n)); for (auto i : n) { REQUIRE(q.top().first == i); q.pop(); } REQUIRE(q.empty()); } } TEST_CASE("Mutable priority queue - reshedule first", "[MutableSkipHeapPriorityQueue]") { SECTION("reschedule top with highest prio leaves order unchanged") { auto q = make_miniheap_mutable_priority_queue, size_t>, 4, false>( [](std::pair, size_t>& v, size_t idx) { v.second = idx; }, [](std::pair, size_t>& l, std::pair, size_t>& r) { return l.first.first < r.first.first; }); // 0 1 2 3 4 5 6 7 8 int nums[] = { 32, 1, 88, 16, 9, 11, 3, 22, 23 }; for (auto &i : nums) q.push(std::make_pair(std::make_pair(i, &i), 0U)); REQUIRE(q.top().first.first == 1); REQUIRE(q.top().first.second == &nums[1]); REQUIRE(*q.top().first.second == 1); // Update the top element. q.top().first.first = 2; q.update(1); REQUIRE(q.top().first.first == 2); REQUIRE(q.top().first.second == &nums[1]); q.pop(); REQUIRE(q.top().first.first == 3); REQUIRE(q.top().first.second == &nums[6]); q.pop(); REQUIRE(q.top().first.first == 9); REQUIRE(q.top().first.second == &nums[4]); q.pop(); REQUIRE(q.top().first.first == 11); REQUIRE(q.top().first.second == &nums[5]); q.pop(); REQUIRE(q.top().first.first == 16); REQUIRE(q.top().first.second == &nums[3]); q.pop(); REQUIRE(q.top().first.first == 22); REQUIRE(q.top().first.second == &nums[7]); q.pop(); REQUIRE(q.top().first.first == 23); REQUIRE(q.top().first.second == &nums[8]); q.pop(); REQUIRE(q.top().first.first == 32); REQUIRE(q.top().first.second == &nums[0]); q.pop(); REQUIRE(q.top().first.first == 88); REQUIRE(q.top().first.second == &nums[2]); q.pop(); REQUIRE(q.empty()); } SECTION("reschedule to mid range moves element to correct place") { auto q = make_miniheap_mutable_priority_queue, size_t>, 4, false>( [](std::pair, size_t>& v, size_t idx) { v.second = idx; }, [](std::pair, size_t>& l, std::pair, size_t>& r) { return l.first.first < r.first.first; }); // 0 1 2 3 4 5 6 7 8 int nums[] = { 32, 1, 88, 16, 9, 11, 3, 22, 23 }; for (auto& i : nums) q.push(std::make_pair(std::make_pair(i, &i), 0U)); REQUIRE(q.top().first.first == 1); REQUIRE(q.top().first.second == &nums[1]); REQUIRE(*q.top().first.second == 1); // Update the top element. q.top().first.first = 12; q.update(1); REQUIRE(q.top().first.first == 3); REQUIRE(q.top().first.second == &nums[6]); q.pop(); REQUIRE(q.top().first.first == 9); REQUIRE(q.top().first.second == &nums[4]); q.pop(); REQUIRE(q.top().first.first == 11); REQUIRE(q.top().first.second == &nums[5]); q.pop(); REQUIRE(q.top().first.first == 12); REQUIRE(q.top().first.second == &nums[1]); q.pop(); REQUIRE(q.top().first.first == 16); REQUIRE(q.top().first.second == &nums[3]); q.pop(); REQUIRE(q.top().first.first == 22); REQUIRE(q.top().first.second == &nums[7]); q.pop(); REQUIRE(q.top().first.first == 23); REQUIRE(q.top().first.second == &nums[8]); q.pop(); REQUIRE(q.top().first.first == 32); REQUIRE(q.top().first.second == &nums[0]); q.pop(); REQUIRE(q.top().first.first == 88); REQUIRE(q.top().first.second == &nums[2]); q.pop(); REQUIRE(q.empty()); } SECTION("reschedule to last moves element to correct place", "heap") { auto q = make_miniheap_mutable_priority_queue, size_t>, 4, false>( [](std::pair, size_t>& v, size_t idx) { v.second = idx; }, [](std::pair, size_t>& l, std::pair, size_t>& r) { return l.first.first < r.first.first; }); // 0 1 2 3 4 5 6 7 8 int nums[] = { 32, 1, 88, 16, 9, 11, 3, 22, 23 }; for (auto& i : nums) q.push(std::make_pair(std::make_pair(i, &i), 0U)); REQUIRE(q.top().first.first == 1); REQUIRE(q.top().first.second == &nums[1]); REQUIRE(*q.top().first.second == 1); // Update the top element. q.top().first.first = 89; q.update(1); REQUIRE(q.top().first.first == 3); REQUIRE(q.top().first.second == &nums[6]); q.pop(); REQUIRE(q.top().first.first == 9); REQUIRE(q.top().first.second == &nums[4]); q.pop(); REQUIRE(q.top().first.first == 11); REQUIRE(q.top().first.second == &nums[5]); q.pop(); REQUIRE(q.top().first.first == 16); REQUIRE(q.top().first.second == &nums[3]); q.pop(); REQUIRE(q.top().first.first == 22); REQUIRE(q.top().first.second == &nums[7]); q.pop(); REQUIRE(q.top().first.first == 23); REQUIRE(q.top().first.second == &nums[8]); q.pop(); REQUIRE(q.top().first.first == 32); REQUIRE(q.top().first.second == &nums[0]); q.pop(); REQUIRE(q.top().first.first == 88); REQUIRE(q.top().first.second == &nums[2]); q.pop(); REQUIRE(q.top().first.first == 89); REQUIRE(q.top().first.second == &nums[1]); q.pop(); REQUIRE(q.empty()); } SECTION("reschedule top of 2 elements to last") { auto q = make_test_priority_queue<8>(); q.push(std::make_pair(1, 0U)); q.push(std::make_pair(2, 0U)); REQUIRE(q.top().first == 1); // Update the top element. q.top().first = 3; q.update(1); REQUIRE(q.top().first == 2); } SECTION("reschedule top of 3 elements left to 2nd") { auto q = make_test_priority_queue<8>(); q.push(std::make_pair(1, 0U)); q.push(std::make_pair(2, 0U)); q.push(std::make_pair(4, 0U)); REQUIRE(q.top().first == 1); // Update the top element. q.top().first = 3; q.update(1); REQUIRE(q.top().first == 2); } SECTION("reschedule top of 3 elements right to 2nd") { auto q = make_test_priority_queue<8>(); q.push(std::make_pair(1, 0U)); q.push(std::make_pair(4, 0U)); q.push(std::make_pair(2, 0U)); REQUIRE(q.top().first == 1); // Update the top element. q.top().first = 3; q.update(1); REQUIRE(q.top().first == 2); } SECTION("reschedule top random gives same resultas pop/push") { std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution dist(1, 100000); auto pq = make_test_priority_queue<8>(); std::priority_queue, std::greater<>> stdq; for (size_t outer = 0; outer < 100; ++ outer) { int num = gen(); pq.push(std::make_pair(num, 0U)); stdq.push(num); for (size_t inner = 0; inner < 100; ++ inner) { int newval = gen(); // Update the top element. pq.top().first = newval; pq.update(1); stdq.pop(); stdq.push(newval); auto n = pq.top().first; auto sn = stdq.top(); REQUIRE(sn == n); } } } }