#include "Geometry.hpp" #include "ClipperUtils.hpp" #include "ExPolygon.hpp" #include "Line.hpp" #include "PolylineCollection.hpp" #include "clipper.hpp" #include #include #include #include #include #include #ifdef SLIC3R_DEBUG #include "SVG.hpp" #endif using namespace boost::polygon; // provides also high() and low() namespace Slic3r { namespace Geometry { static bool sort_points (Point a, Point b) { return (a.x < b.x) || (a.x == b.x && a.y < b.y); } /* This implementation is based on Andrew's monotone chain 2D convex hull algorithm */ Polygon convex_hull(Points points) { assert(points.size() >= 3); // sort input points std::sort(points.begin(), points.end(), sort_points); int n = points.size(), k = 0; Polygon hull; hull.points.resize(2*n); // Build lower hull for (int i = 0; i < n; i++) { while (k >= 2 && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--; hull.points[k++] = points[i]; } // Build upper hull for (int i = n-2, t = k+1; i >= 0; i--) { while (k >= t && points[i].ccw(hull.points[k-2], hull.points[k-1]) <= 0) k--; hull.points[k++] = points[i]; } hull.points.resize(k); assert( hull.points.front().coincides_with(hull.points.back()) ); hull.points.pop_back(); return hull; } Polygon convex_hull(const Polygons &polygons) { Points pp; for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) { pp.insert(pp.end(), p->points.begin(), p->points.end()); } return convex_hull(pp); } /* accepts an arrayref of points and returns a list of indices according to a nearest-neighbor walk */ void chained_path(const Points &points, std::vector &retval, Point start_near) { PointConstPtrs my_points; std::map indices; my_points.reserve(points.size()); for (Points::const_iterator it = points.begin(); it != points.end(); ++it) { my_points.push_back(&*it); indices[&*it] = it - points.begin(); } retval.reserve(points.size()); while (!my_points.empty()) { Points::size_type idx = start_near.nearest_point_index(my_points); start_near = *my_points[idx]; retval.push_back(indices[ my_points[idx] ]); my_points.erase(my_points.begin() + idx); } } void chained_path(const Points &points, std::vector &retval) { if (points.empty()) return; // can't call front() on empty vector chained_path(points, retval, points.front()); } /* retval and items must be different containers */ template void chained_path_items(Points &points, T &items, T &retval) { std::vector indices; chained_path(points, indices); for (std::vector::const_iterator it = indices.begin(); it != indices.end(); ++it) retval.push_back(items[*it]); } template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval); bool directions_parallel(double angle1, double angle2, double max_diff) { double diff = fabs(angle1 - angle2); max_diff += EPSILON; return diff < max_diff || fabs(diff - PI) < max_diff; } template bool contains(const std::vector &vector, const Point &point) { for (typename std::vector::const_iterator it = vector.begin(); it != vector.end(); ++it) { if (it->contains(point)) return true; } return false; } template bool contains(const ExPolygons &vector, const Point &point); double rad2deg(double angle) { return angle / PI * 180.0; } double rad2deg_dir(double angle) { angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0); if (angle < 0) angle += PI; return rad2deg(angle); } double deg2rad(double angle) { return PI * angle / 180.0; } void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval) { Polygons pp; for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) { Polygon p = *it; p.points.push_back(p.points.front()); p.points = MultiPoint::_douglas_peucker(p.points, tolerance); p.points.pop_back(); pp.push_back(p); } Slic3r::simplify_polygons(pp, retval); } Line MedialAxis::edge_to_line(const VD::edge_type &edge) const { Line line; line.a.x = edge.vertex0()->x(); line.a.y = edge.vertex0()->y(); line.b.x = edge.vertex1()->x(); line.b.y = edge.vertex1()->y(); return line; } void MedialAxis::build(Polylines* polylines) { /* // build bounding box (we use it for clipping infinite segments) // --> we have no infinite segments this->bb = BoundingBox(this->lines); */ construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd); /* // DEBUG: dump all Voronoi edges { for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) { if (edge->is_infinite()) continue; Polyline polyline; polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() )); polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() )); polylines->push_back(polyline); } return; } */ // collect valid edges (i.e. prune those not belonging to MAT) // note: this keeps twins, so it contains twice the number of the valid edges this->edges.clear(); for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) { // if we only process segments representing closed loops, none if the // infinite edges (if any) would be part of our MAT anyway if (edge->is_secondary() || edge->is_infinite()) continue; this->edges.insert(&*edge); } // count valid segments for each vertex std::map< const VD::vertex_type*,std::set > vertex_edges; std::set entry_nodes; for (VD::const_vertex_iterator vertex = this->vd.vertices().begin(); vertex != this->vd.vertices().end(); ++vertex) { // get a reference to the list of valid edges originating from this vertex std::set& edges = vertex_edges[&*vertex]; // get one random edge originating from this vertex const VD::edge_type* edge = vertex->incident_edge(); do { if (this->edges.count(edge) > 0) // only count valid edges edges.insert(edge); edge = edge->rot_next(); // next edge originating from this vertex } while (edge != vertex->incident_edge()); // if there's only one edge starting at this vertex then it's a leaf size_t edge_count = edges.size(); if (edge_count == 1) { entry_nodes.insert(&*vertex); } } // prune recursively while (!entry_nodes.empty()) { // get a random entry node const VD::vertex_type* v = *entry_nodes.begin(); // get edge starting from v assert(!vertex_edges[v].empty()); const VD::edge_type* edge = *vertex_edges[v].begin(); if (!this->is_valid_edge(*edge)) { // if edge is not valid, erase it from edge list (void)this->edges.erase(edge); (void)this->edges.erase(edge->twin()); // decrement edge counters for the affected nodes const VD::vertex_type* v1 = edge->vertex1(); (void)vertex_edges[v].erase(edge); (void)vertex_edges[v1].erase(edge->twin()); // also, check whether the end vertex is a new leaf if (vertex_edges[v1].size() == 1) { entry_nodes.insert(v1); } else if (vertex_edges[v1].empty()) { entry_nodes.erase(v1); } } // remove node from the set to prevent it from being visited again entry_nodes.erase(v); } // iterate through the valid edges to build polylines while (!this->edges.empty()) { const VD::edge_type& edge = **this->edges.begin(); // start a polyline Polyline polyline; polyline.points.push_back(Point( edge.vertex0()->x(), edge.vertex0()->y() )); polyline.points.push_back(Point( edge.vertex1()->x(), edge.vertex1()->y() )); // remove this edge and its twin from the available edges (void)this->edges.erase(&edge); (void)this->edges.erase(edge.twin()); // get next points this->process_edge_neighbors(edge, &polyline.points); // get previous points Points pp; this->process_edge_neighbors(*edge.twin(), &pp); polyline.points.insert(polyline.points.begin(), pp.rbegin(), pp.rend()); // append polyline to result if it's not too small if (polyline.length() > this->max_width) polylines->push_back(polyline); } } void MedialAxis::process_edge_neighbors(const VD::edge_type& edge, Points* points) { // Since rot_next() works on the edge starting point but we want // to find neighbors on the ending point, we just swap edge with // its twin. const VD::edge_type& twin = *edge.twin(); // count neighbors for this edge std::vector neighbors; for (const VD::edge_type* neighbor = twin.rot_next(); neighbor != &twin; neighbor = neighbor->rot_next()) { if (this->edges.count(neighbor) > 0) neighbors.push_back(neighbor); } // if we have a single neighbor then we can continue recursively if (neighbors.size() == 1) { const VD::edge_type& neighbor = *neighbors.front(); points->push_back(Point( neighbor.vertex1()->x(), neighbor.vertex1()->y() )); (void)this->edges.erase(&neighbor); (void)this->edges.erase(neighbor.twin()); this->process_edge_neighbors(neighbor, points); } } bool MedialAxis::is_valid_edge(const VD::edge_type& edge) const { /* If the cells sharing this edge have a common vertex, we're not interested in this edge. Why? Because it means that the edge lies on the bisector of two contiguous input lines and it was included in the Voronoi graph because it's the locus of centers of circles tangent to both vertices. Due to the "thin" nature of our input, these edges will be very short and not part of our wanted output. */ const VD::cell_type &cell1 = *edge.cell(); const VD::cell_type &cell2 = *edge.twin()->cell(); if (cell1.contains_segment() && cell2.contains_segment()) { Line segment1 = this->retrieve_segment(cell1); Line segment2 = this->retrieve_segment(cell2); if (segment1.a == segment2.b || segment1.b == segment2.a) return false; // calculate relative angle between the two boundary segments double angle = fabs(segment2.orientation() - segment1.orientation()); // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction) // we're interested only in segments close to the second case (facing segments) // so we allow some tolerance (say, 30°) if (angle < PI*2/3 ) { return false; } // each vertex is equidistant to both cell segments // but such distance might differ between the two vertices; // in this case it means the shape is getting narrow (like a corner) // and we might need to skip the edge since it's not really part of // our skeleton Point v0( edge.vertex0()->x(), edge.vertex0()->y() ); Point v1( edge.vertex1()->x(), edge.vertex1()->y() ); double dist0 = v0.perp_distance_to(segment1); double dist1 = v1.perp_distance_to(segment1); /* double diff = fabs(dist1 - dist0); double dist_between_segments1 = segment1.a.distance_to(segment2); double dist_between_segments2 = segment1.b.distance_to(segment2); printf("w = %f/%f, dist0 = %f, dist1 = %f, diff = %f, seg1len = %f, seg2len = %f, edgelen = %f, s2s = %f / %f\n", unscale(this->max_width), unscale(this->min_width), unscale(dist0), unscale(dist1), unscale(diff), unscale(segment1.length()), unscale(segment2.length()), unscale(this->edge_to_line(edge).length()), unscale(dist_between_segments1), unscale(dist_between_segments2) ); */ // if this segment is the centerline for a very thin area, we might want to skip it // in case the area is too thin if (dist0 < this->min_width/2 || dist1 < this->min_width/2) { //printf(" => too thin, skipping\n"); return false; } /* // if distance between this edge and the thin area boundary is greater // than half the max width, then it's not a true medial axis segment if (dist1 > this->width*2) { printf(" => too fat, skipping\n"); //return false; } */ return true; } return false; } Line MedialAxis::retrieve_segment(const VD::cell_type& cell) const { VD::cell_type::source_index_type index = cell.source_index() - this->points.size(); return this->lines[index]; } } }